APP下载

铁杆蒿与白羊草枯落物覆盖量对黄土坡面流水动力特性的影响

2018-09-03李兆松汪建芳王忠禹

农业工程学报 2018年17期
关键词:白羊铁杆雷诺数

李兆松,王 兵,2,汪建芳,王忠禹



铁杆蒿与白羊草枯落物覆盖量对黄土坡面流水动力特性的影响

李兆松1,王 兵1,2※,汪建芳1,王忠禹1

(1. 西北农林科技大学水土保持研究所黄土高原土壤侵蚀与旱地农业国家重点实验室,杨凌 712100;2. 中国科院水利部水土保持研究所,杨凌 712100)

枯落物种类及覆盖量差异可能会影响坡面流水动力特性。选取黄土高原丘陵沟壑区典型草地铁杆蒿(菊科)和白羊草(禾本科)枯落物为研究对象,通过设置7个枯落物覆盖量(铁杆蒿为0~1 000 g/m2,白羊草为0~600 g/m2)和2个降雨强度(60和120 mm/h),系统研究枯落物类型及覆盖量对坡面流水动力学特征参数的影响。结果表明:1)相对裸地对照,枯落物覆盖处理坡面流平均流速、雷诺数和弗汝德数平均减小了77.3%、18.5%和87.4%,阻力系数增加了315倍;2)枯落物覆盖量的增加可有效减缓流速、流态和增加阻力系数,并且随着枯落物覆盖量的增加,平均流速、雷诺数和弗汝德数均呈幂函数减小趋势(<0.01),而阻力系数呈幂函数增加趋势(<0.01)。总体而言,铁杆蒿枯落物对坡面流水动力参数的影响高于白羊草枯落物。3)逐步回归结果表明各个水动力参数均与流量、枯落物覆盖量和枯落物特征参数呈显著幂函数关系(2为0.84~0.92,NSE(Nash-Sutcliffe系数)为0.60~0.91,<0.01);除流量和枯落物覆盖量外,流速和阻力系数还受枯落物直径影响,流态则主要与枯落物密度和长度密切相关。本研究可为揭示枯落物的水土保持机理,正确评价草地的水土保持效益提供科学参考。

侵蚀;水动力学;流量;枯落物覆盖量;典型草地;黄土丘陵沟壑区;降雨

0 引 言

坡面流是指降雨强度或流量超过地面入渗能力情况下,水流沿坡面顺坡方向上在重力作用下扣除下渗、填洼等水分损失后的浅层明流[1],是土壤侵蚀的主要动力来源[2]。因此,系统研究坡面流水力学特征及其影响因素对于准确预测土壤侵蚀具有着重要意义。流速、流态和阻力特征是表征坡面流的常用指标,其主要受坡面土壤类型、地表形态、土地利用方式、降雨或流量特征、含沙量和土壤近地表特征等的影响[3-7]。植被覆盖可显著影响产流、产沙过程,因而有关植被覆盖对坡面流水力学参数的影响备受关注。目前,植被特征对坡面流水动力特性影响的研究已经取得了一定的成果,如有无植被[8]、植被覆盖度[9-12]、植被格局[13-14]、刚性植被和柔性植被[15-16]以及植被淹没程度[17-18]。枯落物作为植被的重要产物覆盖于地表,可消减雨滴动能、延缓产流时间、削弱坡面流冲刷和改善土壤理化性质,进而有效保护土壤、减少土壤侵蚀[19-21]。然而,有关枯落物覆盖减流减沙作用的水动力学机理的研究相对较少[22-23]。黄土高原是中国、乃至全世界水土流失最严重的地区之一,强烈的水土流失直接威胁区域经济与生态环境可持续发展。自1999年退耕还林(草)工程实施以来,植被得以恢复,近地表枯落物大量蓄积[6]。在这过程中,草地面积显著增加,约占黄土高原总面积的41.7%[24]。基于此,本文选取黄土丘陵沟壑区典型草地菊科植物铁杆蒿()枯落物和禾本科植物白羊草((.))枯落物作为研究对象,采用人工模拟降雨试验,系统研究铁杆蒿和白羊草枯落物覆盖对坡面流水动力学特征的影响,量化枯落物覆盖量与坡面流水力学参数之间的定量关系,以期为揭示黄土高原典型草地枯落物水土保持机理提供理论基础。

1 材料与方法

1.1 试验材料

试验于2017年8月在黄土高原土壤侵蚀与旱地农业国家重点室降雨大厅进行。人工模拟降雨采用QYJY-503固定式人工降雨设备,该设备采用组合喷头降雨,喷头安置高度均为18 m,雨滴大小控制在0.4~6 mm,可调节雨强范围为30~300 mm/h,降雨均匀度大于0.8,雨滴终点速度近似天然降雨。

1.2 试验处理

在安塞纸坊沟流域选取典型铁杆蒿群落(菊科)和白羊草群落(禾本科)草地,收集其自然凋落未分解的枯落物,并通过体积排水法测定枯落物密度,WinRHIZO Pro 2.0 图像分析软件测定枯落物长度、投影面积、直径和表面积,结果如表1。铁杆蒿和白羊草枯落物分别设置7个覆盖量处理(表2),每个处理2个重复。

表1 铁杆蒿和白羊草枯落物特征

注:铁杆蒿用Ag表示,白羊草用Bi表示。下同。

Note:was represented by Ag,(.) Keng.was represented by Bithe same as below

表2 铁杆蒿和白羊草枯落物覆盖量

1.3 试验过程

试验土槽长、宽、深分别为2.0、0.5、0.4 m,坡度为15°。供试土壤采自安塞退耕地表层土(0~40 cm),其理化性质见表3。土槽底部铺0.10 m细沙,而后进行填土,为保证土壤水分均匀下渗,将细沙层和填土层铺用纱布隔开。填土前先将土壤过2 mm筛,去除石砾和草根后按照容重1.2 g/cm3分层填装,每层0.05 m,铺平、压实,每次填装下层土壤之前将表土打毛,消除土壤之间的分层现象。填土结束后,将枯落物按照预设覆盖量均匀撒铺在坡面上,并适量洒水(不产生径流和物理结皮),静置2周后开始进行降雨试验。

表3 供试土壤理化性状

注:机械组成参照美国农业部制定的土壤质地分类标准。

Note: Mechanical composition refers to soil texture classification standards established by the U.S. Department of Agriculture.

降雨前,均对各处理土壤含水量进行标定,以消除土壤含水量差异对试验的影响。根据黄土高原雨季侵蚀性降雨和极端暴雨情况,60 mm/h降雨强度为该区域较为常见的侵蚀性降雨强度;此外,考虑到极端降雨,又设置了120 mm/h的雨强。另陕北子洲绥德“7·26”特大暴雨中子洲最大一小时降雨量为52.0mm[25],故降雨历时分别为60和30 min;降雨过程中测定水温,每3 min收集径流泥沙全样并采用高锰酸钾法测定坡面流表面流速,再根据实测水温计算出水流粘滞系数,进一步计算雷诺数和判断水流流态,乘以校正系数(缓流:0.6;过渡流:0.7;急流:0.8)获得平均流速[26],用以计算坡面流水力学参数。结合上述枯落物种类和覆盖梯度,共计降雨56场。

1.4 水动力学参数计算方法

本研究中坡面流水力学参数主要涉及雷诺数()、弗汝德数()和Darcy-Weisbach阻力系数(),其计算公式如下[27-28]

式中为水深,m;为单宽流量,m3/(m·s);为断面平均流速,m/s;为运动黏滞系数,cm2/s;为水的温度,℃;为重力加速度,取9.8 m/s2;为水力半径,取值近似水深,m;为水力坡度,其值为坡度的正弦值。

2 结果与讨论

2.1 枯落物覆盖对流速的影响

流速是表征坡面流常用的水动力学参数,也是计算其他水动力学参数的基础。受降雨历时、枯落物覆盖量和降雨强度的影响,各处理坡面流流速存在显著差异(图1)。对于所有处理,流速随降雨历时的延长整体表现为先增加后趋于稳定的变化趋势,降雨结束前15 min坡面流流速较降雨初始15 min增加了5.4%~86.4%。这主要是降雨初期土壤未达到饱和状态,入渗速率较大所致。枯落物覆盖除能消耗径流能量和分散径流外,还能增加糙度,从而降低坡面流流速。相对于裸地对照,铁杆蒿枯落物覆盖条件下流速平均减少83.8%,而白羊草枯落物覆盖条件下流速平均减少70.8%。枯落物覆盖量的增加可显著减缓坡面流流速,且随着降雨强度的增大,枯落物覆盖量对坡面流流速的影响差异更显著。相对于枯落物覆盖量最小的T1处理,铁杆蒿枯落物覆盖条件下其他处理平均流速在60和120 mm/h雨强下分别平均减少了67.3%和54.9%,白羊草枯落物覆盖条件则平均减少了21.2%和30.0%。总体而言,2种枯落物覆盖在2个雨强下平均流速较裸地减小77.3%,但由于枯落物覆盖量及类型的差异,铁杆蒿枯落物覆盖对坡面流速的减缓效果强于白羊草。

图1 不同覆盖量坡面流流速随降雨历时变化特征

2.2 枯落物覆盖对流态的影响

2.2.1 枯落物覆盖对雷诺数的影响

水流流态是表征坡面薄层径流水动力特征的基本参数之一,而雷诺数是重要的判别方法之一。雷诺数是惯性力和黏性力的比值,是衡量紊动程度的重要指标。根据明渠水流的判别标准,当雷诺数大于500时,径流流态为紊流;当雷诺数小于500时,径流流态为层流;在500左右时,径流流态为过渡流[29]。所有处理坡面流雷诺数随降雨历时的延长整体呈先迅速增加后趋于稳定的变化趋势(图2),降雨结束前15 min坡面流流速较降雨初始15 min增加了15.5%~162.2%,但均小于500,表明坡面流均为层流。枯落物覆盖可显著减小雷诺数,受枯落物覆盖量及类型差异的影响,其对雷诺数的影响不尽相同。相对于裸地对照,铁杆蒿枯落物覆盖条件下雷诺数平均减少了23.3%,白羊草枯落物覆盖条件下则平均减少了13.7%,2种枯落物覆盖平均减少了18.5%。枯落物覆盖量的增加可显著减小雷诺数,相对于枯落物覆盖量最小的T1处理,铁杆蒿覆盖其他处理雷诺数在60和120 mm/h雨强下分别平均减少了29.1%和17.5%,白羊草则平均减少了7.8%和5.5%。这是因为雷诺数受流量影响显著[13],水深未没过枯落物时,流量越大,雷诺数越大。枯落物覆盖量的增加,糙度增大,入渗增加,从而减小流量,导致雷诺数减小。雷诺数变化曲线在120 mm/h雨强下整体较60 mm/h雨强高,主要是降雨强度增加导致水深升高,增加了径流与粗糙单元接触和碰撞的概率,进而增加了径流的紊动性[4,30]。

图2 不同覆盖量下雷诺数随降雨历时变化特征

2.2.2 枯落物覆盖对弗汝德数的影响

弗汝德数也是表征径流流态的重要参数,是衡量径流急缓程度的重要指标,表示径流惯性力与重力的关系。根据明渠水流的判别标准,当大于等于1时,径流流态为急流;当小于1时,径流流态为缓流[29]。在降雨强度相同时,越大,表明径流流速挟沙能力越强。随降雨历时变化趋势受降雨强度和枯落物覆盖量的影响显著(图3)。60 mm/h雨强时,枯落物覆盖处理在不同时段整体表现为无显著差异;而120 mm/h雨强时,当铁杆蒿和白羊草枯落物覆盖量较低时随降雨历时为缓慢增大,较高时仍表现为无显著差异。枯落物覆盖可显著减小。裸地对照均大于1,径流流态为急流;铁杆蒿和白羊草枯落物覆盖条件下分别较裸地对照平均减少92.1%和82.7%,且均小于1,径流流态为缓流。枯落物覆盖量的增加可显著减小,且降雨强度的增大,对枯落物覆盖量较小处理坡面流的影响显著高于覆盖量较大处理。相对枯落物覆盖量最小的T1处理,铁杆蒿枯落物覆盖条件下其他处理坡面流在60和120 mm/h雨强下分别平均减少了77.2%和64.8%,白羊草枯落物覆盖条件下则减少了25.2%和37.9%。总体而言,2种枯落物覆盖在2种雨强下弗汝德数的平均值较裸地减小了87.4%,铁杆蒿枯落物覆盖减缓坡面急流效果较白羊草枯落物覆盖强。

2.3 枯落物覆盖对阻力系数的影响

阻力系数反映了坡面流在流动过程中所受的阻力大小,阻力系数越大,说明水流克服坡面阻力所消耗的能量就越大,则用于坡面侵蚀和泥沙输移的能量就越小。随着降雨历时的延长,铁杆蒿枯落处理阻力系数在60和120 mm/h雨强下分别整体表现为趋于稳定和先增加后减小的变化趋势,白羊草枯落物处理在2个雨强下则均表现为先增加后缓慢减小的变化趋势(图4)。由于枯落物覆盖不同于植被覆盖,在足够大的坡面径流冲刷作用下枯落物会逐步移动形成短距离的堆集,同时,留出部分面积裸露,使平均水深逐渐变小,导致阻力系数减小[30];白羊草枯落物相对铁杆蒿枯落物量少且重量密度低,坡面移动堆积所需要的径流动力相对较小,使得其对坡面流的阻力小于铁杆蒿。枯落物覆盖可显著增加阻力系数,并且受枯落物覆盖量及类型差异的影响。铁杆蒿和白羊草枯落物覆盖条件下各处理阻力系数平均是裸地对照的591.8和38.8倍,平均约为315倍。枯落物覆盖量的增加可显著增加阻力系数,且随降雨强度的增大,枯落物覆盖量对坡面流阻力系数的影响差异更为显著。相对于枯落物覆盖量最小的T1处理,铁杆蒿覆盖条件下其他处理坡面流阻力系数在60和120 mm/h雨强下平均增加了18.4和13.3倍,白羊草覆盖条件下则增加了0.9倍和2.1倍。这主要是枯落物覆盖量的增加,一定程度上会增加覆盖率,加大了水流发生碰撞和摩擦的机会,消耗了更多水流能量。相关研究表明阻力系数随覆盖率的增加呈幂函数增加[31]。

图3 不同覆盖量下弗汝德数随降雨历时变化特征

图4 不同覆盖量下阻力系数随降雨历时变化特征

2.4 枯落物覆盖与水动力参数的量化关系

枯落物覆盖可显著影响坡面流流速、雷诺数、弗汝德数和阻力系数。进一步分析表明,铁杆蒿和白羊草两种枯落物覆盖处理下,坡面流平均流速、雷诺数、弗汝德数和阻力系数均与枯落物覆盖量存在显著幂函数关系(0.55≤2≤0.97;<0.01;图5和表4);且随着枯落物覆盖量的增加,平均流速、雷诺数和弗汝德数均减小,阻力系数增大。这是由于枯落物覆盖量的增加能够增大坡面糙度,耗散径流能量,从而减小坡面流流速、雷诺数、弗汝德数和增大阻力系数[30-32]。由于枯落物种类的不同,白羊草和铁杆蒿枯落物对坡面流水动力参数的影响也存在差异。

图5 坡面流水动力参数与枯落物覆盖量的关系

表4 坡面流水动力参数与枯落物覆盖量的函数关系(P<0.01)

总体而言,随着枯落物覆盖量的增加,白羊草枯落物覆盖条件下平均流速、雷诺数和弗汝德数均高于铁杆蒿枯落物,而阻力系数则低于铁杆蒿枯落物。这是由于相对于菊科的铁杆蒿枯落物,禾本科的白羊草枯落物大都以宽叶为主,质量密度相对较小,且枯落物由于较大的表面积,其凋落于地面后枯叶间空隙相对较大,从而导致其对径流的阻力相对较小,进而流速、雷诺数和佛汝德数相对较大。

综上所述,坡面流流速、雷诺数、佛汝德数和阻力系数与枯落物种类、覆盖量及降雨强度存在显著关系。基于此,增加枯落物特征参数(表1)来表征枯落物种类差异对坡面流水动力参数的影响。逐步回归结果表明,各坡面流水动力参数均可表示为枯落物特征参数、枯落物覆盖量和径流量的幂函数关系,公式(6)~(9)。

=10-7.801.28-0.18-0.542=0.92,<0.01 NSE=0.83(6)

10-8.322.110.171.062=0.92,<0.01,NSE=0.91(7)

10-5.310.98-0.410.602=0.84,<0.01,NSE=0.60(8)

=109.58-1.980.70-1.9420.86,<0.01,NSE=0.81(9)

式中样本量=24,和分别为坡面流平均流速(m/s)、雷诺数、弗汝德数和阻力系数,、、、和分别为产流量、枯落物覆盖量(g/m2)、枯落物直径(mm)、枯落物密度(g/cm3)和枯落物长度(cm/g)。除流量和枯落物覆盖量可显著影响坡面流水动力参数外,枯落物特征参数中枯落物直径是影响流速和阻力系数的主要参数,而枯落物密度和长度分别是影响雷诺数和弗汝德数的主要参数。

3 结 论

本文以黄土高原丘陵沟壑区典型草地铁杆蒿(菊科)和白羊草(禾本科)枯落物为研究对象,通过设置7个枯落物覆盖量和2个降雨强度(60和120 mm/h),系统研究枯落物种类及覆盖量对坡面流水动力学特征参数的影响。结果表明:

1)枯落物覆盖能够显著影响坡面流水动力参数,其中铁杆蒿枯落物覆盖能够平均减小流速、雷诺数和弗汝德数的83.8%、23.3%和92.1%,增加阻力系数591.8倍;白羊草枯落物则平均减小流速、雷诺数和弗汝德数的70.8%、13.7%和82.7%,增加阻力系数38.8倍。

2)随着枯落物覆盖量的增加,2种枯落物覆盖条件下平均流速、雷诺数和弗汝德数均呈幂函数减小趋势(<0.01),而阻力系数呈幂函数增加趋势(<0.01);随着降雨强度的增大,枯落物覆盖量对各水动力参数的影响差异更为显著;总体而言,铁杆蒿枯落物覆盖对坡面流水动力参数的影响高于白羊草枯落物。

3)坡面流水动力参数均可表示为枯落物特征参数、枯落物覆盖量和径流量的幂函数关系(2为0.84~0.92,NSE为0.60~0.91,<0.01),除流量和枯落物覆盖量外,枯落物特征参数中枯落物直径是影响流速和阻力系数的主要参数,而枯落物密度和长度分别是影响雷诺数和弗汝德数的主要参数。枯落物不仅分布于地表,而且大量广泛分布于表层土壤中,其对土壤侵蚀影响的研究相对较少。因此,量化枯落物混入量与水动力学参数的相互关系,明确枯落物混入量对产流、产沙过程的影响,将是我们下一步的研究内容。

[1] 张光辉. 国外坡面径流分离土壤过程水动力学研究进展[J]. 水土保持学报,2000,14(3):112-115.

Zhang Guanghui. Summary study on runoff detachment process based on hydraulics[J]. Journal of Soil and Water Conservation, 2000, 14(3): 112-115. (in Chinese with English abstract)

[2] 张宽地,王光谦,孙晓敏,等. 坡面薄层水流水动力学特性试验[J]. 农业工程学报,2014,30(15):182-189.

Zhang Kuandi, Wang Guangqian, Sun Xiaomin, et al. Experiment on hydraulic characteristics of shallow open channel flow on slop[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CASE), 2014, 30(15): 182-189. (in Chinese with English abstract)

[3] 王晨沣,王彬,王玉杰,等. 不同土壤前期含水率和坡度下黄壤分离临界水动力特性[J]. 农业机械学报,2017,48(4):224-232.

Wang Chenfeng, Wang Bin, Wang Yujie, et al. Critical hydraulic characteristics of yellow soil detachment under different antecedent soil moisture contents and slop gradients[J]. Transactions of the Chinese Society of Agricultural Machinery, 2017, 48(4): 224-232. (in Chinese with English abstract)

[4] 张宽地,王光谦,孙晓敏,等. 模拟植被覆盖条件下坡面流水动力学特性[J]. 水科学进展,2014,25(6):825-834.

Zhang Kuandi, Wang Guangqian, Sun Xiaomin, et al. Hydraulic characteristics of overland flow under different vegetation coverage[J]. Advances in Water Science, 2014, 25(6): 825-834. (in Chinese with English abstract)

[5] 赵春红,高建恩,王飞,等. 含沙量对坡面流水动力学特性影响的研究[J]. 农业机械学报,2013,44(9):78,80-85.

Zhao Chunhong, Gao Jianen, Wang Fei, et al. Effects of sediment load on hydrodynamic characteristics of overland flow[J]. Transactions of the Chinese Society of Agricultural Machinery, 2013, 44(9): 78,80-85. (in Chinese with English abstract)

[6] 张光辉. 退耕驱动的近地表特性变化对土壤侵蚀的潜在影响[J]. 中国水土保持科学,2017,15(4):143-154.

Zhang Guanghui. Potential effects of changes in near soil surface characteristics driven by farmland abandonment on soil erosion[J]. Science of Soil and Water Conservation, 2017, 15(4): 143-154. (in Chinese with English abstract)

[7] 王柢渊,杨帆,张宽地,等. 流量和坡度对植被水流水动力学特性的影响[J]. 人民黄河,2017,39(6):86-89.

Wang Diyuan, Yang Fan, Zhang Kuandi, et al. Discharge and slope on hydraulic characteristics of overland flow under vegetated coverage[J]. Yellow River, 2017, 39(6): 86-89. (in Chinese with English abstract)

[8] 肖培青,姚文艺,李莉,等. 植被影响下坡面流阻力变化特征研究[J]. 泥沙研究,2013(3):1-5.

Xiao Peiqing, Yao Wenyi, Li Li, et al. Experimental study of overland flow resistance of different vegetation covers[J]. Journal of Sediment Research, 2013(3): 1-5. (in Chinese with English abstract)

[9] 李毅,邵明安. 草地覆盖坡面流水动力参数的室内降雨试验[J]. 农业工程学报,2008,24(10):1-5.

Li Yi, Shao Mingan. Hydrodynamic parameters of overland flow during laboratory rainfall experiments under grass coverage[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CASE), 2008, 24(10): 1-5. (in Chinese with English abstract)

[10] 孙佳美,余新晓,樊登星,等. 模拟降雨下植被盖度对坡面流水动力学特性的影响[J]. 生态学报,2015,35(8):2574-2580.

Sun Jiamei, Yu Xinxiao, Fan Dengxing, et al. Impact of vegetation cover on surface runoff hydraulic characteristics with simulated rainfall[J]. Acta Ecologica Sinica, 2015, 35(8): 2574-2580. (in Chinese with English abstract)

[11] 杨帆,张宽地,马小玲,等. 植被覆盖度对坡面流相对水动力学特性的影响[J]. 水力发电学报, 2017,36(2):29-39.

Yang Fan, Zhang Kuandi, Ma Xiaoling, et al. Effects of vegetation on relative hydrodynamic of overland flows[J]. Journal of Hydroelectric Engineering, 2017, 36(2): 29-39. (in Chinese with English abstract)

[12] 杨帆,张宽地,杨婕,等. 不同覆盖度下坡面流植被阻力特性研究[J]. 农业机械学报,2016,47(11):157-162.

Yang Fan, Zhang Kuandi, Yang Jie, et al. Characteristics of vegetation resistance in overland flow under different coverages[J]. Transactions of the Chinese Society of Agricultural Machinery, 2016, 47(11): 157-162. (in Chinese with English abstract)

[13] 杨坪坪,张会兰,王云琦,等. 植被覆盖度与空间格局对坡面流水动力学特性的影响[J]. 水土保持学报,2016,30(2):26-33.

Yang Pingping, Zhang Huilan, Wang Yunqi, et al. Effects of vegetation coverage and spatial distribution pattern on hydrodynamic characteristics of overland flow[J]. Journal of Soil and Water Conservation, 2016, 30(2): 26-33. (in Chinese with English abstract)

[14] 孟铖铖,张会兰,杨坪坪. 模拟植被类型及空间配置对坡面流水动力学特性的影响[J]. 水土保持学报,2017,31(2):50-56,78.

Meng Chengcheng, Zhang Huilan, Yang Pingping. Effects of simulated vegetation types and spatial patterns on hydrodynamics of overland flow[J]. Journal of Soil and Water Conservation, 2017, 31(2): 50-56,78. (in Chinese with English abstract)

[15] 杨婕,张宽地,杨帆. 柔性植被和刚性植被水流水动力学特性研究[J]. 人民黄河,2017,39(8):85-89.

Yang Jie, Zhang Kuandi, Yang Fan. Experimental study on hydraulic characteristics of overland flow under rigid and flexible vegetation coverage[J]. Yellow River, 2017, 39(8): 85-89. (in Chinese with English abstract)

[16] 曾玉红,槐文信,张健,等. 非淹没刚性植被流动阻力研究[J]. 水利学报,2011,42(7):834-838.

Zeng Yuhong, Huai Wenxin, Zhang Jian, et al.Flow resistance of emerged rigid vegetations in open channels[J]. Journal of Hydraulic Engineering, 2011, 42(7): 834-838. (in Chinese with English abstract)

[17] 杨帆,张宽地,杨明义,等. 植被淹没程度对坡面流水动力学特性影响[J]. 水科学进展,2016,27(6):832-840.

Yang Fan, Zhang Kuandi, Yang Mingyi, et al. Experimental study on hydraulic characteristics of submergence degree to flow under vegetation coverage[J]. Advance in Water Science, 2016, 27(6): 832-840. (in Chinese with English abstract)

[18] Li Yiping, Wang Ying, Tang Chunyan, et al. Flow characteristics in different densities of submerged flexible vegetation from an open-channel flume study of artificial plants[J]. Geomorphology, 2014, 204(1): 314-324.

[19] Shi H, Shao M. Soil and water loss from the Loess Plateau in China[J]. Journal of Arid Environments, 2000, 45(1): 9-20.

[20] Sun Long, Zhang Guanghui, Luan Lili, et al. Temporal variation in soil resistance to flowing water erosion for soil incorporated with plant litters in the Loess Plateau of China[J]. Catena, 2016, 145: 239-245.

[21] Wang Dandan, Yu Xinxiao, Zhang Jianjun, et al. The impacts oflitter cover and roots on soil erosion in the Loess Plateau, China[J]. Chemistry & Ecology, 2017, 33(1): 1-15.

[22] 孙佳美,余新晓,李翰之,等. 模拟降雨下枯落物调控坡面产流产沙过程及特征研究[J]. 水利学报,2017,48(3):341-350.

Sun Jiamei, Yu Xinxiao, Li Hanzhi, et al. Runoff and sediment yield process and characteristics research on litter slopes in simulated rainfall[J]. Journal of Hydraulic Engineering, 2017, 48(3): 341-350. (in Chinese with English abstract)

[23] 孙佳美,李瀚之,赵阳,等.构树林下枯落物对坡面流水动力学特性的影响[J]. 水土保持学报,2015,29(3):102-105.

Sun Jiamei, Li Hanzhi, Zhao yang, et al. Impact offorest litter on slop runoff hydrodynamic characteristics[J]. Journal of Soil and Water Conservation, 2015, 29(3): 102-105. (in Chinese with English abstract)

[24] Li J, Li Z, Lü Z. Analysis of spatiotemporal variations in land use on the loess plateau of china during 1986-2010[J]. Environmental Earth Sciences, 2016, 75(11): 1-12.

[25] 王楠,陈一先,白雷超,等. 陕北子洲县“7·26”特大暴雨引发的小流域土壤侵蚀调查[J]. 水土保持通报,2017,37(4):337-344.

Wangnan, Chen Yixian, Bai leichao, et al. Investigation on soil erosion in small watersheds under “726” extreme rainstorm in Zizhou, northern Shaanxi province[J]. Bulletin of Soil and Water Conservation, 2017, 37(4): 337-344. (in Chinese with English abstract)

[26] 易婷,张光辉,王兵,等. 退耕草地近地表层特征对坡面流流速的影响[J]. 山地学报,2015,33(4):434-440.

Yi Ting, Zhang Guanghui, Wang Bing, et al. Effects of near soil surface characteristics on velocity of overland flow in a natural succession grassland[J]. Mountain Research, 2015, 33(4): 434-440. (in Chinese with English abstract)

[27] 李勉,姚文艺,陈江南,等. 草被覆盖下坡面—沟坡系统坡面流阻力变化特征试验研究[J]. 水利学报,2007,38(1):112-119.

Li Mian, Yao Wenyi, Chen Jiangnan, et al. Experimental study on runoff resistance of hilly slope gullied surface with grass coverage[J]. Journal of Hydraulic Engineering, 2007, 38(1): 112-119. (in Chinese with English abstract)

[28] 李勉,姚文艺,杨剑锋,等. 草被覆盖对坡面流流态影响的人工模拟试验研究[J]. 应用基础与工程科学学报,2009,17(4):513-523 .

Li Mian, Yao Wenyi, Yang Jianfeng, et al. Experimental study on the effects of grass cover on the overland flow pattern in the hill slope gully side erosion system[J]. Journal of Basic Science and Engineering, 2009, 17(4): 513-523.(in Chinese with English abstract)

[29] 徐锡蒙,郑粉莉,吴红艳,等. 玉米秸秆覆盖缓冲带对细沟侵蚀及其水动力学特征的影响[J]. 农业工程学报,2015,31(24):111-119.

Xu Ximeng, Zheng Fenli, Wu Hongyan. et al. Impacts of corn stalk mulching buffer strip on rill erosion and its hydrodynamic character[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CASE), 2015, 31(24): 111-119.(in Chinese with English abstract)

[30] 李朝栋,李占斌,马建业,等. 不同长度小麦秸秆覆盖下黄土耕地坡面流水动力学特性[J]. 农业工程学报,2017,33(4):153-160.

Li Chaodong, Li Zhanbin, Ma Jianye, et al. Hydraulic characteristic of overland flow on loess farmland slop under mulch with different wheat straw lengths[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CASE), 2017, 33(4): 153-160. (in Chinese with English abstract)

[31] 曹颖,张光辉,唐科明,等. 地表覆盖对坡面流阻力的影响[J]. 水土保持学报,2010,24(4):86-89.

Cao Ying, Zhang Guanghui, Tang Keming, et al. Impact of simulated surface cover on resistance coefficient of overland flow[J]. Journal of Soil and Water Conservation, 2010, 24(4): 86-89. (in Chinese with English abstract)

[32] 曹颖,张光辉,唐科明,等. 地表覆盖对坡面流流速影响的模拟试验[J]. 山地学报,2011,29(6):654-659.

Cao Ying, Zhang Guanghui, Tang Keming, et al. Experimental on the effect of simulated on the overland flow velocity[J]. Mountain Research, 2011, 29(6): 654-659. (in Chinese with English abstract)

Effects ofandlitter mass coverage on hydrodynamic characteristics of loess overland flow

Li Zhaosong1, Wang Bing1,2※, Wang Jianfang1, Wang Zhongyu1

(1.,,,712100,; 2.,712100)

Litter coverage maybe significantly affect hydrodynamic characteristics of overland flow. An artificially simulated rainfall experiment was carried out to investigate the effects of litter coverage of different species and mass of different levels on the overland flow hydraulic parameters with a bare slope as the control. There seven litter mass coverages and two rainfall intensities in the experiment. Typical grassland litter ofwith the composite family and(.)with the grass family were selected in the Loess hilly-gully region, the north of Shaanxi province, China.Seven litter mass coverages were set toand(.), respectively, varying from 100 to 1 000 g/m2and 50 to 600 g/m2for each of those vegetation types and subjected to simulated two rainfall intensities: 60 and 120 mm/h. A normal rainfall intensity 60 mm/h and a rainstorm rainfall intensity 120 mm/h as the simulated rainfall intensities. According the extreme rainstorm event “7·26” in Zizhou and Suide, the north of Shaanxi province which the maximum hourly rainfall was 52 mm, so 60 mm was set to simulate rainfall. During the rainfall experiment, flow velocity and runoff were measured every three minutes, the water temperature was measured every fifteen minutes, and thenumber,number and the resistance coefficient were calculated based on flow velocity, flow discharge or water temperature. The results showed that compared with bare slope control, the flow velocity,number andnumber of litter coverage treatments were reduced by 77.3%, 18.5%, and 87.4%, respectively. However, the resistance coefficient was 314 times greater than the reference treatment. The average flow velocity,number andnumber decreased with the litter mass coverage increased as a power function (<0.01), however, the resistance coefficient increased with a power function (<0.01). As a whole, with the litter mass increased, the flow velocity,number andnumber of(.)were larger than that the(<0.01), but the resistance coefficient was opposite. The stepwise regression results showed that there was a significant (<0.01) power function relationship between flow discharge, litter mass coverage, characteristic parameters of litter and the hydraulic parameters of the slope (<0.01). The2and(Nash-Sutcliffe efficiency coefficient) ranged from 0.84 to 0.92 and 0.60 to 0.91, respectively. In addition to the flow discharge and litter mass coverage, the litter density was the key parameter to affect the flow velocity. Furthermore, the projected area of litter and the flow pattern had a close relationship, and the litter surface area was the main parameter for characterizing the resistance coefficient. This study can reveal the soil and water conservation mechanism of grassland litter and correctly evaluate the soil and water conservation benefits of grassland.

erosion; hydrodynamics; flow rate; litter mass coverage; typical grassland; the Loess Hilly-Gully Region; simulated rainfall

10.11975/j.issn.1002-6819.2018.17.020

S157

A

1002-6819(2018)-17-0151-07

2018-03-21

2018-05-27

国家自然科学基金重点项目“退耕驱动近地表特性变化对侵蚀过程的影响及其动力机制(41530858)”,国家自然科学基金面上项目“基于RUSLE模型的黄土高原草地植被覆盖因子研究(41771555)”,陕西省创新人才推进计划—青年科技新星项目“黄土高原典型草地植物根系对土壤分离过程的影响(2017KJXX-88)”,国家重点研发计划“黄土丘陵沟壑区植被功能提升与山地果园管理关键技术及示范(2016YFC0501703)”

李兆松,博士生,主要从事土壤侵蚀研究。Email:lzs151139@163.com

王 兵,博士,副研究员,主要从事植被恢复与土壤侵蚀研究。Email:bwang@ms.iswc.ac.cn

李兆松,王 兵,汪建芳,王忠禹. 铁杆蒿与白羊草枯落物覆盖量对黄土坡面流水动力特性的影响[J]. 农业工程学报,2018,34(17):151-157. doi:10.11975/j.issn.1002-6819.2018.17.020 http://www.tcsae.org

Li Zhaosong, Wang Bing, Wang Jianfang, Wang Zhongyu. Effects ofandlitter mass coverage on hydrodynamic characteristics of loess overland flow[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(17): 151-157. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2018.17.020 http://www.tcsae.org

猜你喜欢

白羊铁杆雷诺数
铁杆粉丝
同一首歌
天上有只大白羊
非接触机械密封端面间流体膜流动状态临界雷诺数的讨论*
小精豆爆笑漫画
基于Transition SST模型的高雷诺数圆柱绕流数值研究
黑羊和白羊
亚临界雷诺数圆柱绕流远场气动噪声实验研究
民机高速风洞试验的阻力雷诺数效应修正