APP下载

异质性胞核核糖核蛋白K与肿瘤研究的最新进展

2017-01-16杨星九李梦媛朱瑞敏

中国比较医学杂志 2017年11期
关键词:肿瘤发生癌基因磷酸化

黄 昊,杨星九,李梦媛,朱瑞敏,高 苒

(中国医学科学院医学实验动物研究所,北京协和医学院比较医学中心,卫计委人类疾病比较医学重点实验室,北京 100021)

研究进展

异质性胞核核糖核蛋白K与肿瘤研究的最新进展

黄 昊,杨星九,李梦媛,朱瑞敏,高 苒*

(中国医学科学院医学实验动物研究所,北京协和医学院比较医学中心,卫计委人类疾病比较医学重点实验室,北京 100021)

近几十年来,癌基因和抑癌基因一直是肿瘤生物学中的一个重要分类,然而对于一些基因却很难将其归类。异质性胞核核糖核蛋白K(heterogeneous nuclear ribonucleoprotein K,HNRNPK)是一个核酸结合蛋白,参与了基因表达调控、信号转导等很多细胞进程。近些年发现HNRNPK在多种肿瘤中过表达,且其过表达与患者的预后呈负相关,提示其可能在这些肿瘤中发挥癌基因的功能。然而,在急性髓系白血病(acute myeloid leukemia,AML)的研究报道中发现HNRNPK可能扮演抑癌基因的角色。因此,本文对HNRNPK在肿瘤发生发展中的分子功能及作用机制的最新进展进行综述。

异质性胞核核糖核蛋白K;肿瘤;分子功能

过去的几十年里,临床和基础科学研究试图确定直接影响肿瘤发生的关键的基因改变。在这一过程中,研究者们将这类基因分成致癌基因或抑癌基因,这使得研究者和临床医生可以描述多种基因改变可能导致的功能和临床结果。然而,这种分类并不能如实反映异常的基因表达所导致的后果,如p53基因最初被定义为癌基因,但当对p53的细胞功能深入研究后被证明其是一个潜在的抑癌基因[1]。

近期研究发现,异质性胞核核糖核蛋白K(heterogeneous nuclear ribonucleoprotein K,HNRNPK)在肿瘤的发生发展过程中发挥重要作用,但仍很难将其分类为癌基因或抑癌基因。很多研究中均显示HNRNPK具有调节肿瘤发生和肿瘤抑制通路的能力,过表达和低表达均有导致细胞增殖和抑制凋亡的报道。临床报道中也有不同的见解,在结直肠癌、鼻咽癌、前列腺癌、黑色素瘤、口腔鳞状细胞癌及胃癌的报道中,HNRNPK发挥着癌基因的角色,其过表达与肿瘤的发生及预后呈负相关[2-7]。在急性髓系白血病(acute myeloid leukemia,AML)的研究中,却发挥抑癌基因角色,HNRNPK单倍剂量不足的小鼠易患AML及淋巴瘤[8]。因此结合目前的细胞学和临床资料,HNRNPK并不能简单地分类为癌基因或抑癌基因。本文对HNRNPK的在肿瘤发生发展中的分子功能及作用机制进行综述,为全面了解HNRNPK的功能提供一定的线索。

1 HNRNPK的结构特点

HNRNPK基因位于9号染色体q21.32~q21.33,序列相对保守,编码蛋白是核不均一核糖核蛋白家族成员之一,含有3个参与RNA和单链DNA结合的K同源区,每个K同源区由65~70个氨基酸组成[9]。HNRNPK含有一个调节该蛋白胞浆胞核转运的核定位信号,且含有一个调节双向穿梭核孔复合体的核穿梭结构域[10]。K同源区之间含有一个非结构化的区域,是HNRNPK与其它分子伴侣结合的主要区域,包括DNA、RNA以及相互作用蛋白。HNRNPK包括四个选择性剪接体,剪接体1与剪接体2在蛋白的C端有5~6个氨基酸的差别,剪接体3、4在C端分别与剪接体1、2相对应,但缺失第111~134位氨基酸,预测的分子量为48~51 × 103。然而在传统的单向SDS-PAGE凝胶电泳中,胞浆HNRNPK呈现66 × 103大小单一条带,胞核HNRNPK呈现66 × 103和64 × 103大小双条带,提示胞浆组分中不含HNRNPK的剪接体3与4[11]。

2 HNRNPK的分子功能

HNRNPK的特殊分子结构赋予了其招募组成多分子信号复合体的能力,包括一些激酶及因子,参与了基因表达调控、信号转导等很多细胞进程,包括HNRNPK的转录调控、RNA的加工和翻译,以及转录后修饰活化。

2.1HNRNPK参与转录调控

HNRNPK能够与单链或双链DNA结合,以DNA-蛋白复合体的形式调控基因的转录。HNRNPK可以作为转录激活因子或转录抑制因子参与转录调控[12]。如通过结合转录激活c-myc、BRCA1、eIF4E、c-Src、CHRNA4等,转录抑制人胸苷激酶启动子、CD43基因启动子[11]。HNRNPK对转录的调控方式一般分为两类:通过嘧啶富集区(CT元件)的调控和不依赖CT元件的调控。c-myc的启动子上游150 bp处含有5个CT重复序列,HNRNPK则通过识别这一启动子区域的CT元件,以CT元件依赖的方式调控基因的表达[13]。HNRNPK也可以通过与富含CG片段结合,改变DNA的二级结构来激活血管内皮细胞生长因子的表达[14]。HNRNPK作为p53的共激活因子,在调节DNA损伤修复过程中发挥着重要的作用。DNA损伤能使HNRNPK依赖性地被招募到p53下游基因的启动子上,进而促进如p21、HDM2、C/EBPα以及C/EBPβ的表达,HNRNPK下调表达减少p53的转录,从而导致DNA损伤诱导的细胞周期停滞[15]。HNRNPK缺失的细胞不能诱导p21的表达,抗癌药物nutlin与MDM2结合后,可以竞争抑制HNRNPK的降解,使p21转录正常进行,调节细胞周期[16]。

2.2HNRNPK参与RNA的加工及翻译

HNRNPK的K同源区能与RNA剪接相关的分子结合,参与调控RNA的选择性剪接,如9G8、SRp20、Bcl-Xs、G6PD等[17-19]。HNRNPK作为转录因子参与多种蛋白的翻译过程。HNRNPK可以直接与EF-1α以及eIF4E的启动子区域结合,增加翻译起始、细胞分裂以及肿瘤形成[20,21]。在神经元分化过程中,HNRNPK通过与p21 mRNA的3’端非翻译区结合,抑制p21的翻译[22]。HNRNPK的C端含有一段富含AT区域,能与Src家族的SH3结构域相互作用,特异性的激活c-Src,同时HNRNPK的酪氨酸残基被磷酸化,则影响了HNRNPK与RNA的结合活性,抑制15-脂氧化酶(15-lipoxygenase)基因(LOX)mRNA的3’端非翻译区的分化调控元件(differentiation control element,DICE)结合,表现为DICE对mRNA的抑制作用消失,从而激活翻译过程[23]。

2.3HNRNPK的转录后修饰

HNRNPK通过自身的转录后修饰调节与其它分子的相互作用及功能,包括甲基化、类泛素化和磷酸化。精氨酸甲基化调节HNRNPK细胞内分布、抑制与c-Src的相互作用、增强p53的转录活性[24-26]。紫外线导致的DNA损伤诱导HNRNPK中422位赖氨酸的类泛素化,促进了p53的转录活性增强[27,28]。白介素1、胰岛素和氧化应激等细胞外信号促进HNRNPK的丝、苏氨酸及酪氨酸残基发生磷酸化,且一些激酶也参与其中[11]。MEK/ERK通路的活化导致HNRNPK的284位与353位丝氨酸的磷酸化,对HNRNPK的生物学功能的影响与c-Src途径相似,调节其在细胞内的定位及胞浆聚集[29]。

3 HNRNPK与肿瘤

HNRNP家族与目前威胁人类生命的肿瘤疾病密切相关,多种肿瘤的形成和发展都与该家族蛋白有关。大多关于HNRNPK与肿瘤的研究数据均来自于临床患者组织标本的病理及免疫组化分析结果,据报道HNRNPK与结直肠癌、鼻咽癌、前列腺癌、黑色素瘤、口腔鳞状细胞癌及胃癌的预后呈负相关[2-7]。虽然HNRNPK在多数肿瘤中呈高表达,并其与肿瘤患者的预后相关,提示HNRNPK的过表达可能发挥着一个致癌基因的功能。然而,HNRNPK的单倍剂量不足却在AML中扮演一个抑癌基因的角色。另外,近期癌症基因组图谱(The Cancer Genome Atlas,TCGA)揭示了HNRNPK的突变具有导致AML发生的能力,但仍不清楚HNRNPK突变后是导致其功能增加还是发挥单倍剂量不足表型的作用[8,30]。

3.1HNRNPK与肿瘤发生

HNRNPK参与多种癌基因及抑癌基因的表达调控,促进细胞的增殖、分裂,与多种肿瘤发生发展有关。Ostareck-Lederer等[31]证明了HNRNPK能与c-Src相互作用并导致其激活,反过来c-Src磷酸化HNRNPK的KH3结构域第458位酪氨酸,使胞浆HNRNPK蛋白组分失活,并抑制其与DICE结合,从而激活翻译机制。HNRNPK在转录和翻译水平上皆能影响c-myc的活性,在体内、外实验中证明其通过与c-myc启动子的嘧啶富集区(CT元件)结合,促进c-myc的转录[32]。乳腺癌、前列腺癌细胞及黑色素瘤组织的HNRNPK高表达通常伴随c-myc水平升高[5,33,34]。在肝癌组织及细胞中,Tcl1以一种HNRNPK依赖性形式激活G6PD,并促进G6PD的前体RNA加工及其蛋白的表达。而另一方面抑癌基因编码蛋白PTEN与HNRNPK形成复合物,抑制HNRNPK对G6PD前体RNA的剪切作用,从而抑制肝癌的发生[35]。如前文所述,HNRNPK与p53以协同作用参与调节DNA损伤修复,且能通过自身的甲基化、赖氨酸类泛素化、以及丝/苏氨酸磷酸化增强其与p53的亲和力,调节下游信号通路[15]。HNRNPK作为转录因子,能与eIF4E启动子区域结合,也能通过与p21 mRNA的3’端非翻译区结合,抑制p21的翻译,增加翻译起始、细胞分裂以及肿瘤形成[20,21]。因此,HNRNPK自身水平的变化或转录后的修饰能够调节肿瘤发生的几条关键通路。

3.2HNRNPK与肿瘤转移

HNRNPK和肿瘤的转移也有密切联系。Inoue等[36]利用转移功能缺失筛选体系,筛选出HNRNPK可能作为一种癌症转移相关的蛋白,其在胞浆内的聚集效应在细胞转移过程中发挥重要作用。Gao等[37]证明了HNRNPK能够激活Ras-Raf-MAPK信号通路,并且上调在肿瘤侵袭转移中起关键性作用的基质金属蛋白酶家族成员MMP3和MMP10,促进肿瘤的发生及发展。Strozynski等[38]通过双向电泳联合质谱技术发现HNRNPK在放射线处理后的细胞中高表达,靶向抑制HNRNPK的表达能够抑制头颈鳞状细胞癌细胞的转移能力,提示其可能参与了头颈鳞状细胞癌的转移过程。HNRNPK的胞浆聚集显著促进肾小细胞癌细胞的侵袭能力[39]。国内有研究表明,HNRNPK在肺癌原发灶及支气管切缘(+)组肺癌组织中均呈现较高水平的表达(65%);正常组织及炎性对照组中HNRNPK的阳性表达率则较低(33.3%),该研究提示HNRNPK在肺癌的发生中起重要作用。同时该研究还发现HNRNPK在肺癌转移及浸润组织(转移淋巴结+支气管切缘)中有高的阳性表达率,而且在肺癌转移淋巴结组有最高的表达强度,提示其高表达可能与肺癌转移相关[40]。

Moumen等[15]通过蛋白质组学研究发现HNRNPK以DNA损伤信号激酶ATM或ATR激活的方式,在DNA损伤时能被快速诱导表达;HNRNPK缺失能导致p53靶基因的转录失活,并引发DNA损伤导致的细胞周期阻滞缺陷。DNA损伤诱导的HNRNPK的小泛素相关修饰(small ubiquitin-like modifier,SUMO)作用,能够调节p53的转录激活[27]。另外有研究表明HNRNPK蛋白第296位和第299位精氨酸的甲基化,抑制了促凋亡激酶PKCδ介导的第302位丝氨酸磷酸化,从而使DNA损伤导致的细胞凋亡减少,提示HNRNPK可能在抗凋亡及肿瘤细胞中避免凋亡的过程中发挥重要作用[41]。Chen等[3]在鼻咽癌的研究中发现HNRNPK通过调节下游的抗凋亡基因发挥抗凋亡活性,证明了HNRNPK能与抗凋亡基因FLIP的启动子结合并导致其转录激活。结直肠癌的研究中发现长链非编码RNA CASC11通过与HNRNPK相互作用,激活WNT/β-catenin通路,从而促进结直肠癌细胞的生长及转移[42]。

3.3HNRNPK与肿瘤耐药

近些年发现HNRNPK可能与肿瘤细胞的耐药性具有相关性。Eder等[43,44]在恶性黑色素瘤细胞中发现,MAPK通路的活性与HNRNPK的表达具有相关性,射线处理NRAS突变的黑色素瘤细胞后HNRNPK呈剂量依赖性升高并向胞浆聚集,从而导致细胞对放射治疗耐受,靶向抑制HNRNPK的表达与丝裂原活化的细胞外信号调节激酶(mitogen-activated extracellular signal-regulated kinase,MEK)抑制剂对细胞的凋亡促进作用相符,MEK抑制剂能下调HNRNPK的表达,从而与射线联用可以显著增加细胞凋亡及促进放疗敏感性;其在结直肠癌细胞的研究中发现类似的结果,KRAS突变的结直肠癌细胞,射线处理后HNRNPK快速上调,从而导致细胞放疗耐受,MEK抑制剂处理后能下调HNRNPK的表达,从而增强放疗敏感性。HNRNPK在AML耐药的患者骨髓中以及耐药的细胞系中均高表达,靶向抑制HNRNPK的表达能够逆转耐药的细胞对阿霉素的化疗耐受性,另外还发现HNRNPK可能通过调节细胞自噬参与了阿霉素耐受的过程[45]。肺癌细胞系H1299经过肿瘤坏死因子相关凋亡诱导配体(tumor necrosis factor-related apoptosis-inducing ligand,TRAIL)处理后,HNRNPK从胞核向胞浆转移,并在胞浆中与GSK3β相互作用,并抑制其第9位丝氨酸的磷酸化,从而稳定c-FLIP蛋白,导致细胞对TRAIL产生耐受[46]。

3.4HNRNPK与肿瘤治疗

近些年也有研究者发现一些药物成分能够靶向HNRNPK发挥抑瘤效果。印度人参的乙醇提取物能够选择性的杀伤肿瘤细胞活性,且能在体内、外发挥抗肿瘤转移、侵袭及抗肿瘤血管生成的作用;进一步通过生物信息学和生物化学系列研究方法发现印度人参乙醇提取物通过下调转移相关蛋白HNRNPK、VEGF及基质金属蛋白酶发挥抗肿瘤转移及血管生成的作用[47]。国内学者也有研究发现一种怒江藤黄提取物中的化合物,通过促进泛素化蛋白酶体依赖的HNRNPK降解下调HNRNPK的水平,进而诱导细胞周期阻滞,从而发挥抗肿瘤的作用[48]。

4 总结和展望

HNRNPK在肿瘤的发生发展过程中发挥多种细胞学功能,鉴于目前的研究成果,仍然很难确定HNRNPK是否可以作为一个肿瘤发生发展过程中的驱动基因。HNRNPK在肿瘤的发生发展过程中的作用很有可能依赖于组织类型或微环境,包括其募集结合的RNA、DNA和蛋白。HNRNPK在大部分肿瘤中高表达,且与患者的预后呈负相关,但因其缺乏组织特异性限制了其作为肿瘤诊断标记物的可能,另外缺少可以检测其表达丰度的检测方法;因此仍需要进一步的研究HNRNPK作为潜在肿瘤标记物的可能性。HNRNPK敲除小鼠模型提示HNRNPK缺失与小鼠的生长发育相关,完全缺失导致小鼠胚胎致死,HNRNPK的单倍剂量不足也能导致小鼠的生长发育缺陷,同时易发血液恶性肿瘤及淋巴瘤,说明HNRNPK可能在血液系统恶性肿瘤或淋巴瘤中扮演抑癌基因的角色。因此很有必要开发系统过表达HNRNPK的转基因小鼠模型,以观察HNRNPK过表达对肿瘤发生发展的作用,同时也能开发HNRNPK过表达依赖的靶向药物。综上所述,虽然关于HNRNPK的研究报道很多,但若想全面了解其在肿瘤发生发展中的作用,仍有很多的工作需要开展。

[1] Mishra A, Brat DJ, Verma M. P53 tumor suppression network in cancer epigenetics [J]. Methods Mol Biol, 2015, 1238: 597-605.

[2] Carpenter B, McKay M, Dundas SR, et al. Heterogeneous nuclear ribonucleoprotein K is over expressed, aberrantly localised and is associated with poor prognosis in colorectal cancer [J]. Br J Cancer, 2006, 95(7): 921-927.

[3] Chen LC, Chung IC, Hsueh C, et al. The antiapoptotic protein, FLIP, is regulated by heterogeneous nuclear ribonucleoprotein K and correlates with poor overall survival of nasopharyngeal carcinoma patients [J]. Cell Death Differ, 2010, 17(9): 1463-1473.

[4] Ciarlo M, Benelli R, Barbieri O, et al. Regulation of neuroendocrine differentiation by AKT/hnRNPK/AR/β-catenin signaling in prostate cancer cells [J]. Int J Cancer, 2012, 131(3): 582-590.

[5] Wen F, Shen A, Shanas R, et al. Higher expression of the heterogeneous nuclear ribonucleoprotein K in melanoma [J]. Ann Surg Oncol, 2010, 17(10): 2619-2627.

[6] Wu CS, Chang KP, Chen LC, et al. Heterogeneous ribonucleoprotein K and thymidine phosphorylase are independent prognostic and therapeutic markers for oral squamous cell carcinoma [J]. Oral Oncol, 2012, 48(6): 516-522.

[7] Yang R, Zeng Y, Xu H, et al. Heterogeneous nuclear ribonucleoprotein K is overexpressed and associated with poor prognosis in gastric cancer [J]. Oncol Rep, 2016, 36(2): 929-935.

[8] Gallardo M, Lee HJ, Zhang X, et al. hnRNP K is a haploinsufficient tumor suppressor that regulates proliferation and differentiation programs in hematologic malignancies [J]. Cancer Cell, 2015, 28(4): 486-499.

[9] Siomi H, Matunis MJ, Michael WM, et al. The pre-mRNA binding K protein contains a novel evolutionarily conserved motif [J]. Nucleic Acids Res, 1993, 21(5): 1193-1198.

[10] Chkheidze AN, Liebhaber SA. A novel set of nuclear localization signals determine distributions of the αCP RNA-binding proteins [J]. Mol Cell Biol, 2003, 23(23): 8405-8415.

[11] Barboro P, Ferrari N, Balbi C. Emerging roles of heterogeneous nuclear ribonucleoprotein K (hnRNP K) in cancer progression [J]. Cancer Lett, 2014, 352(2): 152-159.

[12] Choi HS, Hwang CK, Song KY, et al. Poly(C)-binding proteins as transcriptional regulators of gene expression [J]. Biochem Biophys Res Commun, 2009, 380(3): 431-436.

[13] Tomonaga T, Levens D. Heterogeneous nuclear ribonucleoprotein K is a DNA-binding transactivator [J]. J Biol Chem, 1995, 270(9): 4875-4881.

[14] Uribe DJ, Guo K, Shin YJ, et al. Heterogeneous nuclear ribonucleoprotein K and nucleolin as transcriptional activators of the vascular endothelial growth factor promoter through interaction with secondary DNA structures [J]. Biochemistry, 2011, 50(18): 3796-3806.

[15] Moumen A, Masterson P, O’Connor MJ, et al. hnRNP K: an HDM2 target and transcriptional coactivator of p53 in response to DNA damage [J]. Cell, 2005, 123(6): 1065-1078.

[16] Enge M, Bao W, Hedström E, et al. MDM2-dependent downregulation of p21 and hnRNP K provides a switch between apoptosis and growth arrest induced by pharmacologically activated p53 [J]. Cancer Cell, 2009, 15(3): 171-183.

[17] Shnyreva M, Schullery DS, Suzuki H, et al. Interaction of two multifunctional proteins. Heterogeneous nuclear ribonucleoprotein K and Y-box-binding protein [J]. J Biol Chem, 2000, 275(20): 15498-15503.

[18] Revil T, Pelletier J, Toutant J, et al. Heterogeneous nuclear ribonucleoprotein K represses the production of pro-apoptotic Bcl-xS splice isoform [J]. J Biol Chem, 2009, 284(32): 21458-21467.

[19] Cyphert TJ, Suchanek AL, Griffith BN, et al. Starvation actively inhibits splicing of glucose-6-phosphate dehydrogenase mRNA via a bifunctional ESE/ESS element bound by hnRNP K [J]. Biochim Biophys Acta, 2013, 1829(9): 905-915.

[20] Bomsztyk K, Van Seuningen I, Suzuki H, et al. Diverse molecular interactions of the hnRNP K protein [J]. FEBS Lett, 1997, 403(2): 113-115.

[21] Lynch M, Chen L, Ravitz MJ, et al. hnRNP K binds a core polypyrimidine element in the eukaryotic translation initiation factor 4E (eIF4E) promoter, and its regulation of eIF4E contributes to neoplastic transformation [J]. Mol Cell Biol, 2005, 25(15): 6436-6453.

[22] Yano M, Okano HJ,Okano H. Involvement of Hu and heterogeneous nuclear ribonucleoprotein K in neuronal differentiation through p21 mRNA post-transcriptional regulation [J]. J Biol Chem, 2005, 280(13): 12690-12699.

[23] Naarmann IS, Harnisch C, Flach N, et al. mRNA silencing in human erythroid cell maturation: heterogeneous nuclear ribonucleoprotein K controls the expression of its regulator c-Src [J]. J Biol Chem, 2008, 283(26): 18461-18472.

[24] Chang YI, Hsu SC, Chau GY, et al. Identification of the methylation preference region in heterogeneous nuclear ribonucleoprotein K by protein arginine methyltransferase 1 and its implication in regulating nuclear/cytoplasmic distribution [J]. Biochem Biophys Res Commun, 2011, 404(3): 865-869.

[25] Ostareck-Lederer A, Ostareck DH, Rucknagel KP, et al. Asymmetric arginine dimethylation of heterogeneous nuclear ribonucleoprotein K by protein-arginine methyltransferase 1 inhibits its interaction with c-Src [J]. J Biol Chem, 2006, 281(16): 11115-11125.

[26] Chen Y, Zhou X, Liu N, et al. Arginine methylation of hnRNP K enhances p53 transcriptional activity [J]. FEBS Lett, 2008, 582(12): 1761-1765.

[27] Pelisch F, Pozzi B, Risso G, et al. DNA damage-induced heterogeneous nuclear ribonucleoprotein K SUMOylation regulates p53 transcriptional activation [J]. J Biol Chem, 2012, 287(36): 30789-30799.

[28] Lee SW, Lee MH, Park JH, et al. SUMOylation of hnRNP-K is required for p53-mediated cell-cycle arrest in response to DNA damage [J]. EMBO J, 2012, 31(23): 4441-4452.

[29] Habelhah H, Shah K, Huang L, et al. Identification of new JNK substrate using ATP pocket mutant JNK and a corresponding ATP analogue [J]. J Biol Chem, 2001, 276(21): 18090-18095.

[30] The Cancer Genome Atlas Research Network. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia [J]. N Engl J Med, 2013, 368(22): 2059-2074.

[31] Ostareck-Lederer A, Ostareck DH, Cans C, et al. c-Src-mediated phosphorylation of hnRNP K drives translational activation of specifically silenced mRNAs [J]. Mol Cell Biol, 2002, 22(13): 4535-4543.

[32] Takimoto M, Tomonaga T, Matunis M, et al. Specific binding of heterogeneous ribonucleoprotein particle protein K to the human c-myc promoter,invitro[J]. J Biol Chem, 1993, 268(24): 18249-18258.

[33] Mandal M, Vadlamudi R, Nguyen D, et al. Growth factors regulate heterogeneous nuclear ribonucleoprotein K expression and function [J]. J Biol Chem, 2001, 276(13): 9699-9704.

[34] Nagano K, Masters JR, Akpan A, et al. Differential protein synthesis and expression levels in normal and neoplastic human prostate cells and their regulation by type I and II interferons [J]. Oncogene, 2004, 23(9): 1693-1703.

[35] Hong X, Song R, Song H, et al. PTEN antagonises Tcl1/hnRNPK-mediated G6PD pre-mRNA splicing which contributes to hepatocarcinogenesis [J]. Gut, 2014, 63(10): 1635-1647.

[36] Inoue A, Sawata SY, Taira K, et al. Loss-of-function screening by randomized intracellular antibodies: identification of hnRNP-K as a potential target for metastasis [J]. Proc Natl Acad Sci U S A, 2007, 104(21): 8983-8988.

[37] Gao R, Yu Y, Inoue A, et al. Heterogeneous nuclear ribonucleoprotein K (hnRNP-K) promotes tumor metastasis by induction of genes involved in extracellular matrix, cell movement, and angiogenesis [J]. J Biol Chem, 2013, 288(21): 15046-15056.

[38] Strozynski J, Heim J, Bunbanjerdsuk S, et al. Proteomic identification of the heterogeneous nuclear ribonucleoprotein K as irradiation responsive protein related to migration [J]. J Proteomics, 2015, 113: 154-161.

[39] Otoshi T, Tanaka T, Morimoto K, et al. Cytoplasmic accumulation of heterogeneous nuclear ribonucleoprotein K strongly promotes tumor invasion in renal cell carcinoma cells [J]. PLoS One, 2015, 10(12): e0145769.

[40] 陈艳, 李为民, 张尚福. hnRNP K在肺癌组织中的表达 [J]. 中国肺癌杂志, 2008, 11(2): 241-245.

[41] Yang JH, Chiou YY, Fu SL, et al. Arginine methylation of hnRNPK negatively modulates apoptosis upon DNA damage through local regulation of phosphorylation [J]. Nucleic Acids Res, 2014, 42(15): 9908-9924.

[42] Zhang Z, Zhou C, Chang Y, et al. Long non-coding RNA CASC11 interacts with hnRNP-K and activates the WNT/β-catenin pathway to promote growth and metastasis in colorectal cancer [J]. Cancer Lett, 2016, 376(1): 62-73.

[43] Eder S, Lamkowski A, Priller M, et al. Radiosensitization and downregulation of heterogeneous nuclear ribonucleoprotein K (hnRNP K) upon inhibition of mitogen/extracellular signal-regulated kinase (MEK) in malignant melanoma cells [J]. Oncotarget, 2015, 6(19): 17178-17191.

[44] Eder S, Arndt A, Lamkowski A, et al. Baseline MAPK signaling activity confers intrinsic radioresistance toKRAS-mutantcolorectal carcinoma cells by rapid upregulation of heterogeneous nuclear ribonucleoprotein K (hnRNP K) [J]. Cancer Lett, 2017, 385: 160-167.

[45] Zhang J, Liu X, Lin Y, et al. HnRNP K contributes to drug resistance in acute myeloid leukemia through the regulation of autophagy [J]. Exp Hematol, 2016, 44(9): 850-856.

[46] Gao X, Feng J, He Y, et al. hnRNPK inhibits GSK3β Ser9 phosphorylation, thereby stabilizing c-FLIP and contributes to TRAIL resistance in H1299 lung adenocarcinoma cells [J]. Sci Rep, 2016, 6: 22999.

[47] Gao R, Shah N, Lee JS, et al. Withanone-rich combination of Ashwagandha withanolides restricts metastasis and angiogenesis through hnRNP-K [J]. Mol Cancer Ther, 2014, 13(12): 2930-2940.

[48] Zhang L, Feng J, Kong S, et al. Nujiangexathone A, a novel compound fromGarcinianujiangensis, suppresses cervical cancer growth by targeting hnRNPK [J]. Cancer Lett, 2016, 380(2): 447-456.

RecentprogressinresearchofheterogeneousnuclearribonucleoproteinKrelatedwithtumorpathogenesisandprogression

HUANG Hao, YANG Xing-jiu, Li Meng-yuan, ZHU Rui-min, GAO Ran*

(Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS) & Comparative Medicine Center, Peking Union Medical College (PUMC); Key Laboratory of Human Diseases Comparative Medicine, National Health and Family Planning Commission of P.R.C, Beijing 100021, China)

Over the past few decades, the classification of oncogenes or tumor suppressor genes has been an important topic in cancer biology. However, it is difficult to classify some genes. Heterogeneous nuclear ribonucleoprotein K (HNRNPK) is a nucleic acid-binding protein, which is involved in the regulation of gene expression, signal transduction and many other cellular processes. In recent years, it has been found that HNRNPK is overexpressed in many types of tumors, and its overexpression is negatively correlated with the prognosis of patients, suggesting that HNRNPK may play a role as an oncogene in tumorigenesis. In contrast, however, HNRNPK has also been considered as a tumor suppressor gene in acute myeloid leukemia (AML). Therefore, in this article we summarize and discuss the recent progress in the molecular functions and regulatory mechanisms of HNRNPK in tumorigenesis and progression.

Heterogeneous nuclear ribonucleoprotein K, HNRNPK; Tumors; Molecular functions

协和青年科研基金(编号:3332016078);中央级公益性科研院所基本业务费(编号:2016RC310012)。

黄昊(1986 -),男,助理研究员,研究方向:实验动物肿瘤模型。E-mail: huanghao@cnilas.org

高苒(1980 -),女,副研究员,研究方向:比较医学、实验动物模型的开发及应用。E-mail: gaoran@cnilas.org

R-33

A

1671-7856(2017) 11-0100-06

10.3969.j.issn.1671-7856. 2017.11.021

2017-01-09

猜你喜欢

肿瘤发生癌基因磷酸化
T69E模拟磷酸化修饰对Bcl-2与Nur77相互作用的影响
GDM孕妇网膜脂肪组织中Chemerin的表达与IRS-1及其酪氨酸磷酸化分析
突变p53在肿瘤发生过程中的功能研究与进展
microRNA与肿瘤发生关系的研究进展
长链非编码RNA AFAP1—AS1的过表达对胃癌细胞增殖和迁移的影响
癌基因敲除可完全抑制肺癌发生
磷酸化肽富集新方法研究进展
MAPK抑制因子对HSC中Smad2/3磷酸化及Smad4核转位的影响
抑癌基因WWOX在口腔肿瘤的研究进展
促癌基因与抑癌基因