APP下载

探究2016年高考中的恒成立问题

2017-01-21朱海燕

中学生理科应试 2016年11期
关键词:等价零点理科

朱海燕

纵览近年来的各个省市的高考数学试卷,可以发现在试题中经常会出现恒成立问题.与恒成立相关的题目一般出现在试卷的最后一题或倒数第二题,可以说是整套试卷的压轴之作.这类试题一般综合性强,通常会结合函数、数列、不等式及导数等多个知识进行考察,同时这类题目对学生的能力也是一种挑战,这类题目通常会考查学生分析能力、推理能力、计算能力以及综合运用知识的能力,在高考中这种题往往会拉开考生的成绩差距.在本文中,笔者结合自己多年的一线教学经验,就2016年高考数学中出现的几道与恒成立相关的试题展开分析,以供读者参考.

一、考查方式

对于恒成立问题的考查主要有两种方式:

1.证明某个等式或不等式恒成立;

2.已知某个等式或不等式恒成立,求解其中的参数的取值或取值范围.

二、实战演练

例1 (2016年山东理科,20)已知f(x)=a(x-lnx)+2x-1x2,a∈R.

(Ⅰ)讨论f(x)的单调性;

(Ⅱ)当a=1时,证明f(x)>f ′(x)+32对于任意的x∈[1,2]成立.

解析 (Ⅰ)(1)由题目中的函数知f(x)的定义域为(0,+∞),f ′(x)=a-ax-2x2+2x3=(ax2-2)(x-1)x3.

当a≤0时,若x∈(0,1),f ′(x)>0,

,则函数f(x)单调递增;

x∈(1,+∞),f ′(x)<0,函数f(x)单调递减.(2)当a>0时,f ′(x)=a(x-1)(x+2a)(x-2a)

x3.

若01,所以当x∈(0,1)或(2a,+∞)时,f ′(x)>0,函数f(x)单调递增;

当x∈(1,2a)时,f ′(x)<0,函数f(x)单调递减;

若a=2时,2a=1,f ′(x)≥0,函数f(x)单调递增;

若a>2,则0<2a<1,所以当x∈(0,2a)或(1,+∞)时,f ′(x)>0,函数f(x)单调递增;当x∈(2a,1)时,f ′(x)<0,函数f(x)单调递减.

综上所述:

当a≤0时,函数f(x)在(0,1)上单调递增;函数f(x)在(1,+∞)上单调递减;

当0

当a=2时,函数f(x)在(0,+∞)上单调递增;

当a>2时,函数f(x)在(0,2a)和(1,+∞)上单调递增;函数f(x)在(2a,1)上单调递减.

(Ⅱ)由(Ⅰ)知a=1时,f(x)-f′(x)=x-lnx+2x-1x2-(1-1x-2x2+2x3)=x-lnx+3x+1x2-2x3-1,x∈[1,2],

令g(x)=x-lnx,h(x)=3x+1x2-2x3-1,则f(x)-f ′(x)=g(x)+h(x),由g′(x)=x-1x≥0可得g(x)≥g(1)=1,当且仅当x=1时取等号;

又h′(x)=-3x2-2x+6x4,设φ(x)=-3x2-2x+6,则φ(x)在[1,2]上单调递减,且φ(1)=1,

φ(2)=-10,所以在[1,2]上存在x0使得x∈(1,x0)时,φ(x)>0,x∈(x0,2)时,φ(x)<0,所以函数h(x)在(1,x0)上单调递增;在(x0,2)上单调递减,由于h(1)=1,h(2)=12,因此h(x)≥h(2)=12,当且仅当x=2取等号,所以f(x)-f ′(x)>g(1)+h(2)=32,即f(x)>f ′(x)+32对于任意的x∈[1,2]恒成立.

点拨 这道题第一问考察了利用导函数判断单调性,需要用到分类讨论的思想,第二问是恒成立问题,需要考生结合原函数和导数进行推理.

例2 (2016年全国卷理科,24)已知函数f(x)=|2x-a|+a

(Ⅰ)当a=2时,求不等式f(x)≤6的解集;

(Ⅱ)设函数g(x)=|2x-1|,当x∈R时,f(x)+g(x)≥3,求a的取值范围.

解析 (Ⅰ)当a=2时,f(x)=|2x-2|+2.

解不等式|2x-2|+2≤6,得-1≤x≤3.

因此,f(x)≤6的解集为{x|-1≤x≤3}.

(Ⅱ)当x∈R时,f(x)+g(x)=|2x-a|+a+|1-2x|≥|2x-a+1-2x|+a=|1-a|+a,当x=12时等号成立,所以当x∈R时,f(x)+g(x)≥3等价于|1-a|+a≥3.

当a≤1时,|1-a|+a≥3等价于1-a+a≥3,无解;

当a>1时,|1-a|+a≥3等价于a-1+a≥3,解得a≥2;

所以a的取值范围是[2,+∞).

点评 (Ⅰ)利用等价不等式|h(x)|≤a(a>0)-a≤h(x)≤a,进而通过解不等式可求得;(Ⅱ)根据条件可首先将问题转化为求解f(x)+g(x)的最小值,此最值可利用绝对值三角不等式求得,再根据恒成立的意义建立简单的关于a的不等式求解即可.

例3 (2016年江苏数学Ⅰ,19)已知函数f(x)=ax+bx(a>0,b>0,a≠1,b≠1).

(1)设a=2,b=12.

①求方程f(x)=2的根;

②若对于任意x∈R,不等式f(2x)≥mf(x)-6恒成立,求实数m的最大值;

(2)若01,函数g(x)=f(x)-2有且只有1个零点,求ab的值.

解析 (1)①f(x)=2x+(12)x,由f(x)=2可得2x+12x=2,则(2x)2-2×2x+1=0,即(2x-1)2=0,则2x=1,x=0;

②由题意得22x+122x≥m(2x+12x)-6恒成立,

令t=2x+12x,则由2x>0可得t≥22x×12x=2,

此时t2-2≥mt-6恒成立,即m≤

t2+4t=t+4t恒成立.

∵t≥2时,t+

4t≥2t·4t=4,当且仅当t=2时等号成立,因此实数m的最大值为4.

(2)g(x)=f(x)-2=ax+bx-2,g′(x)=axlna+bxlnb=axlnb[

lnalnb+(ba)x],

由01可得ba>1,令h(x)=(ba)x+lnalnb,则h(x)递增,

而lna<0,lnb>0,因此x0=logb/a(-lnalnb)时h(x0)=0,

因此x∈(-∞,x0)时,h(x)<0,axlnb>0,则g′(x)<0;

x∈(x0,+∞)时,h(x)>0,axlnb>0,则

g′(x)>0;

则g(x)在(-∞,x0)递减,(x0,+∞)递增,因此g(x)最小值为g(x0),

①若g(x0)<0,xaloga2=2,bx>0,则g(x)>0;

x>logb2时,ax>0,bx>blogb2=2,则g(x)>0;

因此x10,因此g(x)在(x1,x0)有零点,x2>logb2且x2>x0时,g(x2)>0,因此g(x)在(x0,x2)有零点,则g(x)至少有两个零点,与条件矛盾;

②若g(x0)≥0,由函数g(x)有且只有1个零点,g(x)最小值为g(x0),可得g(x0)=0,

由g(0)=a0+b0-2=0,因此x0=0,

因为

logb/a(-lnalnb)=0,

即-lnalnb=1,

即lna+lnb=0,

因此ln(ab)=0,则ab=1.

试题分析 这道题中,求方程

fx=2的根

猜你喜欢

等价零点理科
等价转化
函数零点、不等式恒成立
和理科男谈恋爱也太“有趣”啦
例析函数零点问题的解法
文科不懂理科的伤悲
n次自然数幂和的一个等价无穷大
2016年高考全国卷Ⅱ理科第11题的多种解法
导函数零点“不可求”之应对策略
将问题等价转化一下再解答
等价转化思想在高中数学中的应用