APP下载

度洛西汀对小脑颗粒神经元谷氨酸毒性作用的保护作用及机制

2017-03-06柳四新何丹余孝君王家祺

中国医药导报 2016年33期
关键词:神经元

柳四新 何丹 余孝君 王家祺

[摘要] 目的 观察度洛西汀对小脑颗粒神经元谷氨酸毒性作用的保护作用及机制。 方法 体外培养CD-1小鼠小脑颗粒神经元,神经元细胞随机分为8组:对照组,谷氨酸组,度洛西汀组,度洛西汀+谷氨酸组,SB204741处理组,SB204741+谷氨酸组,LY294002处理组,LY294002+谷氨酸组。采用TUNEL法检测神经元细胞凋亡程度,采用共聚焦显微镜fura-2探针检测神经元内Ca2+水平。 结果 与对照组比较,谷氨酸毒性能明显增加神经元凋亡[(1.62±0.96)比(13.98±3.49)](P < 0.05),度洛西汀顯著抑制由谷氨酸毒性引起的神经元凋亡。度洛西汀能降低由谷氨酸毒性激活的神经元内Ca2+升高。5-HT2B SB204741能抑制由谷氨酸毒性引起的神经元凋亡和神经元内Ca2+升高,而LY294002只能抑制谷氨酸毒性引起的神经元凋亡,对于谷氨酸毒性引起的神经元内Ca2+升高无作用。 结论 度洛西汀具有抵抗神经元谷氨酸毒性作用,其机制主要是通过5-HT2B受体活化细胞内钙库释放,从而引起EGFR间接激活PI3K/AKT/mTOR通路,抑制由谷氨酸毒性引起的神经元凋亡。

[关键词] 度洛西汀;谷氨酸毒性;神经元

[中图分类号] R971 [文献标识码] A [文章编号] 1673-7210(2016)11(c)-0030-04

Protective effect of Duloxetine on glutamate toxicity of cerebellar granule neurons and its mechanism

LIU Sixin HE Dan YU Xiaojun WANG Jiaqi

The Second Department of Neurology, the First Hospital of Changsha City, Hu'nan Province, Changsha 410005, China

[Abstract] Objective To observe the protective effect of Duloxetine on glutamate toxicity of cerebellar granule neurons and its mechanism. Methods The cerebellar granule neurons derived from CD-1 mice were cultured in vitro, all the neurons were randomly divided into eight groups: control group, glutamate group, Duloxetine group, Duloxetine+glutamate group, SB204741 treatment group, SB204741+glutamate group, LY294002 treatment group, LY294002+glutamate group. The apoptosis degrees of neurons were detected by TUNEL method, the levels of Ca2+ in neurons were detected by confocal microscopy fura-2. Results Compared with control group, glutamate toxicity could significantly increase the neuron apoptosis [(1.62±0.96) vs (13.98±3.49)] (P < 0.05), and Duloxetine could inhibit the neuron apoptosis caused by glutamate toxicity. Duloxetine could significantly decrease the increasing concentration of Ca2+ in neurons activated by glutamate toxicity. 5-HT2B SB204741 could significantly inhibit the neuron apoptosis and the increasing concentration of Ca2+ in neurons caused by glutamate toxicity, while LY294002 could only inhibit the neuron apoptosis caused by glutamate toxicity, which had no effects on the increasing concentration of Ca2+ in neurons activated by glutamate toxicity. Conclusion Duloxetine has the effects of inhibiting the glutamate toxicity of neurons, the main mechanism may be associated with the release of intracellular calcium store activated by the receptor of 5-HT2B, which cause EGFR activating PI3K/AKT/mTOR signal pathway indirectly, so as to inhibit the neuron apoptosis caused by glutamate toxicity.

[Key words] Duloxetine; Glutamate toxicity; Neuron

谷氨酸是中枢神经系统中最重要的兴奋性神经递质之一[1-2],谷氨酸毒性是指谷氨过度释放引起的神经元过度兴奋,造成神经元不同程度的损伤和死亡[3]。脑卒中、脑缺血、阿尔茨海默病和亨延顿病等多种中枢神经系统疾病的共同特征是谷氨酸过度释放引起的神经毒性作用[4]。盐酸度洛西汀(Duloxetine)是新一代抗抑郁药物,属于5-羟色胺(5-HT)和去甲肾上腺素(NE)再摄取的双重抑制剂[5]。体内体外实验证明,度洛西汀具有抑制神经毒性作用[6],但具体分子机制鲜见报道。本研究采用度洛西汀干預,在体外培养的小脑颗粒神经元谷氨酸毒性作用后,观察度洛西汀对谷氨酸引起的神经元毒性作用的效应,并联合5-HT2B SB204741和LY294002探讨谷氨酸引起神经元凋亡和细胞内Ca2+水平变化,探讨其作用机制。

1 材料与方法

1.1 材料

7 d龄新生CD-1小鼠[雄性,12 h光照/12 h避光,河南医科大学实验动物中心,SCXK(豫)2005-0001];谷氨酸、多聚赖氨酸、LY294002、SB204741和MTT均购自于Sigma公司,马血清、DMEM培养液和胰蛋白酶购自于Gibco公司,荧光探针fura-2购自于invitrogen公司。

1.2 神经元原代培养

CD-1小鼠小脑颗粒神经元原代培养方法。取出生7 d的CD-1小鼠,断头后小心剥离小脑颗粒神经元,去除表面和沟回内的血膜,将纯化后的小脑组织进行反复剪磨,加1.25 g/L胰酶消化37℃,20 min,含血清培养基终止消化后,将小脑组织DMEM冲洗后后过100目筛,吹打细胞接种于24孔板和96孔板及多聚赖氨酸孵育4 h的盖玻片上,无血清DMEM培养基37℃,5%CO2培养箱24 h。换成含10%马血清的DMEM培养基,37℃,5%CO2培养箱7 d待用。

1.3 细胞处理

检测神经元凋亡,小脑颗粒神经元细胞共随机分为8组:对照组,谷氨酸组,度洛西汀组,度洛西汀+谷氨酸组,SB204741处理组,SB204741+谷氨酸组,LY294002处理组,LY294002+谷氨酸组。检测钙离子水平,小脑颗粒神经元细胞共随机分为3个4组:对照组,谷氨酸组,度洛西汀组,度洛西汀+谷氨酸组;或对照组,谷氨酸组,SB204741处理组,SB204741+谷氨酸组;或对照组,谷氨酸组,LY294002处理组,LY294002+谷氨酸组。其中度洛西汀、5-HT2B SB204741和LY294002预处理20 min后,再进行对照生理盐水处理或者刺激因素50 mol/L谷氨酸。

1.4 细胞凋亡测定

细胞凋亡采用北京中山生物技术公司的TUNEL细胞凋亡试剂盒,按照试剂盒说明书操作。细胞处理后进行细胞凋亡测定,采用多功能酶标仪在波长490 nm处进行光度值检测,并分别进行计数和统计分析。

1.5 细胞内Ca2+水平的检测

采用成熟分化的神经元细胞于盖玻片上以fura-2比例为1∶1000孵育30 min,等渗液冲洗去除荧光背景后,于共聚焦显微镜成像,激发光550 nm,发射光340 nm和380 nm,间隔20 s激光扫描1次,至刺激因素处理开始共观察15 min,检测45个循环。采用340/380比值计算细胞内Ca2+水平动态变化。为了降低细胞间差异,将所有检测点的340/380比值除以刺激处理时间点的340/380比值,刺激处理时间点的340/380比值标准化为1,相同处理组内各取20个细胞进行统计分析。

1.6 统计学方法

所有数据采用SPSS 17.0统计学软件进行统计学分析,计量资料以均数±标准差(x±s)表示,符合正态分布的使用方差分析,不符合正态分布的采用非参数秩和检验,以P < 0.05为差异有统计学意义。

2 结果

2.1 神经元细胞凋亡

对照组含有少量的TUNEL阳性细胞,50 mol/L谷氨酸后,TUNEL阳性细胞显著增加,即细胞凋亡率显著升高。度洛西汀能显著抑制由谷氨酸引起的细胞凋亡增多。抑制剂包括5-HT2B SB204741处理组和AKT抑制剂LY294002处理组,与实验组50 mol/L谷氨酸比较,细胞凋亡率明显减少,差异有统计学意义(P < 0.05)。谷氨酸组的凋亡率与其他组比较,差异均有统计学意义(P < 0.05)。见表1。

2.2 细胞内Ca2+水平

共聚焦荧光倒置显微镜检测结果显示,对照组细胞内Ca2+水平随时间变化无明显变化,15 min之间差异无统计学意义(P > 0.05)。谷氨酸组在给予谷氨酸刺激时间点开始细胞内Ca2+水平明显上升,约80%,15 min恢复基线水平。在处理后的1~10 min之间,谷氨酸组与对照组的Ca2+水平差异均有统计学意义(P < 0.05)。度洛西汀能显著抑制谷氨酸引起的细胞内Ca2+水平升高。见图1。

2.3 可能相关信号转导通路验证

采用5-HT2B抑制剂SB204741和AKT抑制剂LY294002联合50 mol/L谷氨酸,细胞内Ca2+水平变化与对照组比较,差异无统计学意义(P > 0.05)。见图2~3。

3 讨论

研究表明,脑缺血再灌注、脑卒中和老年性痴呆是常见的中枢神经系统疾病,具有发生率高、致残率高、致死率高的特点,已经成为严重威胁人类生活质量的重要原因[4]。脑缺血再灌注、脑卒中和老年性痴呆的共同发病特征是兴奋性谷氨酸毒性,这个谷氨酸毒性在疾病的病理进程中扮演着重要角色。谷氨酸毒性作用易造成神经元不同程度的损伤和死亡,而神经元不可再生特性决定了使用药物治疗和预防谷氨酸毒性作用的重要性[3]。谷氨酸是中枢神经系统重要的兴奋性神经递质[1,5-6]。谷氨酸无法直接透过血脑屏障,在脑内谷氨酸和谷氨酰胺循环中星形胶质细胞发挥了重要的作用。谷氨酸受体包括离子型谷氨酸受体和代谢型谷氨酸受体,其中包括AMPA受体在内的离子型谷氨酸受体是参与脑缺血和脑损伤的神经元死亡的重要活化受体[7]。脑出血等病理因素导致神经元细胞外液的谷氨酸浓度剧增,通过与突触后谷氨酸受体结合,引起细胞膜上的钠离子通道开放,大量钠离子进入细胞内引起细胞肿胀,造成神经元死亡[8]。另有研究报道,谷氨酸可以通过与NMDA谷氨酸受体结合,导致细胞膜上L-型钙离子通路开放,细胞内钙库释放大量钙离子,引起细胞内钙离子超载,重要体现在线粒体功能不全引起的延迟性神经元死亡[9-10]。细胞内钙离子超载具有多种原因,可能是由于细胞膜上的L-型钙通道活化而增加细胞外的钙离子进入到细胞内,细胞内钙离子升高后可以介导TRPC受体激活线粒体内的敏感性,增加由TRPC介导的细胞内钙库的释放,细胞内钙离子瞬间释放增加,导致细胞内钙超载[11-12]。从临床上应用安全的药物中发展和挖掘具有神经保护作用的药物成为临床上治疗脑缺血和脑损伤等疾病的重要策略[13]。

度洛西汀是一种5-HT和NE再摄取抑制剂,其主要作用机制是通过直接抑制5-HT摄取和NE摄取来增加细胞间隙的5-HT和NE的浓度[14]。本研究结果显示谷氨酸具有激活NMDA等谷氨酸受体作用,造成细胞内钙超载出现大量神经元细胞凋亡,度洛西汀通过与5-HT2B受体特异性结合,受体酪氨酸激活介导磷脂酰肌醇-3激酶(PI3K)/丝氨酸-苏氨酸蛋白激酶(AKT)通路引起神经元坏死[15-17]。另有研究表示度洛西汀与多巴胺能、肾上腺能、胆碱能、谷氨酸受体等几乎无亲和力,但未见报道度洛西汀直接结合5-HT受体[18],这与Ray等[19]报道氟西汀结合5-HT受体发挥抗抑郁作用相类似。动物实验表明,度洛西汀能减少大鼠大脑皮层5-HT受体密度和NE受体密度。度洛西汀推荐用于治疗化疗所致周围神经炎病变,止疼效果较好,但需要用药5周才能起效,与治疗抑郁症起效慢一致[6],因此度洛西汀治疗谷氨酸毒性作用神经元坏死也可能需要长期治疗起效[20]。

本研究应用度洛西汀处理能显著降低细胞内钙超载引起的神经元凋亡,在临床实践中度洛西汀具有良好的安全性,值得临床推广。

[参考文献]

[1] Monnerie H,Hsu FC,Coulter DA,et al. Role of the NR2A/2B subunits of the N-methyl-D-aspartate receptor in glutamate-induced glutamic acid decarboxylase alteration in cortical GABAergic neurons in vitro [J]. Neuroscience,2010,171(4):1075-1090.

[2] Rasmussen M,Kong L,Zhang GR,et al. Glutamatergic or GABAergic neuron-specific,long-term expression in neocortical neurons from helper virus-free HSV-1 vectors containing the phosphate-activated glutaminase,vesicular glutamate transporter-1,or glutamic acid decarboxylase promoter [J]. Brain Res,2007,1144(1):19-32.

[3] Brison E,Jacomy H,Desforges M,et al. Glutamate excitotoxicity is involved in the induction of paralysis in mice after infection by a human coronavirus with a single point mutation in its spike protein [J]. J Virol,2011,85(23):12464-12473.

[4] 荊丽丽,谭宏伟,于静,等.不同剂量氯喹对戊四氮慢性致痫大鼠脑内谷氨酸受体2表达的影响[J].中国医药导报,2014,11(15):10-12.

[5] Zhang Y,Bhavnani BR. Glutamate-induced apoptosis in neuronal cells is mediated via caspase-dependent and independent mechanisms involving calpain and caspase-3 proteases as well as apoptosis inducing factor(AIF)and this process is inhibited by equine estrogens [J]. BMC Neurosci,2006,7(1):49.

[6] Beart PM,Lim ML,Chen B,et al. Hierarchical recruitment by AMPA but not staurosporine of pro-apoptotic mitochondrial signaling in cultured cortical neurons:evidence for caspase-dependent/independent cross-talk [J]. J Neurochem,2007,103(6):2408-2427.

[7] Perrella J,Bhavnani BR. Protection of cortical cells by equine estrogens against glutamate-induced excitotoxicity is mediated through a calcium independent mechanism [J]. BMC Neurosci,2005,6(1):34.

[8] Smith EM,Pang H,Cirrincione C,et al. Effect of duloxetinee on pain,function,and quality of life among patients with chemotherapy-induced painful peripheral neuropathy:A randomized clinical trial [J]. JAMA,2013,309(13):1359-1367.

[9] Akpinar A,Uguz AC,Naziroglu M. Agomelatine and duloxetine synergistically modulates apoptotic pathway by inhibiting oxidative stress triggered intracellular calcium entry in neuronal PC12 cells:role of TRPM2 and voltage-gated calcium channels [J]. J Membr Biol,2014,47(5):451-459.

[10] Brustovetsky T,Bolshakov A,Brustovetsky N. Calpain activation and Na+/Ca2+ exchanger degradation occur downstream of calcium deregulation in hippocampal neurons exposed to excitotoxic glutamate [J]. J Neurosci Res,2010, 88(6):1317-1328.

[11] Salazar-Colocho P,Del Rio J,Frechilla D. Neuroprotective effects of serotonin 5-HT 1A receptor activation against ischemic cell damage in gerbil hippocampus:Involvement of NMDA receptor NR1 subunit and BDNF [J]. Brain Res,2008,1199(1):159-166.

[12] Ha JS,Lee CS,Maeng JS,et al. Chronic glutamate toxicity in mouse cortical neuron culture [J]. Brain Res,2009, 1273(1):138-143.

[13] Li B,Zhang S,Zhang H,et al. Fluoxetine-mediated 5-HT2B receptor stimulation in astrocytes causes EGF receptor transactivation and ERK phosphorylation [J]. Psychopharmacology,2008,201(3):443-458.

[14] Calabrese F,Guidotti G,Molteni R,et al. Stress-induced changes of hippocampal NMDA receptors:modulation by duloxetine treatment [J]. PLoS One,2012,7(5):e37916.

[15] Alberti C. Coadministration of low-dose serotonin/noradrenaline reuptake inhibitor(SNRI)duloxetine with a2-adrenoceptor blockers to treat both female and male mild-to-moderate stress urinary incontinence(SUI)[J]. G Chir,2013,34(7/8):189-194.

[16] López-Solà M,Pujol J,Hernández-Ribas R,et al. Effects of duloxetine treatment on brain response to painful stimulation in major depressive disorder [J]. Neuropsychopharmacology,2010,35(11):2305-2317.

[17] Arnold LM,Meyers AL,Sunderajan P,et al. The effect of pain on outcomes in a trial of duloxetine treatment of major depressive disorder [J]. Ann Clin Psychiatry,2008, 20(4):187-193.

[18] Monnerie H,Le Roux PD. Glutamate alteration of glutamic acid decarboxylase(GAD)in GABAergic neurons:the role of cysteine proteases [J]. Exp Neurol,2008,213(1):145-153.

[19] Ray SK,Karmakar S,Nowak MW,et al. Inhibition of calpain and caspase-3 prevented apoptosis and preserved electrophysiological properties of voltage-gated and ligand-gated ion channels in rat primary cortical neurons exposed to glutamate [J]. Neuroscience,2006,139(2):577-595.

[20] Hilton GD,Nunez JL,Bambrick L,et al. Glutamate-mediated excitotoxicity in neonatal hippocampal neurons is mediated by mGluR-induced release of Ca++ from intracellular stores and is prevented by estradiol [J]. Eur J Neurosci,2006,24(11):3008-3016.

(收稿日期:2016-05-25 本文編辑:张瑜杰)

猜你喜欢

神经元
《从光子到神经元》书评
自突触对HH神经元正弦信号响应的调节
跃动的神经元——波兰Brain Embassy联合办公
线粒体质量控制与神经元衰老及运动的干预作用
基于单神经元自适应PID控制的注塑机合模机构
基于二次型单神经元PID的MPPT控制
ERK1/2介导姜黄素抑制STS诱导神经元毒性损伤的作用
毫米波导引头预定回路改进单神经元控制
神经元模型的稳定性分析与Hopf分岔控制
侧脑室注射DIDS对缺血再灌注脑损伤大鼠神经元凋亡的拮抗作用