APP下载

高压直流输电线路的继电保护技术

2018-03-23胡如月

电子技术与软件工程 2018年4期
关键词:继电保护

胡如月

摘 要近年来,随着人们电力需求及质量要求的提升,国家对电力建设工作的重视程度不断提升,且电力系统的建设投入逐渐增加,此种背景下,良好的发展了高压直流输电线路继电保护工作,并产生多种继电保护技术,本文即对高压直流输电线路中常用的继电保护技术类型做出介绍。

【关键词】高压直流输电线路 继电保护 技术类型

高压直流输电线路的优点包含较大的载容量、较远的传送距离、可调节功率等,正因如此,我国电力系统中越来越广泛的应用此种线路。高压直流输电线路运行过程中,继电保护具有十分重要的作用,有利于保证其运行的稳定性及安全性,但由于我国尚未完全独立的研发相关技术,还一定程度的依赖国外技术,需在明确影响高压直流输电线路继电保护影响因素的基础上,进一步的深入研究,开发出更多适合我国高压直流输电线路运行状况的继电保护技术,促进电力系统的繁荣发展。

1 影响高压直流输电线路继电保护的相关因素

1.1 过电压

故障发生在高压直流输电线路中后,会延长电弧熄灭时间,严重时,甚至导致不消弧问题出现,受到电路电容的影响,两端开关断开时间并不一致,造成行波来回折反射,使整个系统的运行均受到极大的影响。

1.2 电容电流

高压直流输电线路的特征主要体现在三方面:

(1)较大的电容;

(2)较小的波阻抗;

(3)较小的自然功率,正因此种特征,一定程度的影响了差动保护整定。

为使高压直流输电线路能够平稳的、安全的运行,必须要科学合理的补偿电容电流。另外,因分布电容会产生相应的影响,故障一旦发生在线路运行中后,可改变故障距离与继电器测量阻抗间所具备的线性关系,变成双曲正切函数,导致传统继电保护措施无法再继续使用。

1.3 电磁暂态过程

高压直流输电线路通常会比较长,操作过程中,或故障发生后,高频分量会具有较大的幅值,此种变化会大幅的增加滤出高频分量的难度,导致偏差问题出现在电气测量结果中。另外,此种状况下也较难保证半波算法的准确性,使饱和现象发生于电流互感器中。

2 高压直流输电线路中常用的继电保护技术

2.1 行波保护

直流输电过程中,主保护措施即为行波保护,其保护原理如下:线路发生故障时,故障点会将反行波传播到线路两端,而行波保护通过对反行波的识别,判断故障相关情况。现阶段,利用行波保护技术保护高压直流输电线路时,多采用两种方案,一种为ABB方案,此种方案的故障检测利用极波进行,同时,故障级通过地模波确定;另一种为SIEMENS方案,其中方案的启动判据采用电压微分,且故障确定方法为观察反行波在10MS内的突变量。由上述叙述可知,这两种方案采取不同的检测方式,效果上也存在一定的差异,因微分环节存在于SIEMENS方案中,所以检测速度相对慢于ABB方案,但也正是因为存在此环节,使的SIEMENS方案具有更好的抗干扰能力。不过,这两种方案均存在一定的不足之处,如不具备足够的耐过渡电阻能力、采样要求高、缺乏良好的抗干扰能力等。由于较多的问题存在于行波保护技术中,学者们开始了大量的优化工作,如在可靠性基础上实施优化,将基于小波变化的行波方向保護方案提出;再如优化灵敏度,研究极性比较式原理等。

2.2 微分欠压保护

直流输电线路中,微分欠压保护属于主保护,同时,使用行波保护时,其也作为后备保护,实现保护的主要方式为对电压微分数值、电压幅值水平做出检测。从保护原理上看,微分欠压保护相同于ABB方案及SIEMENS方案,都是进行电压微分及幅值的测定,且电压微分定值一致于行波保护,唯一不同的是延长了原本的6ms,变为20ms,由此一来,行波保护退出或无充足的上升沿宽度状况下,微分欠压保护可将其后备保护作用充分的发挥出来。与行波保护相比,微分欠压保护具有较慢的运行速度,但其准确度明显提升,不过,在耐过渡电阻能力方面,依然并不理想,非常有限。

2.3 低电压保护

对于前两种保护技术来说,低电压保护属于其后备保护手段,判断故障及继电保护作用通过电压幅值检测来实现。根据其设计,高阻故障发生后,行波保护与微分欠压保护未能做出动作时,低压电压保护会对其做出切除,不过,从实际应用状况来看,低电压保护镜配备在极少数的高压直流输电线路中。低电压保护包含两种,一种为线路低电压保护,另一种极控低电压保护,与后者相比,前者具有更高的保护定值,而且前者动作后,线路重启程序会启动,后者动作后,故障极被封锁。尽管低电压保护具有较为简单的原理,但其也存在较多的问题,如选择性差、区分高阻故障不准确等。

2.4 纵联电流差动保护

在高压直流输电线路中,纵联电流差动保护属于后备保护方案,原理是通过双端电气量促进绝对选择性实现,根据设计,高阻故障切除为其唯一作用。从现有纵联电流差动保护来看,因对电容电流问题并未作出完全的考虑,差动判据仅采用电流两端的加和,导致等待时间比较长,相对动作的速度并不快。例如纵联电流差动保护的SIEMENS方案,故障初期时,具有较大的电流波动,差动保护会具有600ms的延迟,同时,差动判据自身存在的延迟有500ms,也就是说,差动动作至少要在故障发生1100ms后才会出现,而在此期间内,故障极直接闭锁的事故可能会发生许多次,导致设备无法重启,纵联电流差动保护的后备作用无不能完全的发挥出来。为使此种保护技术保护效果的增强,可从多个方面进行改进工作,如补偿电容电流,促进差动保护灵敏程度提高;升级高频通道,变为光纤通道,加快保护动作速度等。

3 结论

继电保护技术对于高压直流输电线路的安全平稳运行来说十分重要,由于目前常用的技术手段均存在一定的不足,我国应加大研究力度,研究出更为适合我国直流输电要求的继电保护方案,从而促进电力系统的长久发展。

参考文献

[1]赵新凯.继电保护技术在高压直流输电线路中的应用综述[J].信息系统工程,2016(09):37.

[2]宋国兵,褚旭,高淑萍,等.利用滤波器支路电流的高压直流输电线路全线速动保护[J].中国电机工程学报,2013,33(22):120-126+19.

作者单位

国网江苏省电力公司检修分公司 江苏省淮安市 223300

猜你喜欢

继电保护
继电保护自动化技术在电力系统中的应用
电力系统继电保护运行维护措施
电力系统继电保护不稳定原因及解决办法简述
继电保护在电力系统中的重要性分析
电力系统及其自动化和继电保护的关系研究
电力系统继电保护二次回路的维护与检修
继电保护整定计算地县一体化平台的研究
关于配电网自动化继电保护的几点探讨
同期继电保护调试中出现的问题及处理
基于混合判断的继电保护实现方法改进及应用