APP下载

由新型电机引起的对电力学体系理论问题的讨论

2017-03-04杨耀晨

中国新技术新产品 2017年4期

杨耀晨

摘 要:本文讨论了磁流体发电机启动过程并得出合理的饱和电压公式,构建了能研究新型电机的电力学体系。并讨论实际问题。提出了电力学熵的概念,证明了电力学熵具有玻尔兹曼定义形式,从而说明了作为状态函数的电力学熵能够较充分地描述体系电荷的分布状况及带电体系的混乱程度,扩大了其适用范围。为电磁学理论研究提供了新的思路,对未来科学事业发展可能具有特殊意义。

关键词:新型电机;电力学体系;电力学熵;玻尔兹曼定义

中图分类号:TN86 文献标识码:A

1820年,丹麦物理学家奥斯特发现电流具有磁效应,展开了电磁学的研究。1821年安培提出分子电流假设,提出了电动力学。1831年英国物理学家法拉第发现电磁感应,并用它设计制造了人类第一个发电机。1873年麦克斯韦在著作《电磁学通论》中提出麦克斯韦方程组,基本完善了近代电磁学的理论体系。20世纪50年代末,人们开始研究磁流体发电。磁流体发电利用磁场实现能量转化,达到高功率、低污染的效果。本文将从磁流体发电机开始,逐渐深入探讨电力学体系,类比热力学体系,提出能够研究新型电机甚至深化电磁学理论研究的理论体系,电力学熵的概念,对一些电磁学现象进行讨论,为设计新型电机打下基础,并为电磁学理论研究提供新的思路。

一、磁流体发电机

磁流体发电机将带电的流体(离子气体或液体)以极高的速度喷射到磁场中,正负电荷受到洛伦兹力发生相对运动,利用极板收集在磁场中相对运动的正负电荷,通过电荷积累在正负极产生电势差,从而起到发电作用。

磁流体发电机极板间饱和电压研究:不同于多数文献中的推导过程,下面的推导考虑了更实际的情况,得出不同于其他文献中U=Bvd的结果。

考虑到极板间距较小,磁感应强度较大,磁流体流速大等因素,稳定运行时单位时间内输入电荷量视为定值,等效于输入恒定电流I,设i为外电路电流,q为极板电荷,c为极板电容,u为路端电压,R为外电路等效电阻,于是由电荷守恒列出极板电荷微分方程:

由基尔霍夫第二定律(KVL)可知极板间电势差=路端电压u,由一段含源电路欧姆定律可知

于是上式可化为:

显然上式是个一阶线性齐次常系数微分方程由于u、i、q都是关于时间t的函数,采用分离变量法对方程求解并代入初值i=0,t=0可以得到:

饱和电压即为

umax=IR(无限接近)

基于下文内容,新的推导结果能够支持磁流体发电机和普通发电机的稳定状态是等效的。当然,这种新型电机与传统电机也不尽相同,由于引入了电场、磁场,一些相关指标的计算和理论问题的处理不能只用电路知识解决,我们需要构建新的理论体系来研究包含场与电荷体系的新型电机。

二、对比热力学体系建立新的电力学系统

人们曾利用热力学定律研究、设计制造了一系列实用的热机,我们也可以仿照热力学体系利用已有的电磁学定律,建立一个新的电力学体系:

第零定律:等势体、稳恒电路中没有电荷交换。由稳恒条件下电流密度与时间无关得稳恒电流连续性方程可证。

第一定律:能量守恒。采用电动力学中已有的能量守恒定律表述形式:由坡印廷定理和Maxwell方程中的两式:

联立,可以得到场和电荷系统能量守恒定律表示式,其微分形式和积分形式分别为:

第二定律:电荷(正)在自发情况下只从电势高处移向電势低处。

第三定律:热力学第三定律阐述了熵增加原理及完美晶体熵为零的结论,那么不妨假设电力学中也存在熵增加原理。当然这里的熵不是已有的热力学熵,我们不妨称为电力学熵,简称电熵,符号暂定为SE。对于绝电体系(与外界无电荷交换),dq=0,因此熵变恒为零。对于具体熵值的确定,请参看后文的电力学熵的玻尔兹曼定义。

以上3条定律构建了新电力学体系的框架,可以作为电磁学理论研究的新思路。

三、电力学熵

下面我们对定律中最重要的物理量——电熵进行讨论。

1.电熵的定义(微分形式):设系统的电荷量为q,平均电势为Φ,则

2.电熵的物理意义:判断电学过程的自发性,或者说是否对外界造成影响。

描述场与电荷体系能够做功的程度。类似于温度升高,不能做功的能量增加;电势升高,可以做功的静电能增加。

反映电荷分布的混乱程度。不同于中性分子,电荷在导体上均匀分布时更为秩序,因为电荷分布受导体自身物理性质影响,如导体表面曲率。

3.计算:利用带电体系静电能微分方程dE=Φdq,可得Φ2dSE=-dE可见静电能自发地耗散导致电熵增加,符合实际。上文定义的电熵同克劳修斯熵一样只适用于平衡体系,因此有关电熵的计算要借助坡印廷定理及后文中的玻尔兹曼定义。但上述变换技巧是具有广泛意义的,甚至可以应用于微观,因为后文将体现Φ2具有特殊意义。

四、实际问题

电场力做功:假设在真空中有一对孤立的充满电的理想极板,让带电粒子横向通过,粒子将会受到电场力的作用发生偏转并被加速,消耗了电场的能量。由电容器静电能公式

可知,能够维持板间电压的有效电荷减少了,这是电荷分布改变导致的。电荷向边缘集中加剧边缘效应,导致了能量的损失。

当将上述极板接如电路维持其电压恒定时,外源提供的能量既要供给电场力做功,又要维持电荷分布,其值应大于粒子增加的动能。电动力学已经证明,这个值是静电场做功的2倍。

由于该系统能够做功程度下降,可知电熵增加,便捷的解释了上述现象。

磁流体发电机:从对磁流体发电机启动过程的讨论,我们看到磁流体发电机能够输出稳定电流是有理论依据的,电动力学指出电路中的电能都是由运动的电磁场传输的。从电熵角度看,磁流体发电机启动时由于外电路电流趋于与输入电流相等,即电荷增量趋近于零,电熵趋近于一个定值,说明整个电机趋向于一个稳定状态,类似于传统直流发电机形成的稳恒电路。

上文还提到磁流体发电机与传统电机略有不同,是因为磁流体进入磁场后,在没有能量输入的情况下电熵减小,这意味着磁流体对外界一定造成了其他影响。不妨利用电磁学中的磁荷理论,将其与上一个问题类比,我们可以得出磁荷分布改变的结论。因此要维持匀强磁场的磁感应强度,需要外界提供能量,只是磁场力对外不做功,这解释了磁铁需要“充磁”。

在上述问题中,电熵在定性描述电荷分布上取得了成功,但这种描述很模糊,并且与热力学中的克劳修斯熵类似,它们都只能描述体系的平衡状态,非平衡状态下,定义无法描述熵变,但玻尔兹曼熵的提出使熵的概念在自然科学中被广泛应用,并有学者证明了两种熵是等价的。为了扩大电熵的适用范围,我们尝试赋予电熵玻尔兹曼定义形式。

五、电力学熵的玻尔兹曼定义

在玻尔兹曼孤立系统中从微观角度可以证明克劳修斯熵和玻尔兹曼熵的等价性。由克劳修斯熵的定义以及dQ的微观意义,在玻尔兹曼孤立系统中

进而,利用全微分变换和斯特令公式可以推导出玻尔兹曼熵S=k1nΩ

基于这个思路,我们对电熵定义式做相似的处理,根据玻尔理论中能级的概念,我们认为能级上粒子的电势能与能级能量成正比,于是有

e为粒子平均电荷量,m、n为常数,对比可知,电熵具有玻尔兹曼熵的形式,只是温度T被参量-nΦ2替代,因此电熵与玻尔兹曼熵的形式呈线性关系,所以

SE=k′1nΩ

k′稱为电力学熵的玻尔兹曼常数,其值与玻尔兹曼常数k有关。

综上所述,在玻尔兹曼孤立系统中,我们证明了电力学熵具有玻尔兹曼熵的形式,这意味着电熵是场与电荷系统的状态函数并能反映电荷分布的结论同时得到证明,电力学第三定律得到补充(完美晶体电熵和热力学熵均为0)。我们预期电力学熵与热力学熵一样具有重要意义。再开系中有关电熵形式的问题暂不讨论。

结论

对磁流体发电机的讨论引起了对电力学体系中更深层理论问题的讨论,新的电力学体系能够研究与电场、磁场紧密结合的新型电机,同时利用状态函数电力学熵,可以对电磁学理论进行更深入的研究。电力学熵的基本定义同克劳修斯熵一样具有局限性,而电熵的玻尔兹曼化证明了其能有效反映场与电荷体系的性质,并扩大了其适用范围。电力学熵因此获得了在以后的各种研究中被广泛应用都可能。

参考文献

[1]周勇.浅析磁流体发电机的原理及其应用[J].物理教学探讨,2010(28):373.