APP下载

基于射频识别的危险品物流智能决策系统研究

2017-03-06向继平张应征王苏凤

电脑知识与技术 2016年30期
关键词:危险品智能融合

向继平 张应征 王苏凤

摘要;智能决策系统能为企业的决策提供参考,全面提高企业管理信息化和智能化的水平。本文针对危险品物流的特点,探讨基于射频识别的智能决策系统的整体结构、系统功能和关键技术,为射频识别技术在危险品物流企业中的应用提供一种解决方案。

关键词:RFID;危险品;智能;系统;融合

中图分类号:TP311 文献标识码:A 文章编号:1009-3044(2016)30-0202-02

随着我国经济的快速发展,危险品的用量和品种不断增加,危险品的物流需求在逐年增加,而危险品的运输存在巨大的危险性,一旦发生事故,极有可能造成物资损失或者人员伤亡,直接影响社会和危险品物流企业的和谐发展,甚至影响到社会的安定。据统计,全世界每年因危险品运输事故造成的损失超过4000亿元人民币[1],我国危险品物流领域的安全事故也时有发生,对运输路线的沿线居民、动植物以及生态环境造成了极大损害[2]。

射频识别(Radio Frequency Identification,RFID)是一种自动识别技术,已被广泛用于获取信息,它具有识别距离远、安全性高、可实现多目标识别、环境适应性强等优点,非常适用于危险品物流的监控管理。但由于缺乏与之配套的危险品物流智能决策系统,利用RFID技术所获取的数据信息无法有效地为物流企业和监管部门提供决策参考[3]。

1 基于射频识别的危险品物流智能决策系统框架

智能决策系统是在决策支持系统DSS的基础上集成人工智能(Artificial Intelligence,AI)而形成的管理系统平台,它可对复杂问题、不确定性问题及非结构化问题进行建模、推理和求解,从大量的数据中提取有用的信息和知识并做出决策。智能决策系统的核心思想是将人工智能与其他相关技术有机结合,进一步提升系统辅助决策的能力和范围。

基于射频识别的危险品物流智能决策系统(下文中简称“系统”)是从危险品物流管理的现状和需求出发,综合国内外最新的危险品物流管理模式和解决方案,构建基于RFID技术、数据通信网络、GPS全球定位系统、GIS地理信息系统、GPRS技术和专业模型,对危险品物流进行管理决策的智能化系统。智能决策系统的结构如图1所示,它包含用户接口子系统(人机交互系统)、数据库子系统、模型库子系统、知识库子系统和方法库子系统等组成部分,这些部分联成有机统一的整体,支持决策的制定。

系统以数据仓库(DW)为基础,将联机分析处理(OLAP)、数据挖掘(DM)、人工智能(AI)和射频识别(RFID)技术有机结合起来,充分发挥各自的特长[4]。通过货物和运输车辆上的RFID标签实时采集相关信息,整合企业的物流资源,根据模型优化运输路线,确定最优的物流方案(包括货物的收集方案、装配方案、运输方案、应急救援方案等),节约运输成本,综合运用GPS全球定位系统、GIS地理信息系统和GPRS技术实时跟踪危险品的运输,确保应急救援的有效性,保证危险品运输的快速、可靠和实效性,从而提高企业的运行效率,提高管理决策的科学性,增强企业对物流过程的宏观管理与调控能力。

2 系统的主要功能

为将RFID技术真正用于危险品物流的管理和智能决策,系统应具备以下功能:

(1)危险品动态监测:系统应全程跟踪危险品,在其物流活动的各个环节主动完成危险品的信息监测,实时获取其状态的完整信息,只要危险品进入监测的有效范围,系统便能自动触发阅读,并将所读取的信息自动录入系统数据库。

(2)信息融合:信息融合是指利用计算机技术、通信技术对来自同类(或不同类)的多源信息按一定规则进行自动分析和综合后自动生成人们所期望的合成信息[5]。基于射频识别的危险品物流智能决策系统不但要将来自RFID、传感器、GPS和移动终端的信息进行实时融合,而且要把实时融合信息与来自物流订单、过程、企业ERP和CRM等应用系统的信息进行融合。

(3)智能决策:要从大量的危险品动态监测信息中发现数据规律或数据的相互关系,通过机器自动识别的方式减少人工干预,为用户的决策分析提供智能的、自动化的辅助。包含2个子功能:①积累企业运作各类危险品物流的历史数据,利用数据挖掘工具和知识发现工具,采用多目标优化决策等人工智能算法,及时发现企业现有运行过程的缺陷,借鉴CMM(成熟度模型)的思想,运用相关的定量模型,通过循序渐进的方式提高企业危险品物流能力。②针对危险品物流的特殊性,在发生物流事故的情况下,系统应提供应急预案选择、应急物资查询、应急道路选择等功能。

(4)信息查询:根据用户的需求生成各类数据视图,对物流过程进行实时、可视化的管理。企业用户和各级监管部门可以根据自身的需要查看危险品物流的相关实时信息,包括危险品信息、运输车辆及驾驶员信息、车辆的行驶路径信息、紧急救援信息等。危险品信息主要有类别、名称、数量、实时状态(位置、温度、湿度等)等。运输车辆信息主要有车辆类型、编号、最大载货量、最大容量、车厢的尺寸(长、宽、高)、车辆位置等。

3 系统的关键技术

3.1 RFID系统设计

基于射频识别的危险品物流智能決策系统的RFID系统结构如图2所示,它主要包括RFID标签、RFID阅读器、RFID中间件和数据通信网络等4个部分。

RFID标签放置在要识别的物体上,用来存储信息。为了避免更换电池时损坏标签数据,同时满足快速、远距离识别的要求,宜选用无源、工作在超高频段的可读写RFID标签。

RFID阅读器负责读或读/写RFID标签的内容。由于危险品运输车辆的移动速度较快,系统宜采用具备高速识别能力的双通道RFID阅读器,确保在不停车的情况下,不遗漏的读取标签存储的数据信息,提高系统的可靠性。

RFID中间件是RFID系统的核心组件,其主要任务是屏蔽不同RFID硬件设备(芯片、标签和读写器等)、操作系统和数据库等的差异,对阅读器传来的与RFID标签相关的事件和数据进行过滤、汇集和计算,从大量的原始数据中抽取有意义的信息,减少从阅读器传往后端数据库和应用软件的原始数据量,并融合来自GPS、GIS和GPRS等移动智能终端的信息,实时获取货物状态的完整性信息。

数据通信网络将RFID中间件抽象和融合后的信息传递到后端数据库和应用软件。

3.2 RFID碰撞处理

系统通过在物流路径的关键位置设置阅读器,监控进入阅读器识别范围、并携带有RFID标签的车辆,自动完成阅读器与RFID标签的通信和信息交换。RFID标签只要进入阅读器的工作范围,就会收到阅读器的射频信号而工作。当工作范围内同时出现了多个阅读器和多个标签时,阅读器与阅读器之间、标签与标签之间的相互干扰现象称为碰撞。碰撞会导致系统读取信息失败,影响决策结果,因此在发生碰撞时,要执行对应的防碰撞程序,确保系统的正常工作。目前,典型的防碰撞算法有两种:一是基于Aloha的算法,又称为随机性算法;二是基于树的算法,又称为确定性算法。基于Aloha的防碰撞算法原理简单、容易实现,但响应时间不确定,当需要识别的标签数量较多时系统性能将明显下降,甚至会出现个别标签永远无法被识别的情况,后者对于危险品物流来说,将会是一个致命的缺陷,因此应选择基于树的算法来处理RFID数据碰撞现象。

3.3 紧急救援辅助决策

紧急救援辅助决策是系统的核心功能之一。紧急救援事件触发时,系统需要提供两方面的信息:一是危险品的详细信息,二是救援资源的详细信息。为了实时响应辅助决策的需求,系统应采用性能优越的数据库管理系统(如SQL Server)实现危险品智能决策信息专家库的功能。紧急救援专家库包含危险品信息专家库和救援资源信息专家库两部分。

危险品信息专家库主要提供危险品信息的管理和查询功能。具有相应权限的用户可以增加、修改和删除危险品的信息,也可以按名称等属性查询危险品的各类参数、事故处理预案、对应的救援物质等信息,并生成符合用户需求的视图。

救援资源信息专家库应提供救援资源信息的管理和查询功能。具有相应权限的用户可以增加、修改和删除各类救援资源的信息,也可以按辖区等属性查询各救援单位和救援资源的信息,并生成符合用户需求的视图。

4 结束语

通过开发基于射频识别的危险品物流智能决策系统,可建立企业的商业智能,能有效帮助企业规范和持续改进企业的运作流程,合理调配内部和外部资源,实施物流运作的精细管理,打造“实时精细物流”,全面提高企业的竞争力,同时能实现物流过程的实时监管,减少危险品物流的风险和灾害损失。

参考文献:

[1] 高贫,刘大斌,倪欧琪.危险化学品管理现状及其分类的一般程序[J].爆破器材,2004,12(33):116-120.

[2] 孙代平.一种危險化学品罐箱/槽车的实时监测系统[D].大连:大连理工大学,2006:13-14.

[3] 闫利勇,陈永光.危险化学品公路运输事故新特点及对策研究[J].中国安全生产科学技术,2010,8(4):65-70.

[4] 焦李成,刘芳,刘静,等.智能数据挖掘与知识发现[M].西安:西安电子科技大学出版社,2006.

[5] 王慧斌,王建颖.信息系统集成与融合技术及其应用[M].北京:国防工业出版社,2006.

猜你喜欢

危险品智能融合
这些标志带你了解九大危险品
村企党建联建融合共赢
融合菜
从创新出发,与高考数列相遇、融合
《融合》
是谁让危险品企业埋伏居民区?
一种新型危险品液罐车安全阀
基于ARM的危险品搬运机器人的设计与实现