APP下载

稻草高茬-紫云英联合还田改善土壤肥力提高作物产量

2017-12-20周国朋谢志坚曹卫东徐昌旭白金顺曾闹华高嵩涓杨璐

农业工程学报 2017年23期
关键词:紫云英绿肥稻草

周国朋,谢志坚,曹卫东,徐昌旭,白金顺,曾闹华,高嵩涓,杨璐



稻草高茬-紫云英联合还田改善土壤肥力提高作物产量

周国朋1,2,谢志坚3※,曹卫东1,4,徐昌旭3,白金顺1,曾闹华1,高嵩涓1,2,杨璐1,2

(1. 中国农业科学院农业资源与农业区划研究所/农业部植物营养与肥料重点实验室,北京 100081; 2. 中国农业科学院研究生院,北京 100081;3. 江西省农业科学院土壤肥料与资源环境研究所/农业部长江中下游作物生理生态与耕作重点实验室/国家红壤改良工程技术研究中心,南昌 330200; 4. 青海大学青海省农林科学院土壤肥料研究所,西宁 810016)

研究旨在探讨稻草留高茬套种绿肥、稻草-绿肥联合还田下的生产及土壤肥力特征,为南方稻区综合利用稻草和绿肥提供理论及技术支撑。2012—2016年设置定位试验,研究高茬稻草-绿肥联合还田下的绿肥和水稻产量、土壤碳氮库活性及其他养分特征。试验包括5个处理:冬闲+稻草不还田(CK),冬闲+稻草全量还田(RS),冬种紫云英+稻草不还田(MV),冬种紫云英+稻草低茬全量还田(MV+LRS),冬种紫云英+稻草高茬全量还田(MV+HRS),各处理施用等量化肥。结果表明:稻草-绿肥联合还田提高绿肥产草量及其含氮量,与MV相比,分别增加了13.1%和6.8%(MV+LRS)、32.2%和5.2%(MV+HRS);增加水稻产量,以MV+HRS处理最高,4 a平均产量较RS、MV增加556.8和412.8 kg/hm2。2013和2015年,MV+HRS处理水稻产量高于MV+LRS。稻草-绿肥联合还田培肥地力效果明显,土壤有机质、全氮含量均比CK、RS和MV增加;且联合还田下有效养分提升更为全面。与稻草和绿肥单独应用相比,稻草-绿肥联合还田还能提升土壤微生物量氮及可溶性有机碳氮含量。可见,稻草-绿肥联合还田能够改善绿肥生长、提高水稻产量、提升土壤肥力;其中,高茬稻草与绿肥联合还田下的紫云英和水稻产量最高,土壤肥力也优于低茬处理,是综合利用稻草和绿肥资源的较好方式。

绿肥;肥力;氮;稻;紫云英;产量

0 引 言

水稻是中国的重要粮食作物之一,稻田培肥对水稻持续高产稳产起着至关重要的作用。稻草还田和冬种绿肥是中国南方稻田土壤培肥的重要措施。研究表明,稻草还田和冬种绿肥均有效增加作物产量,提高土壤有机质、全氮及其他矿质养分含量[1-2]。稻草还田可以通过归还养分和减少土壤吸附来提高矿质养分的生物有效性[3-4];豆科绿肥与根瘤菌共生固氮及根系分泌酸性物质可以提高土壤矿质养分活性[5-6]。

稻草、豆科绿肥因其各自相对固定的碳氮组成,单独还田时有一定的局限性。例如,高C/N比稻草还田往往引起短期内土壤有效氮含量下降,易造成作物生育前期吸氮困难[7];新鲜豆科绿肥还田易引起“激发效应”,造成土壤原有机质分解,不利于土壤碳储存[8]。有关研究表明,不同种类有机物料配合还田,分解时会发生交互作用,表现出不同的腐解规律[9-10]。Pramanik等[11]认为,豆科与非豆科作物残茬配合还田可提高有机质的矿化速率;夏志敏等[12]发现玉米与蚕豆秸秆配合应用促进了秸秆碳和土壤氮的矿化,增加土壤微生物量碳氮含量。可见,不同种类有机物料联合还田可改变单一物料还田后的矿化特征,影响其培肥效应。

目前,绿肥研究小组已经探索出稻草留高茬套种紫云英(L.)的生产模式。该模式下高留茬稻草为紫云英出苗、越冬提供适宜的环境,提高紫云英的出苗率与越冬率;紫云英后期覆盖稻草,可促进稻草腐解。冬后紫云英与稻草联合还田可调节还田物料的养分组成,必然导致其养分效应的改变,但有关该模式的生产与培肥效应鲜有报道。本文通过田间小区试验,分析稻草留高茬套种紫云英、稻草与紫云英联合还田下的生产及土壤肥力特征,旨在为综合利用稻草与绿肥资源提供科学依据。

1 材料与方法

1.1 试验点概况

试验在江西省丰城市张巷镇范桥村(28°07′N、115°56′E,海拔25.4 m)进行。该地属中亚热带季风气候区,年平均气温、降水量、年日照时间分别为15.3~17.7 ℃、1 552.1 mm和1 935.7 h。供试土壤为河流冲积物发育而成的水稻土,种植方式为稻-稻-冬闲(绿肥),耕层土壤(0~20 cm)pH值5.2,有机质25.0 g/kg,全氮1.8 g/kg,碱解氮155 mg/kg,有效磷6.0 mg/kg,有效钾109 mg/kg。

1.2 试验设计

2012—2016年设5个处理(表1):1)冬闲+稻草不还田(CK);2)冬闲+稻草全量还田(RS);3)冬种紫云英+稻草不还田(MV);4)冬种紫云英+稻草低茬全量还田(MV+LRS);5)冬种紫云英+稻草高茬全量还田(MV+HRS)。低茬指水稻近地面收割,高茬指水稻收割时留茬高度约30 cm。各处理重复3次,各小区面积为12 m2(3 m×4 m),随机排列。紫云英盛花期刈割鲜草,还田量为22 500 kg/hm2。

表1 2012—2016年试验设计

供试早稻品种为株两优35,晚稻品种为Ⅱ优305。每年4月中旬翻压稻草和绿肥,并施基肥,4月下旬移栽早稻,7月中旬适时收割;晚稻于每年7月中下旬施基肥并移栽,10月中下旬适时收割。早、晚稻种植密度为27万株/hm2。紫云英播种量30 kg/hm2于晚稻收割前20 d套播,而且其生长期间不使用任何肥料和除草剂。早稻和晚稻分别按照N∶P2O5∶K2O=150∶75∶120 kg/hm2和180∶75∶150 kg/hm2用量施肥。供试化学氮、磷和钾肥分别为尿素(46% N)、过磷酸钙(12% P2O5)和氯化钾(60% K2O)。磷肥全部作基肥,氮肥和钾肥按基肥∶分蘖肥∶穗肥=4∶3∶3施用。分蘖肥在移栽后5~7 d撒施,穗肥在主茎幼穗长1~2 cm时施用。所有处理化肥用量相同。早、晚稻生长期间,田面灌溉水保持5~8 cm,水稻收获前20 d排水,冬季不进行灌溉。

1.3 样品采集与分析

1.3.1 绿肥和水稻测产

每年于早、晚稻成熟期,各小区单打单收,测定稻谷产量,全年稻谷产量为当季早、晚稻稻谷产量之和;紫云英盛花期分小区测定其地上部鲜草产量。

1.3.2 绿肥含氮量及土壤化学性状测定

2016年早稻收获后,每小区按5点取样法采集0~20 cm土层土样,分取部分鲜土进行活性碳氮分析,剩余土样自然风干、过筛后用于理化性状分析。

土壤活性碳氮分析:超纯水浸提(土水比:2∶1,4 ℃、200 r/min下振荡2 h,4 ℃、12 000 r/min离心15 min,上清液过0.45m滤膜)获得土壤可溶性有机质(dissolved organic matter,DOM)浸提液,采用TOC/N仪(Multi N/ C2100,德国)测定可溶性有机碳(dissolved organic carbon,DOC),可溶性总氮(total dissolved nitrogen,TDN),连续流动分析仪(SEAL AutoAnalyzer3,德国)测定无机氮(inorganic nitrogen,IN),可溶性有机氮(dissolved organic nitrogen,DON)为TDN减去IN[13]。土壤微生物量碳(microbial biomass carbon,MBC)和土壤微生物量氮(microbial biomass nitrogen,MBN)采用氯仿熏蒸浸提法,即0.5 mol/L K2SO4浸提(水土比为4∶1),MBC、MBN含量以熏蒸和不熏蒸的碳氮含量(TOC/N仪测定)之差除以相应转化系数(碳为0.45,氮为0.54)获得[14]。

2016年紫云英盛花期,各种植绿肥小区随机采取紫云英植株体10株,105 ℃下杀青30 min,80 ℃烘干后粉碎,浓H2SO4-H2O2消煮,凯氏法测定其含氮量[15]。

土壤理化性质测定方法如下[15]:土壤矿质态氮(NO3–-N和NH4+-N)采用2 mol/L KCl按水土比为2∶1浸提,振荡0.5 h,连续流动分析仪测定;土壤有机质(soil organic matter,SOM)、土壤全氮(total nitrogen,TN)分别采用重铬酸钾外加热法和凯氏法测定;土壤有效磷采用0.5 mol/L NaHCO3提取-钼锑钪比色法;土壤有效钾采用1 mol/L NH4Ac浸提-原子吸收法;土壤pH值采用电位法(水土比2.5∶1)。

1.4 数据分析

采用SAS 8.0软件进行方差分析,Duncan新复极差法多重比较判断处理间差异显著性(<0.05)。表格采用Excel 2007制作。

2 结果与分析

2.1 稻草不同处理方式下的绿肥产草量及其含氮量

不同处理绿肥产量及其含氮量如表2所示。

表2 不同处理下紫云英鲜草量及植株含氮量

注:表中同一指标平均数使用邓肯多重比较,标有不同小写字母表示在0.05水平上差异显著,下同。

Note: Same lowercase letters in the same vertical column mean no significant difference among treatments at 0.05 level by Duncan`s multiple analysis, the same below.

由表2可知,晚稻稻草不同处理方式对绿肥地上部鲜草量(翻压期)及其含氮量具有一定影响。4 a中,冬种绿肥的3个处理间绿肥产量差异显著(<0.05),其中MV+LRS和MV+HRS处理绿肥的4 a平均产量较MV分别显著提高了13.1%和32.2%(<0.05)。稻草还田也提高了绿肥的含氮量,MV+LRS和MV+HRS比MV分别显著增加了6.8%和5.2%(<0.05),但稻草低茬与高茬处理间差异不大。综上可知,稻草-绿肥联合还田提高绿肥产草量和含氮量,稻草留高茬处理提高绿肥产量的效果最佳。

2.2 稻草不同处理方式下的水稻产量

试验第1年(2012年),与CK相比,其他处理均显著降低晚稻和全年稻谷产量(<0.05)(表3)。随着稻草和绿肥应用的年限增加,二者逐渐表现出增产效应,且对早稻产量贡献更大。4 a中,稻草不同留茬方式间全年稻谷产量差异明显,2012年MV+HRS低于MV+LRS处理,2013年和2015年MV+HRS显著高于MV+LRS处理(<0.05)(表3)。

表3 2012—2015不同处理下稻谷产量及方差分析

Note: *<0.05; * *<0.01.

与CK相比,其他处理的水稻平均产量均显著提高(<0.05)。与RS和MV比较,MV+HRS处理4 a早稻平均增产839.4和1 147.6 kg/hm2,全年稻谷平均增产556.8和412.8 kg/hm2(<0.05)。高留茬处理早稻产量显著高于低留茬处理,增产735.3 kg/hm2(<0.05)。此外,年际间、处理间以及两者交互作用均达显著水平(<0.05)或极显著水平(<0.01)(表3),说明处理以及稻草和绿肥应用的年限均对水稻产量有较大影响。

2.3 不同处理下土壤养分特征

与试验初相比,经过4 a的水稻种植后,SOM、TN均有不同程度增加(表4)。试验结束时,与CK相比,稻草和绿肥单独处理下SOM显著增加了6.8%~8.0%(<0.05),但对土壤TN影响不大。与MV和RS相比,MV+LRS处理下SOM和TN显著增加了9.1%和8.6%,MV+HRS增加了9.8%和10.7%(0.05),MV+HRS和MV+LRS处理间差异不显著(<0.05)。综上可知,稻草-绿肥联合还田较稻草、绿肥单独应用更利于土壤碳氮储存,且高留茬处理下土壤SOM、TN增幅更大。

表4 2016年不同处理对土壤养分的影响

不同处理对土壤有效养分也产生较大影响(表4)。与CK相比,RS和MV显著降低、MV+LRS显著增加土壤无机氮含量(<0.05)。与无机氮不同,绿肥的3个处理比CK有提高土壤有效磷含量的趋势,以MV+HRS处理最高,显著增加了18.0%(<0.05)。与绿肥提高土壤有效磷类似,稻草的3个处理土壤有效钾比CK显著增加了8.0%(RS)、9.2%(MV+LRS)和22.8%(MV+HRS),且稻草高茬与低茬处理间差异显著(<0.05)。可见,稻草-绿肥联合还田可发挥稻草、绿肥各自的培肥优势,土壤养分提升更为全面,并以MV+HRS处理培肥效果最佳。

2.4 不同处理下土壤活性有机碳氮含量特征

由表5可知,与CK相比,其他处理土壤MBC增加了19.1%~33.7%,MBN增加了30.6%~57.8%(<0.05)。稻草-绿肥联合还田的MBN含量高于其单独处理。MV+LRS和MV+HRS处理下MBC比RS显著增加了433.5和402.8 mg/kg(<0.05);MBN比RS和MV分别显著增加了23.6、22.4 mg/kg和17.4、16.2 mg/kg(<0.05)。与土壤微生物量碳氮不同,不同处理下土壤DOC、DON含量变异较大。与CK相比,RS对土壤DOC、RS和MV对土壤DON影响不大;MV+LRS和MV+HRS显著增加了土壤DOC和DON含量(< 0.05),但联合还田两处理间差异不显著。综上可知,与稻草和绿肥单独应用相比,稻草-绿肥联合还田能大幅提高土壤活性有机碳(MBC和DOC)、氮(MBN和DON)含量,利于土壤养分供应及土壤健康[16-17]。

表5 2016年不同处理对土壤活性有机碳氮的影响

2.5 不同处理对土壤活性碳氮组分分配比例的影响

由表6可知,MBC和MBN占土壤碳氮库的比例远高于DOC和DON。与CK相比,其他处理均有效提高土壤MBC/SOC和MBN/TN,但稻草、绿肥单独应用降低土壤IN/TN,单独绿肥降低土壤DOC/SOC,差异显著(<0.05)。与RS、MV相比,MV+LRS和MV+HRS均不同程度增加DON/TN和IN/TN。可见,稻草-绿肥联合还田较稻草、绿肥单独还田更利于增加土壤活性氮占土壤氮库的比例,提高土壤氮库活性,利于提升土壤肥力及其养分供应能力[17]。

表6 稻草绿肥应用下土壤活性有机碳氮占土壤有机碳和全氮的比例

3 讨 论

3.1 稻草与绿肥联合还田的生产效应

土壤肥力和作物产量是评价农田生态系统可持续生产的2个重要指标[18]。试验开始年份(2012年),稻草、绿肥还田均不同程度降低了全年稻谷产量,但随着试验年限增加,二者逐渐表现出增产效应(表3),表明稻草、绿肥应用的年限影响其肥效。有研究认为,施用化肥的基础上稻草或绿肥还田,短期内水稻产量低于单独化肥处理[19-20]。这是由于高C/N比稻草还田易降低土壤氮的有效性,不利于作物吸氮[21],同时,厌氧条件下秸秆可分解产生有机酸类物质抑制水稻幼苗生长[21-22]。再者,水稻生育期内紫云英养分并非完全释放[23],加之试验初土壤有效磷含量低,土壤供磷受限也可造成试验第1年绿肥处理下全年稻谷产量低于对照处理(表3)。随着秸秆还田和冬种绿肥的年限增加,土壤肥力水平大幅提升,二者的培肥能力愈加明显,增产效应逐渐显现。

总体而言,稻草-绿肥联合还田的增产效应高于各自单独应用(表3)。一方面,联合还田下物料投入量大,培肥能力也相应增加(表4,表5);再者,稻草与豆科绿肥混合还田能够提高土壤有机质矿化速率,促进矿质养分释放,利于作物养分吸收,增加作物产量[11,24]。本研究中,稻草-绿肥联合还田可发挥稻草提高土壤有效钾、绿肥增加土壤有效磷的优势,且无机氮含量高于稻草和绿肥单独处理(表4),利于提高水稻产量。联合还田下,高茬稻草处理绿肥产草量高,较多的绿肥根茬利于形成较高的土壤肥力(表4),使其4 a早稻平均产量高于低茬处理。

稻草还田提高绿肥产草量及其含氮量,且以高茬处理效果最佳(表2)。研究表明,稻草覆盖可为绿肥生长创造比较适宜的温度和水分环境,促进绿肥的干物质积累和对氮、磷、钾等养分的吸收[25]。同时,郑伟等[26]认为稻草适当留茬不仅能够改善土壤水热条件,还可避免因稻草覆盖量过大引起作物沤苗死苗,利于提高作物产量。汤树德等[27]研究表明,麦秸还田可提高大豆的结瘤数和根瘤固氮酶活性,显著增加大豆单株固氮酶活性和植株含氮量。综上可知,稻草留高茬还田可为冬绿肥营建适宜的生长环境,提高豆科绿肥产草量及生物固氮能力。

3.2 稻草与绿肥联合还田的培肥效应

大量研究表明,秸秆还田和种植绿肥均有效提高土壤有机质和全氮含量[5,28],这与本研究结果一致(表4)。稻草与绿肥联合还田由于较高的物料投入,使联合还田下有机质和全氮含量最高。对土壤有效矿质养分而言,稻草与绿肥联合还田土壤无机氮含量显著高于两者单独应用。Pramanik等[11]认为稻草与豆科绿肥联合还田提高土壤有机质矿化速率,利于氮素释放;另外,联合还田较多的氮投入也利于产生较多的无机氮。本研究还发现,稻草增加土壤有效钾,绿肥提高有效磷含量。这与其各自培肥机理有关。水稻成熟时,钾素回流并储存于秸秆,稻草还田可归还大量钾素,增加土壤有效钾含量;种植绿肥不仅吸收、储存有效磷,避免其被土壤固定,而且豆科绿肥生长期间根系分泌质子,活化土壤难溶性磷[6,29],提高磷的有效性。稻草与绿肥联合还田可发挥稻草和绿肥各自培肥优势,促使土壤养分全面提升。

有机物料还田为土壤微生物提供充足的碳源,使微生物长期保持活跃状态[30]。有机物料种类、C/N比、碳源有效性等均是影响土壤MBC、MBN含量的重要因子[31]。豆科作物秸秆还田,可迅速分解并释放大量有效碳氮,利于土壤微生物利用并维持较大的生物群落[32];稻草还田虽能提供充足的有效碳,但较低的氮含量往往成为微生物群落增加的限制因子[32-33]。研究认为,有机物料混合还田可完善底物养分组成,提高土壤微生物量基数[12]。本研究也发现,稻草-绿肥联合还田MBC和MBN含量高于各自单独处理(表5)。联合还田下,较多的碳氮投入,以及较为完善的养分组成,使土壤MBC、MBN含量高于稻草和绿肥单独应用[12,34]。

土壤DOC、DON是土壤活性有机碳氮库中最易损失的化学组分,受微生物数量和活性、有机物料投入、水分、耕作活动、pH值等因素的影响[35]。本研究发现,单独绿肥处理降低土壤DOC,稻草-绿肥联合还田提高土壤DOC和DON含量(表5)。笔者在绿肥配施不同量化肥的研究中发现,物料的C/N比对土壤DOC的影响较大,C/N比过低或过高均不利于DOC含量增加[13]。一般认为,还田有机物料C/N比越低土壤呼吸强度越大[32],单位质量碳产生更多的腐殖质[36],不利于DOC累积;C/N比越高物料分解速率越低,DOC产生缓慢[32]。可见,稻草与绿肥联合还田较多的碳氮投入以及较为适宜的物料C/N比,利于土壤DOC和DON含量维系在较高水平。

4 结 论

稻茬留高茬套种绿肥、稻草-绿肥联合还田有利于稻草和绿肥资源的综合利用,主要表现在3个方面:1)稻草还田比稻草不还田绿肥产草量提高了13.1%和32.2%(<0.05),植株氮增加了6.8%和5.2%(<0.05),稻草留高茬处理效果最佳;2)稻草-绿肥联合还田较稻草、绿肥单独应用水稻产量更高,且随着联合还田的年限增加,高留茬处理水稻增产潜力最大,比低茬处理4 a 早稻平均增产735.3 kg/hm2(<0.05);3)与稻草、绿肥单独处理相比较,稻草-绿肥联合还田提高土壤有机质、全氮、微生物量碳氮和可溶性有机碳氮含量,同时发挥稻草、绿肥各自培肥优势,土壤有效矿质养分全面提升,并以稻草高茬处理时养分增幅最大。

[1] 高菊生,曹卫东,李冬初,等. 长期双季稻绿肥轮作对水稻产量及稻田土壤有机质的影响[J]. 生态学报,2011,31(16):4542-4548. Gao Jusheng, Cao Weidong, Li Dongchu, et al. Effects of long-term double-rice and green manure rotation on rice yield and soil organic matter in paddy field[J]. Acta Ecologica Sinica, 2011, 31(16): 4542-4548. (in Chinese with English abstract)

[2] 吴建富,曾研华,潘晓华,等. 稻草还田方式对双季水稻产量和土壤碳库管理指数的影响[J]. 应用生态学报,2013,24(6):1572-1578. Wu Jianfu, Zeng Yanhua, Pan Xiaohua, et al. Effects of rice straw returning mode on rice grain yield and soil carbon pool management index in double rice-cropping system[J]. Chinese Journal of Applied Ecology, 2013, 24(6): 1572-1578. (in Chinese with English abstract)

[3] Li Xueyuan, Wang Qifa, Xu Fenglin. Effect of returning application of straw on soil K, P, Zn adsorption-desorption and their availability[J]. Journal of Huazhong Agricultural University, 2000, 19(3): 227-232.

[4] Wu Minna, Qin Hongling, Chen Zhe, et al. Effect of long-term fertilization on bacterial composition in rice paddy soil[J]. Biology and Fertility of Soils, 2011, 47(4), 397-405.

[5] 高菊生,徐明岗,董春华,等. 长期稻-稻-绿肥轮作对水稻产量及土壤肥力的影响[J]. 作物学报,2013,39(2):343-349. Gao Jusheng, Xu Minggang, Dong Chunhua, et al. Effects of long-term rice-rice-green manure cropping rotation on rice yield and soil fertility[J]. Acta Agronomica Sinica, 2013, 39(2): 343-349. (in Chinese with English abstract)

[6] 兰忠明,林新坚,张伟光,等. 缺磷对紫云英根系分泌物产生及难溶性磷活化的影响[J]. 中国农业科学,2012,45(8):1521-1531. Lan Zhongming, Lin Xinjian, Zhang Weiguang, et al. Effect of P deficiency on the emergence ofL. root exudates and mobilization of sparingly soluble phosphorus[J]. Scientia Agricultura Sinica, 2012, 45(8): 1521-1531. (in Chinese with English abstract)

[7] 李勇,曹红娣,储亚云,等. 麦秆还田氮肥运筹对水稻产量及土壤氮素供应的影响[J]. 土壤,2010,42 (4):569-573. Li Yong, Cao Hongdi, Chu Yayun, et al. Effects of wheat straw returning and nitrogen application model on rice yield and soil nitrogen supply[J]. Soils, 2010, 42 (4): 569-573. (in Chinese with English abstract)

[8] Fontaine S, Mariotti A, Abbadie L. The priming effect of organic matter: a question of microbial competition? [J]. Soil Biology and Biochemistry, 2003, 35(6): 837-843.

[9] Hoorens B, Aerts R, Stroetenga M. Litter quality and interactive effects in litter mixtures: More negative interactions under elevated CO2?[J]. Journal of Ecology, 2002, 90(6): 1009-1016.

[10] Gartner T B, Cardon Z G. Decomposition dynamics in mixed-species leaf litter[J]. Oikos, 2004, 104(2): 230-246.

[11] Pramanik P, Haque M M, Kim S Y, et al. C and N accumulations in soil aggregates determine nitrous oxide emissions from cover crop treated rice paddy soils during fallow season[J]. Science of the Total Environment, 2014, 490: 622-628.

[12] 夏志敏,周建斌,梅沛沛,等. 玉米与蚕豆秸秆配施对秸秆分解及土壤养分含量的影响[J]. 应用生态学报,2012,23(1),103-108. Xia Zhimin, Zhou Jianbin, Mei Peipei, et al. Effects of combined application of maize and horsebean straws on the straws decompositionand soil nutrient contents[J]. Chinese Journal of Applied Ecology, 2012, 23(1), 103-108. (in Chinese with English abstract)

[13] 周国朋,曹卫东,白金顺,等. 多年紫云英-双季稻下不同施肥水平对两类水稻土有机质及可溶性有机质的影响[J]. 中国农业科学,2016,49(21):4096-4106. Zhou Guopeng, Cao Weidong, Bai Jinshun, et al. The effect of years of Chinese milk vetch-double cropping rice under different fertilization levels on soil organic matter and DOM in two paddy soils[J]. Scientia Agricultura Sinica, 2016, 49(21): 4096-4106. (in Chinese with English abstract)

[14] Vance E D, Brookes P C, Jenkinson D S. An extraction method for measuring soil microbial biomass C[J]. Soil Biology & Biochemistry, 1987, 19(6):703-707.

[15] 鲍士旦. 土壤农化分析:第三版[M]. 北京:中国农业出版社,2000:44-49.

[16] Perucci P, Dumontet S, Bufo S A, et al. Effects of organic amendment and herbicide treatment on soil microbial biomass[J]. Biology and Fertility of Soils, 2000, 32(1): 17-23.

[17] 骆坤,胡荣桂,张文菊,等. 黑土有机碳,氮及其活性对长期施肥的响应[J]. 环境科学,2013,34(2):676-684. Luo Kun, Hu Ronggui1, Zhang Wenju, et al. Response of black soil organic carbon, nitrogen and its availability to long-term fertilization[J]. Environmental Science, 2013, 34(2): 676-684. (in Chinese with English abstract)

[18] Tirol-Padre A, Ladha J K, Regmi A P, et al. Organic amendments affect soil parameters in two long-term rice-wheat experiments[J]. Soil Science Society of America Journal, 2007, 71(2): 442-452.

[19] Pathak H, Singh R, Bhatia A, et al. Recycling of rice straw to improve wheat yield and soil fertility and reduce atmospheric pollution[J]. Paddy and Water Environment, 2006, 4(2): 111-117.

[20] 赵娜,赵护兵,鱼昌为,等. 夏闲期种植翻压绿肥和施氮量对冬小麦生长的影响[J]. 西北农业学报,2010,19(12):41-47. Zhao Na, Zhao Hubing, Yu Changwei, et al. Effect of green manure in summer fallow period and nitrogen rate on winter wheat growth[J]. Acta Agriculturae Boreali-occidentalis Sinica, 2010, 19(12): 41-47. (in Chinese with English abstract)

[21] Kumar K, Goh K M. Biological nitrogen fixation, accumulation of soil nitrogen and nitrogen balance for white clover () and field pea () grown for seed[J]. Field Crops Research, 2000, 68(1): 49-59.

[22] 单玉华,蔡祖聪,韩勇,等. 淹水土壤有机酸积累与秸秆碳氮比及氮供应的关系[J]. 土壤学报,2006,43(6):941-947. Shan Yuhua, Cai Zucong, Han Yong, et al. Accumulation of organic acids in relation to C:N rations of straws and application in flooded soil[J]. Acta Pedologica Sinica, 2006, 43(6): 941-947. (in Chinese with English abstract)

[23] 王飞,林诚,李清华,等. 亚热带单季稻区紫云英不同翻压量下有机碳和养分释放特征[J]. 草业学报,2012,21(4):319-324. Wang Fei,Lin Cheng, Li Qinghua, et al. A study on organic carbon and nutrient releasing characteristics of differentmanure use levels in a single cropping region of subtropical China[J]. Acta Prataculturae Sinica, 2012, 21(4): 319-324. (in Chinese with English abstract)

[24] Palm C A, Gachengo C N, Delve R J, et al. Organic inputs for soil fertility management in tropical agroecosystems: application of an organic resource database[J]. Agriculture, Ecosystems & Environment, 2001, 83(1): 27-42.

[25] 苏伟,鲁剑巍,周广生,等. 稻草还田对油菜生长、土壤温度及湿度的影响[J]. 植物营养与肥料学报,2011,17(2):366-373. Su Wei, Lu Jianwei, Zhou Guangsheng, et al. Influence of straw-returning on rapeseed () growth, soil temperature and moisture[J]. Plant Nutrition and Fertilizer Science, 2011, 17(2): 366-373. (in Chinese with English abstract)

[26] 郑伟,肖国滨,肖小军,等. 稻茬高度对谷林套播油菜生长发育及产量形成的影响[J]. 中国农业科学,2017,50(4):648-656. Zheng Wei, Xiao GuoBin, Xiao XiaoJun, et al. Effects of rice stubble height on growth, development, and yield components of interplanted rapeseed in rice[J]. Scientia Agricultura Sinica, 2017, 50(4): 648-656. (in Chinese with English abstract)

[27] 汤树德,石晶波. 秸秆还田对大豆结瘤状况、固氮活性和生育产量的影响[J]. 黑龙江八一农垦大学学报,1986(1):9-16. Tang Shudeng, Shi Jingbo. Influence of returning straws to field upon the bearing nodule of soybean azofication activity and growth harvest[J]. Journal of Heilongjiang Bayi Agricultural University, 1986(1): 9-16. (in Chinese with English abstract)

[28] 王玄德,石孝均,宋光煜. 长期稻草还田对紫色水稻土肥力和生产力的影响[J]. 植物营养与肥料学报,2005,11(3):302-307. Wang Xuande, Shi Xiaojun, Song Guangyu. Effects of long- term rice straw returning on the fertility and productivity of purplish paddy soil[J]. Plant Nutrition and Fertilizer Science, 2005, 11(3): 302-307. (in Chinese with English abstract)

[29] Eichler-Löbermann B, Schiemenz K, Makadi M, et al. Nutrient cycling by using residues of bio-energy production- effects of biomass ashes on plant and soil parameters[J]. Cereal Research Communications, 2008, 36: 1259-1262.

[30] Anderson J P E, Domsch K H. Quantities of plant nutrients in the microbial biomass of selected soils[J]. Soil Science, 1980, 130(4): 211-216.

[31] Brookes P C, Wu J, Ocio J A. Soil microbial biomass dynamics following the addition of cereal straw and other substrates to soil[M]//The Ecology of Temperate Cereal Fields. London: Blackwell Scientific Publications. 1990: 94-111.

[32] Wang Yunfeng, Liu Xingmei, Butterly C, et al. pH change, carbon and nitrogen mineralization in paddy soils as affected by Chinese milk vetch addition and soil water regime[J]. Journal of Soils and Sediments, 2013, 13(4): 654-663.

[33] 邵月红,潘剑君,孙波. 长期施用有机肥对瘠薄红壤有效碳库及碳库管理指数的影响[J]. 土壤通报,2005,36(2):177-180. Shao Yuehong, Pan Jianjun, Sun Bo. Effects of long -term application of organic manure on available carbon pool and carbon pool management indexes in infertile red soils[J]. Chinese Journal of Soil Science, 2005, 36(2): 177-180. (in Chinese with English abstract)

[34] Abouelenien F, Namba Y, Kosseva M R, et al. Enhancement of methane production from co-digestion of chicken manure with agricultural wastes[J]. Bioresource technology, 2014, 159:80-87.

[35] 陈安强,付斌,鲁耀,等. 有机物料输入稻田提高土壤微生物碳氮及可溶性有机碳氮[J]. 农业工程学报,2015,31(21):160-167. Chen Anqiang, Fu Bin, Lu Yao, et al. Exogenous organic materials applied to paddy field improving soil microbial biomass C, N and dissolved organic C, N[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(21): 160-167. (in Chinese with English abstract)

[36] Nicolardot B, Recous S, Mary B. Simulation of C and N mineralisation during crop residue decomposition: A simple dynamic model based on the C: N ratio of the residues[J]. Plant and Soil, 2001, 228(1): 83-103.

周国朋,谢志坚,曹卫东,徐昌旭,白金顺,曾闹华,高嵩涓,杨 璐. 稻草高茬-紫云英联合还田改善土壤肥力提高作物产量[J]. 农业工程学报,2017,33(23):157-163. doi:10.11975/j.issn.1002-6819.2017.23.020 http://www.tcsae.org

Zhou Guopeng, Xie Zhijian, Cao Weidong, Xu Changxu, Bai Jinshun, Zeng Naohua, Gao Songjuan, Yang Lu. Co-incorporation of high rice stubble and Chinese milk vetch improving soil fertility and yield of rice[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(23): 157-163. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.23.020 http://www.tcsae.org

Co-incorporation of high rice stubble and Chinese milk vetch improving soil fertility and yield of rice

Zhou Guopeng1,2, Xie Zhijian3※, Cao Weidong1,4, Xu Changxu3, Bai Jinshun1, Zeng Naohua1, Gao Songjuan1,2, Yang Lu1,2

(1.100081;2.100081; 3.330200; 4.810016)

Rice straw return and green manure cultivation in winter fallow season are 2 effective ways of improving soil fertility in south China. Due to the relatively stable carbon to nitrogen ratio, either the rice straw return or green manure cultivation alone has its own limits in practice. Recently, the combined application of green manure and rice straw has been developed, while little is known about the impacts on crop yield and soil fertility. A field trial was conducted at an experimental station managed by National Engineering and Technology Research Center for Red Soil Improvement in Fengcheng, Jiangxi Province, China to explore effects of remaining high rice stubble, inter-planting green manure (Chinese milk vetch,) and co-incorporation of rice straw and green manure on double rice and green manure yield and soil fertility. Field experiments were conducted in a rice-rice-winter fallow or rice-rice-Chinese milk vetch (MV) rotation system. A total of 5 treatments with different cultivation practices were included, (i) CK, rice-rice-winter fallow without rice straw return; (ii) RS, rice-rice-winter fallow with rice straw return; (iii) MV, rice-rice-MV without rice straw; (iv) MV+LRS, rice-rice-MV with return of low stubble (0 cm) of rice straw; (v) MV+HRS rice-rice-MV with return of high stubble (30 cm) of rice straw. The results showed that co-incorporation of RS and MV significantly increased fresh yield and nitrogen content of MV plants by 13.1% and 6.8% in MV+LRS and 32.2% and 5.2% in MV+HRS than those in MV alone, respectively. The average yield of double rice yield over the 4 years was significantly increased by 556.8 and 412.8 kg/hm2in MV+HRS than in RS and MV, respectively. Compared to CK, the soil organic matter (SOM) content was significantly increased by 6.8% to 8.0% in RS and MV, the total nitrogen (TN) was marginally affected by the 2 treatments. Compared to CK, the soil inorganic N content was significantly decreased in treatments with RS and MV alone, while the available K was increased in RS. Different from soil inorganic nitrogen, manure treatments greatly improve available P content and the treatment of MV with HRS increased the available P by 18.0%. However, the treatments with rice straw could greatly increased soil available K by 8.0% (RS), 9.2%(MV+LRS) and 22.8%(MV+HRS), respectively. The soil microbial nitrogen were also significantly enhanced in the combinations than in MV or RS alone (<0.05). The dissolved organic carbon and nitrogen were greater in the manure-rice straw combination treatments than CK. The treatments with rice straw enhanced the proportion of microbial biomass C in SOC and that of microbial biomass N in TN. Compared with the rice straw and manure alone, the co-incorporation of rice straw and manure increased the proportion of dissolved organic N in TN and inorganic N in TN. Collectively, the co- incorporation of rice straw and green manure could improve the rice yield and soil fertility in present conditions. The practice of keeping high stubble of rice straw standing in the field and returned together withgreen manure had the great promise to maintain and improve soil fertility and rice yield in south China.

manure; fertility; nitrogen; rice; Chinese milk vetch; yield

10.11975/j.issn.1002-6819.2017.23.020

S158.5;S541+.3

A

1002-6819(2017)-23-0157-07

2017-07-24

2017-10-10

国家绿肥产业技术体系(CARS-22);中国农业科学院科技创新工程;现代农业人才支撑计划;Newton Fund(Grant Ref: BB/N013484/1);国家农作物种质资源平台(NICGR2017-019);作物种质资源保护和利用项目(2017NWB038)

周国朋,山东菏泽人,博士生,主要从事南方稻田土壤碳氮转化研究。Email:zhouguopeng29@163.com。

谢志坚,江西萍乡人,助理研究员,博士,主要从事农田生态与肥料资源利用研究。Email:hoblecat@126. com。

猜你喜欢

紫云英绿肥稻草
稻草熊
旱地麦田夏闲期复种绿肥 保持土壤的可持续生产力
不同播期和配比对油菜与紫云英混播绿肥生物量及养分积累的影响
『绿肥黄瘦』
知否知否
那一片紫云英的海
梁永英:盛开在田野的紫云英
你为什么抓住“佛系”这根稻草
不起眼的紫云英
两根稻草