APP下载

分布式光伏发电与充换电站在变电站内建设的探索与实践

2018-08-08黄素丽谢运华

科技与创新 2018年15期
关键词:配电柜出线电站

黄素丽,谢运华,张 楠

(1.广州电力设计院有限公司,广东 广州 510610;2.广州供电局有限公司,广东 广州 510610)

出于对能源紧缺和环境保护的重视,能耗低、无污染、噪声低的电动汽车受到愈来愈多的鼓励和支持,但是续航里程和充电便捷性构成了纯电动汽车发展的两大瓶颈。充换电站、充电桩等充换电设施是电动汽车发展中必不可少的基础设施,其重要性日渐突出。城市大型充换电站高昂的前期建设成本也是阻碍电动汽车普及和发展的一个因素。与变电站相结合的建设,可以合理降低建设运营成本,为推动电动汽车的发展贡献一份力量。光伏发电作为一种重要的绿色清洁分布式能源也逐渐由独立系统朝大规模并网系统方向发展。同时,分布式发电具有占地小、投资少、建设周期短等特点,近些年得到了大规模的发展。本文利用变电站旧站改造的机会,在变电站中加入分布式光伏发电系统、充换电站,践行了绿色、环保、节能的发展理念,取得了可复制推广的建设经验,前景十分广阔。

1 主要建设原则

分布式光伏发电建设思路:可以根据太阳光照条件因地制宜地充分利用太阳能,当地使用、当地并网,有效解决了光伏发电的并网问题,以及长距离输电的损耗问题。

主要电气设备一般包括光伏电池组件、逆变器、汇流箱、交流配电柜等。通过合理布置光伏板,使光伏电池组件更好地接收太阳光照射,将太阳能转化为直流电能。根据逆变器输入回路MPPT及电压、电流限制,合理对光伏电池组件组串,接入逆变器。由逆变器将直流输入电源逆变成交流电源。逆变器输出电源通过汇流箱、交流配电柜、变压器等,根据分布式光伏发电量的大小,合理选择并网电压等级,按照就近使用的原则接入电网。

充换电站建设:需要根据充电站规模合理布置充电桩车位,并设置换电池车位,更好地满足快速充电的需求。充换电站在建设时可综合考虑屋面光伏的布置,在建设时增设光伏组件固定所需的基础埋件,并满足安装组件设备等荷载要求,为后期组件的安装提供便利的条件。充换电站一般选用非车载快充,需要配套建设1台箱式配电站,10 kV外接电源接至箱式配电站内10 kV母线。箱式配电站内设备包括10 kV进线柜、出线柜、变压器,0.4 kV进线计量柜、低压出线柜。低压出线柜出线至户外落地式配电柜,由配电柜分配充电桩及其他负荷用电。因充电桩采用高频开关整流模式,可实现有源功率因数校正功能,因此,可不单独设置滤波装置及无功补偿。充电站内设置系统监控、视频监控、火灾报警等,充电机内配置交、直流电能表等计量计费装置。

2 工程概况

本文以广州某110 kV变电站改造工程为依托,在该变电站改造之际,征得相关单位同意后,合理增设充换电站并配套建设分布式光伏发电。

分布式光伏发电具体设计过程如下:①经过现场勘测及查看首期结构资料,确定屋面荷载是否满足本期加装光伏板结构要求,得知充换电站及部分配电装置楼屋面可利用面积约900 m2。②光伏组件选择方面。通过对比几种常用的太阳能电池,定于选用转换效率高、性能稳定、使用寿命长、故障率低且性价比高的容量为295 Wp的单晶硅组件。③光伏组件布置方面。光伏组件在混凝土屋面沿南北向布置,并考虑屋面建筑物光照遮挡的因素,按当地光照条件最佳倾角15°安装,以最大限度地利用太阳能。屋面可安装360块光伏组件,实现装机容量为106.2 kW。④逆变器的选择方面。选用的逆变器需具有一定的环境适应能力、抗干扰能力、过载能力、功率因素调整及各种保护功能。同时,需要实现畸变小、频率波动小、交流输出电压稳定、输出效率高;低电压穿越能力、孤岛保护、低电压穿越、短路保护等功能,内部输入侧直流以及输出侧交流均需加装防雷保护。外壳防护等级IP56、同时需要具备良好的环境温度特性,即耐热、耐雨、防老化以及高温下较高的输出效率。本工程选用2台50 kW逆变器,输出380 V交流电压。⑤配电箱的选择方面。配电箱内部断路器根据额定电压、电流进行选择,并经过短路校验。为了保护设备在遭受雷电或其他瞬时过电压时免于损害,内部需设置SPD防浪涌保护。同时由于避免瞬时故障导致断路器跳闸,需设置自动重合闸电源保护器,可减少线路停电时间、次数、纠正误跳闸,提高供电的可靠性。同时为计量光伏上网电量,需在配电箱内配置三相计量表。由于本项目装机容量小于1 MW,选择0.4 kV电压就近接入电网系统。配电箱接至充换电站箱式配电站内0.4 kV侧,可实现光伏发电并网。⑥电缆的选择及敷设。根据线路载流量大小合理选择电缆截面,逆变器至配电箱之间电缆选用ZR-YJV22-0.6/1 kV-4×35+1×16。配电箱至光伏并网柜之间电缆选用ZR-YJV22-0.6/1 kV-4×70+1×35;光伏直流电缆选用光伏专用线缆PV1-F-1×4mm2。组件下方的线缆,直接用扎丝绑扎在支架上,无组件的地方槽盒内敷设。在电缆槽盒内敷设的线缆在进入和引出槽盒时,需金属管保护。槽盒内电缆有高差处,应防止电缆的拉断,每隔1.5~2 m用1~2 mm厚的铜带或铝带电缆卡固定1次,同时槽盒转弯处需满足电缆转弯半径的要求,并注意避免刮伤电缆防护外套,以保证电缆的安全稳定运行。⑦防火封堵设置。直流线缆与交流电缆分别设置独立槽盒,同一槽盒里放置多层电缆,需用防火隔板隔开。电缆进出防火槽盒需刷防火涂料,槽盒接头处及中间段做防火封堵。电缆进出配电柜设备底部及电缆沟、穿墙开孔处均需做好防火封堵。⑧接地设置。屋面光伏组件支架及屋面电缆槽盒、屋面逆变器、配电箱等金属外壳需采用50×5镀锌扁钢可靠焊接,形成等电位接地网。并沿建筑物墙面向下每隔20 m明敷接地引下线,引下线敷设至地面以下与建筑物水平接地网连接,并在连接处设置L=2.5 m垂直接地极;使接地电阻值满足小于4 Ω。如果不能满足,则需要增加降阻剂或将接地网引至电阻率较低的地方。

图1 充换电站、分布式光伏发电接入系统配电接线图

充换电站具体设计过程如下:①根据充换电站建筑规模,共设置5个充电车位,1个换电车位;电池充电可在电荷低谷期进行,避开负荷高峰期合理降低电力成本。②充电桩的选择方面。为了满足更多电动车用户的需求,本项目选择可以快充的落地式直流充电桩。充电桩外壳防护等级为IP54、耐热、防潮、耐低温、耐老化、耐撞击,良好的绝缘特性,外壳及电缆都要具有阻燃性能。本项目选用配置5台60 kW非车载一体式充电机,充电机主要技术参数为额定功率60 kW、输出电压350~700 V、输出电流2~120A、功率因素≥0.98、效率≥0.93.同时,充电机内配备直流电能表,电度计量表准确等级不低于1.0级同时应具备分时计费功能。③箱式配电站的选型及布置。依据充换电站用电负荷以及光伏发电量,本工程选用1台400 kVA的干式变压器,10 kV侧选用负荷开关柜配置1台10 kV进线柜、1台出线柜,形成单母线接线。0.4 kV侧配置1台进线计量柜、2台低压出线柜,采用固定式低压柜单母线接线。1台出线柜接至充电站内充电机配电柜、1台低压出线柜作为光伏并网柜。箱式配电站内配套设置直流屏以及DTU等二次保护及自动化设备。箱式配电站设置在充换电站旁,周围设置护栏,外壳防护等级为IP54。④户外落地式配电柜的选择。额定输入电压Un=AC380 V,额定输入电流In=630A,防护等级为IP54。柜内开关设置为1进9出,根据配电设备选型原则选定各路开关大小。配电柜设置在箱式配电站旁,联络低压出线柜与充电桩,为充电桩提供电源。⑤电缆的选择。低压出线柜至配电柜采用2根ZR-YJV22-4×120+1×70截面电缆埋管敷设;配电柜至各充电桩电缆选用ZR-YJV22-4×35+1×16截面电缆沿电缆沟敷设;其他站用电回路电缆截面根据电流大小配置。⑥其他配套建设内容。照明、通风、空调、充电监控、视频监控、火灾报警、通信等功能需同时配套建设。充换电站、分布式光伏发电接入系统配电接线图如图1所示。

3 结论与展望

本次在广州某110 kV变电站改造工程中配套建设充换电站及分布式光伏发电系统,响应了国家发展清洁能源政策的号召,积极发展新能源,充分利用现有变电站屋顶、充换电站车棚屋顶建设分布式光伏发电系统。分布式光伏发电可就近补偿充换电站内用电,降低了光伏发电在变压器升压及长距离输送中的损耗;同时,减少火力发电煤炭消耗量和二氧化碳排放量,实现能源“绿色发展”。充换电站的建设,由于充电桩选用先进的直流快充技术,可以为电动汽车提供方便快捷的充电服务,合理缓解充电难、充电慢的问题。“变电站+分布式光伏发电+充换电站”的建设模式探索,为未来深入地研究新能源综合建设模式提供了一个思路,建设经验值得推广。但在建设时,需合理评估其对电网及变电站带来的影响,在保证电网安全稳定的前提下,合理展开绿色建设模式的探索与实践。

猜你喜欢

配电柜出线电站
无人机智能巡检在光伏电站组件诊断中的应用
10kV高压配电柜在配电设备中的运用
10kV高压配电柜在配电设备中应用
出线与焦灼
发改委:加快新能源车充/换电站建设
配电设备中10kv高压配电柜应用分析
浅谈10kV配电柜常见故障及防误操作相关问题