APP下载

固有免疫在HBV感染发病和治疗中的作用

2017-01-13屈晓晶张璐李明慧谢尧

中华实验和临床病毒学杂志 2017年1期
关键词:宿主抗病毒细胞因子

屈晓晶 张璐 李明慧 谢尧

100015 北京,首都医科大学附属北京地坛医院肝病中心肝病二科,北京市医院管理局重点医学专业发展计划

·综述·

固有免疫在HBV感染发病和治疗中的作用

屈晓晶 张璐 李明慧 谢尧

100015 北京,首都医科大学附属北京地坛医院肝病中心肝病二科,北京市医院管理局重点医学专业发展计划

乙型肝炎病毒(HBV)感染的发病机制是宿主免疫系统和HBV之间复杂的相互作用,宿主免疫系统包括固有免疫和适应性免疫。现在认为,宿主对病毒及其蛋白的免疫反应是决定病毒清除、感染慢性化和肝细胞损伤的主要因素。固有免疫是宿主对抗病毒感染的第一道防线,但许多研究显示HBV可以逃避固有免疫识别、干扰固有免疫信号通路并介导免疫抑制。对固有免疫在HBV感染过程中的作用和状态研究有助于开发新的治疗方法,以达到根除HBV。本文对固有免疫反应的模式识别受体(PRRs)、树突状细胞(DCs)、自然杀伤(NK)细胞/自然杀伤T(NKT)细胞、调节性T细胞(Tregs)和干扰素(IFNs)的近期研究进展进行了综述。

Fund programs: Beijing Science and Technology Commission Major Project (D121100003912001)

HBV感染是一项全球范围内的公共健康问题,尽管乙肝疫苗已经广泛应用并且针对乙型肝炎具备有效的抗病毒治疗,全球仍有2.4亿慢性乙型肝炎(Chronic hepatitis B, CHB)患者[1],一般认为HBV不直接对肝脏造成损伤,其发病机制为宿主免疫系统和病毒之间复杂的相互作用[2,3]。一般认为适应性免疫反应的细胞毒性T淋巴细胞(CTLs)在清除HBV方面起非常重要的作用,但有研究显示HBV特异性T细胞的功能缺陷可能是病毒不能被清除的主要原因[2]。固有免疫作为宿主对抗病毒感染的第一道防线,近年来越来越多的受到人们重视。固有免疫反应的重要组成成分包括模式识别受体(Pattern-recognition receptors, PRRs)、树突状细胞(Dendritic cells, DCs)、自然杀伤(Natural killer, NK)细胞/自然杀伤T(Natural killer T, NKT)细胞、调节性T细胞(T regulatory cells, Tregs)和干扰素(Interferons, IFNs)[4,5],在HBV感染发病和治疗中起非常重要的作用。

HBV可以逃避、破坏和激活宿主免疫系统,因此不同HBV感染者的临床结局不同。首先,HBV本身可以逃避固有免疫的识别并抑制免疫反应。早期实验发现,在感染初期,HBV不会被固有免疫识别,更不会激活固有免疫反应,因为研究未发现干扰素基因的改变[4,6]。其次,HBV除了能逃避免疫系统识别,病毒及其蛋白还可以介导免疫抑制。如HBV表面抗原(Hepatitis B surface antigen,HBsAg)可抑制DCs、NKT等多种免疫细胞[7,9,10]固有免疫反应是对抗HBV感染的重要环节,但HBV对其各个环节的抑制可能是导致HBV感染慢性化的原因。因此,研究固有免疫和HBV之间的相互作用,有助于解析HBV感染的具体发病机制,从而有助于研发有效的免疫治疗新药物。

1 PRRs

PRRs主要分布于固有免疫细胞表面,可通过识别病原体相关分子模式(Pathogen-associated molecular patterns, PAMPs)激活固有免疫反应,促进抗病毒和促炎细胞因子分泌,而且有助于启动适应性免疫[11]。PRRs主要包括toll样受体(Toll-like receptors, TLRs),比如表达于细胞表面的TLR1/2/4/5/6/11/12及表达于内涵体的TLR3/7/9;细胞质受体比如核苷酸结合寡聚化结构域样受体(Nucleotide-binding oligomerization domain-like receptors, NLRs)及维甲酸诱导基因-I样受体(Retinoic acid inducible gene-I like receptors, RLRs)和内质网跨膜蛋白STING[12,13]。HBV转基因小鼠实验证实,静脉注射TLR3/4/5/7/9特异性配体可以促进IFN-α/β分泌,有效控制HBV复制[14]。TLR7激动剂GS-9620短期、有限治疗可以在CHB土拨鼠模型上介导持久的抗病毒反应[15]。TLR3的激活促进IFN-β产生,而且TLR4和TLR2信号激活肝细胞内通路比如MAPK和PI-3 K/Akt也可促进IFN分泌,这些在控制HBV复制方面有重要意义[16]。

宿主对抗HBV感染离不开PRRs,但许多研究显示HBV及其蛋白如HBsAg、HBeAg抑制PRRs的表达,减弱其介导的抗病毒作用。HepaRG细胞系研究表明,HBV通过TLR3和维甲酸诱导基因-I(Retinoic acid inducible gene-I, RIG-I)/黑色素瘤变异相关基因5(Melanoma differentiation-associated gene 5, MDA5)信号通路抑制早期固有免疫,导致一些抗病毒和促炎细胞因子基因表达下调[17]。针对HBV感染者的研究指出,HBsAg抑制TLR9介导的浆细胞样树突状细胞(Plasmacytoid DC, pDC)的激活和分泌IFN-α能力[9]。HBeAg能抑制Toll/白介素(Interleukin, IL)-1受体(TIR)和IL-1β介导的炎性转录因子例如核因子(Nuclear factor, NF)-κB的激活,并抑制NF-κB和IFN-β启动子活性[18]。HBV及其蛋白对PRRs的抑制,可能导致固有免疫不能被及时激活,导致HBV感染长期存在。

2 DCs

DCs是重要的抗原提呈细胞(Antigen presenting cells, APC),对启动适应性免疫反应起着关键性作用,根据其来源不同可分为:髓样DC(Myeloid dendritic cells,mDC)主要分泌IL-12/IL-15和浆细胞样DC(Plasmacytoid dendritic cells, pDC),主要大量分泌Ⅰ型IFN[19]。早期研究发现,CHB患者DCs共刺激分子表达下调,细胞因子分泌能力受损。机制可能为:HBV和HBsAg废除胞嘧啶-磷酸盐-鸟嘌呤(cytosine-phosphate-guanine, CpG)-A/TLR9介导的IFN-α基因转录;病毒样颗粒(Virus-like Particles, VLPs),比如 HBV外膜小S蛋白(HBsAgS)损害pDC分泌IFN-α能力;DC表型耐受基因的产生[20-22]。但最近研究发现,无论体内观察还是体外刺激,HBV携带者循环总DCs、mDC和pDC的频数和功能都未改变[23]。然而,与非活动HBsAg携带者相比,免疫耐受期患者pDC上CD80/CD86表达显著下调[24]。另一项研究得出类似结果,在慢性HBV感染,mDC和pDC的频数和功能没有改变,但pDC分泌的IFN-α减少[25]。产生不同结果的原因可能与宿主免疫状态、抗病毒治疗等有关,但更大的可能为DCs的状态决定着宿主对HBV的免疫反应。另外,自体HBsAg激活的DC和细胞因子介导的杀伤(Cytokine-induced killer, CIK)细胞回输CHB患者,可以有效降低病毒载量[26],这可作为CHB治疗的新策略。总之,HBV与DCs在宿主的相互作用还需进一步探讨。

3 NK/NKT细胞

NK细胞是固有免疫的主要效应细胞,在清除病原体和异常细胞方面有重要的作用,根据其表面CD56的密度不同可分为CD56bright和CD56dim群。CD56dim群主要表达穿孔素,发挥直接细胞毒作用;CD56bright群主要通过分泌免疫调节细胞因子如IFN-γ、肿瘤坏死因子α(Tumor necrosis factor-α, TNF-α)、转化生长因子β(Transforming growth factor, TGF-β)、粒细胞-巨噬细胞集落刺激因子(Granulocyte-macrophage colony-stimulating factor, GM-CSF)和IL-10发挥作用[27]。

NK细胞虽然是固有免疫的主要效应细胞,但在清除HBV的同时,也会造成肝细胞损伤,对临床结局起决定性作用。研究显示,免疫清除期患者NK细胞CD69和CD107表达上调,分泌IFN-γ和TNF-α增加,而且NK细胞活性的增强与肝脏损伤呈正相关[28]。HBsAg转基因小鼠实验也证明,NK细胞和其分泌IFN-γ引起肝脏损伤[29]。

一项急性HBV感染研究显示,CD56+CD3-NK和CD56+CD3+NKT细胞在HBV感染早期阶段能快速发挥抗病毒作用,并及时地触发适应性免疫[30]。然而CHB患者NK细胞似乎受到抑制,导致病毒不能被清除。无论HBV感染的小鼠还是患者,NK细胞上抑制性受体NKG2A表达均上调,这可能与肝内调节性CD4+CD25+T细胞分泌的IL-10增加有关。而且,小鼠体内阻断NKG2A表达可以激活NK细胞,有助于HBV清除[31]。研究显示,在慢性HBV感染患者,外周血NK细胞的数量和细胞毒活性不改变,但其分泌细胞因子(如IFN-γ和TNF-α)能力受损[32,33].。然而,HBV相关慢加急性肝衰竭(HBV-ACLF)患者NK细胞上激活受体NKG2D、NKp30、NKp44和NKp46表达上调,CD56brightCD16-群频数增加,但细胞毒性CD56dimCD16bright群频数和功能均降低[34],这可能是CD56dimCD16brightNK细胞的耗竭所致,也可能是受到自体的保护性抑制。在HBV感染发病过程中,似乎是激活的NK细胞损伤肝细胞,而肝细胞损伤又诱导抑制性细胞因子产生,反过来抑制NK细胞的活性,从而减轻肝脏损伤,但这种抑制也使NK细胞的清除病毒能力减弱。NK细胞的这些改变是HBV直接作用还是HBV介导的细胞因子间接作用,亦或是NK细胞的耗竭所致仍需进一步探讨。

NKT细胞是T淋巴细胞里较特殊的一群,既表达NK细胞标记物CD56又表达T细胞受体CD3,识别主要组织相容性复合体Ⅰ类分子(MHC class I-like molecule)提成的脂类抗原。NKT细胞可分为Ⅰ型和Ⅱ型NKT 细胞。Ⅰ型NKT细胞又叫经典NKT或恒定NKT(Invariant NKT, iNKT)细胞表达恒定的T细胞受体α(TCR-α),占肝脏总NKT细胞的95%;Ⅱ型NKT细胞表达多种TCR,占肝脏总NKT 细胞的5%[35]。激活的iNKT细胞可以分泌大量的细胞因子如IFN-γ、TNF-α、IL-4、IL-13、IL-17等和细胞毒性介质如穿孔素。NKT细胞和NK细胞一样,在HBV感染早期被激活,在控制病毒复制和触发适应性免疫反应有重要作用[26]。

实验证明,非经典NKT细胞上NKG2D和其配体介导HBV转基因小鼠的急性肝损伤,阻断NKG2D和其配体结合,可以阻止非经典NKT细胞介导的急性肝炎和肝损伤[36]。在小鼠研究,iNKT细胞可以优先增强CD8α+DC群分泌Ⅰ型IFN的能力[37]。

NKT细胞和NK细胞在抗HBV感染方面的作用基本一致,但NKT细胞似乎表现出不一样的抑制肝脏再生和促纤维化作用。小鼠研究表明受损的肝脏再生能力可因为NKT细胞而不是NK细胞的耗竭而明显改善,阻断CD1d-NKT细胞作用可以有效提升肝细胞再生能力,显示NKT细胞抑制肝脏再生能力。NKT细胞分泌IL-4、IL-13、hedgehog配体和骨桥蛋白,促进肝纤维化,而NK细胞却能早期选择性的杀伤或加快肝星形细胞(Hepatic stellate cell, HSCs)衰老,并分泌IFNγ,从而抑制肝纤维化[38]。NK和NKT细胞在乙肝疫苗接种方面也起着重要作用。[39]。

4 Tregs

CD4+CD25+Tregs分泌抑制性细胞因子如IL-10和TGF-β,保持对自身和外部抗原的免疫耐受,许多研究证实CD4+CD25+Tregs与HBV感染的免疫耐受密切相关[40]。但也有报道,与健康对照和痊愈的HBV感染者相比,CHB患者CD4+CD25+Tregs数量显著升高,且这种升高与病毒载量一致[41,42],在HBV相关肝衰竭患者也发现Tregs显著升高[43],小鼠实验也得出类似结果,CD4+Foxp3+Tregs通过增加TGF-β分泌和增强枯否细胞分泌IL-10对抗polyI:C/d-GalN介导的爆发性肝炎[44]。Tregs上膜结合TGF-β(mTGF-β)和OX40的表达上调可以抑制NK细胞介导的肝细胞损伤[45]。Tregs在抑制免疫介导的肝损伤的同时,同样会抑制免疫细胞的抗病毒作用,导致HBV不能被清除。比如Tregs抑制HBV抗原介导的单核细胞增殖和分泌IFN-γ能力[46]。CD4+CD25+Tregs分泌的IL-10抑制NK细胞和CD8+ T细胞的抗病毒作用[47]。转基因鼠实验指出,热休克蛋白gp96可以一定程度上减少Tregs数量,提升抗病毒免疫[48],间接证明Tregs对免疫细胞的抑制作用。Tregs在HCV感染的研究却得到不同结果,Tregs上PD-1的表达水平与适应性免疫造成的损伤程度相关[49],CD4+FoxP3+Treg的大量激活可以使感染局部化,而且可能限制肝纤维化进展[50]。所以,Tregs在HBV感染中作用还需进一步研究。

5 IFNs

IFNs主要分为I型IFN(IFN-α和IFN-β)、Ⅱ型IFN(IFN-γ)和Ⅲ型(IFN-λ1、2和3),发挥着抗病毒、调节免疫、抑制增殖和抗肿瘤等作用。IFN-α主要由pDC产生,mDC也可产生IFN-α。大多数细胞在接触病原体后会产生IFN-β。I型IFN可以影响dsRNA依赖蛋白酶R(dsRNA-dependent protein kinase R, PKR)、2'5'腺苷酸合成酶(2'5'adenylatesynthetase, 2'5'OAS))系统和Mx蛋白等,在病毒生命周期的各个阶段发挥抗病毒作用[9]。I型IFN可以提升NK细胞的活性,上调MHC表达,影响T细胞和B细胞的发育并调控DC功能。IFN-γ主要由T细胞产生,也可以由NK和NKT细胞产生,发挥免疫调节的作用。IFN-λ由细胞毒性T淋巴细胞(Cytotoxic T-lymphocytes, CTLs)产生,可抑制HBV复制,其作用的分子机制与IFN-α类似[51]。

研究发现,HCV感染的黑猩猩大量干扰素调节基因(IFN regulated genes,IRG)被快速唤起,然而急性HBV感染的黑猩猩并没有发现固有免疫相关基因的改变[52,53],作者认为HBV不触发固有免疫反应可能是因为HBV在感染初期表现为隐形病毒角色。敲除IFN-λ和IFN-α/β受体的小鼠,HBV复制水平明显比正常小鼠高[54],证实了这些细胞因子在控制HBV复制的重要作用。但许多研究发现HBV感染过程IFN反应受到抑制。TLR刺激实验证明,CHB患者NK细胞产生IFN-γ能力受损。在HBV转基因小鼠NKT细胞的频数降低,产生IFN-γ能力也受损[55,56]。出现这些现象的原因可能为HBV及其蛋白介导的免疫抑制。HBeAg可能通过IL-18抑制NK细胞产生IFN-γ的能力[57]。HBV可能通过IL-8启动子的表观遗传调控激活IL-8基因表达,IL-8反过来降低HBV对IFN-α的敏感性[58]。

IFN-α可以通过表观遗传调控(如激活IRG),还可以加强固有免疫和适应性免疫发挥抗病毒作用,因此被广泛用于抗HBV治疗。一项研究显示,Peg-IFNα治疗可以早期激活DCs,使CD56brightNK细胞大量扩增,增强CD56dimNK细胞活性和功能,而且使辅助性T细胞Th1和Th1定向的HBV特异性CD4/CD8T细胞频数增加[59]。有研究发现,替诺福韦(Tenofovirdisoproxilfumarate, TDF)早期使HBV复制的降低可以增强Peg-IFNα对固有免疫的激活[60],强调了对基线HBV载量高患者联合治疗的必要性。研究显示,NK细胞的激活限制CD8+T细胞免疫反应,增加免疫损伤,使感染慢性化,但I型IFN的治疗可以保护NK细胞对CD8+T细胞的这种限制[61,62]。

对于IFN-λ的研究相对较少,但因其与IFN-α类似的抗病毒机制,受到越来越多的关注。早期研究提示,IFN-λ用于治疗两个HBV感染的人类肝细胞衍生细胞系,虽然两个细胞系IFN-λ受体的表达和IFN-λ介导的抗病毒蛋白水平相似,但只有一个细胞系的HBV受抑制,所以认为IFN-λ在人体抗HBV作用可能有限[63]。最近一项临床研究显示,IFN-λ治疗HBeAg(+)CHB患者早期HBV DNA和HBsAg的下降程度比IFN-α治疗组更明显,两组的48周HBeAg血清学转换率相似,但治疗后续的HBeAg血清学转换率不如IFN-α高,而且与IFN-α相比,IFN-λ的副反应相对更大[64]。

6 小结

虽然许多固有免疫成分有强有力的抗病毒作用,但HBV本身或者通过干扰信号通路和介导抑制性细胞因子产生等策略抑制固有免疫成分,造成固有免疫反应不能被激活,适应性免疫不能及时触发,HBV感染持续存在。而消除这些抑制可部分重塑固有免疫反应,有助于HBV的清除。总之,宿主和HBV之间的免疫反应是一个复杂的过程,了解其具体机制有助于未来免疫治疗新策略的研发。

[1] Ott JJ, Stevens GA, Groeger J, et al. Global epidemiology of hepatitis B virus infection: new estimates of age-specific HBsAg seroprevalence and endemicity[J]. Vaccine, 2012,30(12): 2212-2219. doi:10.1016/j.vaccine.2011.12.116.

[2] Bauer T, Sprinzl M, Protzer U. Immune control of hepatitis B virus[J]. Dig Dis, 2011, 29(4): 423-433. doi: 10.1159/000329809.

[3] Pollicino T,Koumbi L. Role natural killer group 2D-ligand interactions in hepatitis B infection[J]. World J Hepatol, 2015, 7(6): 819-824. doi: 10.4254/wjh.v7.i6.819.

[4] Zou, Wang L, Wang K, et al. Innate immune targets of hepatitis B virus infection[J]. World J Hepatol, 2016, 8(17): 716-725. doi: 10.4254/wjh.v8.i17.716.

[5] Busca A, Kumar A. Innate immune responses in hepatitis B virus (HBV) infection[J]. Virol J, 2014,11: 22. doi: 10.1186/1743-422X-11-22.

[6] Chang KM, Liu M. Chronic hepatitis B: immune pathogenesis and emerging immunotherapeutics[J]. Curr Opin Pharmacol, 2016, 30: 93-105. doi:10.1016/j.coph.2016.07.013.

[7] Kondo Y, Ninomiya M, Kakazu E, et al. Hepatitis B surface antigen could contribute to the immunopathogenesis of hepatitis B virus infection[J]. ISRN Gastroenterol, 2013, 2013: 935295. doi. 10.1155/2013/935295.

[8] Yang Y, Han Q, Zhang C, et al. Hepatitis B virus antigens impair NK cell function[J]. Int Immunopharmacol, 2016, 38: 291-297. doi: 10.1016/j.intim2016. 06.015.

[9] Xu Y, Hu Y, Shi B, et al. HBsAg inhibits TLR9-mediated activation and IFN-alpha production in plasmacytoid dendritic cells[J]. Mol Immunol, 2009, 46(13): 2640-2646. doi: 10.1016/j. molimm.2009.04.031.

[10] Boni C, Laccabue D, Lampertico P, et al. Restored function of HBV-specific T cells after long-term effective therapy with nucleos(t)ide analogues[J]. Gastroenterology, 2012, 143(4):963-973. doi:10.1053/j.gastro.2012.07.014.

[11] Ma Z, Zhang E, Yang D, et al. Contribution of Toll-like receptors to the control of hepatitis B virus infection by initiating antiviral innate responses and promoting specific adaptive immuneresponses[J]. Cell Mol Immunol, 2015, 12(3): 273-282. doi: 10.1038/cmi.2014.112.

[12] Takeuchi O, Akira S. Pattern recognition re ceptors and inflammation[J]. Cell, 2010, 140(6): 805-820. doi: 10.1016/j.cell.2010.01.022.

[13] Guo F, Han Y, Zhao X, et al. STING agonists induce an innate antiviral immune response against hepatitis B virus[J]. Antimicrob Agents Chemother, 2015, 59(2):1273-1281.

[14] Isogawa M, Robek MD, Furuichi Y, et al. Toll-like receptor signaling inhibits hepatitis B virus replication in vivo[J]. J Virol, 2005, 79(11):7269-7272.

[15] Menne S, Tumas DB, Liu KH, et al. Sustained efficacy and seroconversion with the Toll-like receptor 7 agonist GS-9620 in the Woodchuck model of chronic hepatitis B[J]. J Hepatol, 2015, 62(6): 1237-1245. doi: 10.1016/j.jhep.2014.12.026.

[16] Zhang E, Lu M. Toll-like receptor (TLR)-mediated innate immune responses in the control of hepatitis B virus (HBV) infection[J]. Med MicrobiolImmunol, 2015, 204(1): 11-20. doi: 10.1007/s00430-014-0370-1.

[17] Luangsay S, Gruffaz M, Isorce N, et al. Early inhibition of hepatocyte innate responses by hepatitis B virus[J]. J Hepatol, 2015, 63(6): 1314-1322. doi: 10.1016/j.jhep.2015.07.014.

[18] Wilson R, Warner N, Ryan K, et al. The hepatitis B e antigen suppresses IL-1β-mediated NF-κB activation in hepatocytes[J]. J Viral Hepat, 2011, 18(10): 499-507. doi: 10.1111/j.1365-2893. 2011.01484.x.

[19] Lambotin M, Raghuraman S, Stoll-Keller F, et al. A look behind closed doors: interaction of persistent viruses with dendritic cells[J]. Nat Rev Microbiol, 2010, 8(5): 350-360.

[20] van der Molen RG, Sprengers D, Binda RS, et al. Functional impairment of myeloid and plasmacytoid dendritic cells of patients with chronic hepatitis B[J]. Hepatology, 2004, 40(3):738-746

[21] Woltman AM, Op Den Brouw ML, Biesta PJ, et al. Hepatitis B virus lacks immune activating capacity, but actively inhibits plasmacytoid dendritic cell function[J]. PLoS One, 2011, 6(1): e15324. doi: 10.1371/journal.pone.0015324.

[22] Moffat JM, Cheong WS, Villadangos JA, et al. Hepatitis B virus-like particles access major histocompatibility class I and II antigen presentation pathways in primary dendritic cells[J]. Vaccine, 2013, 31(18): 2310-2316. doi: 10.1016/j.vaccine.2013.02.042.

[23] Tavakoli S, Mederacke I, Herzog-Hauff S, et al. Peripheral blood dendritic cells are phenoltypically and functionally intact in chronic hepatitis B virus (HBV) infection[J]. Clin Exp Immunol, 2008, 151(1):61-70. doi: 10.1111/j.1365-2249.2007.03547.x.

[24] Lin C, Zou H, Wang S. Hepatitis B e antigen seroconversion is related with the function of dendritic cells in chronic hepatitis B virus infection[J]. Gastroenterol Res Pract, 2014, 2014: 413952. doi: 10.1155/2014/413952.

[25] Gehring AJ, Ann D’Angelo J. Dissecting the dendritic cell controversy in chronic hepatitis B virus infection[J]. Cell MolImmunol, 2015, 12(3): 283-291. doi: 10.1038/cmi.2014.95.

[26] Ma YJ, He M, Han JA, et al. A clinical study of HBsAg-activated dendritic cells and cytokine-induced killer cells during the treatment for chronic hepatitis B[J]. Scand J Immunol, 2013, 78(4): 387-393. doi: 10.1111/sji.12097.

[27] Ratnam DT, Sievert W, Visvanathan K. Natural killer cells display impaired responses to toll like receptor 9 that support viral persistence in chronic hepatitis B[J]. Cell Immunol, 2012, 279(1): 109-115. doi: 10.1016/j.cellimm.2012.09.005.

[28] Zheng Q, Zhu YY, Chen J, et al. Activated natural killer cells accelerate liver damage in patients with chronic hepatitis B virus infection[J]. Clin Exp Immunol, 2015, 180(3): 499-508. doi: 10.1111/cei.12597.

[29] Chen Y, Sun R, Jiang W, et al. Liver-specific HBsAg transgenic mice are over-sensitive to Poly(I:C)-induced liver injury in NK cell-and IFN-gamma-dependent manner[J]. J Hepatol, 2007, 47(2): 183-190. doi: 10.1016/j.jhep.2007.02. 020.

[30] Fisicaro P, Valdatta C, Boni C, et al. Early kinetics of innate and adaptive immune responses during hepatitis B virus infection[J]. Gut, 2009, 58(7): 974-982. doi: 10.1136/gut.2008.163600.

[31] Li F, Wei H, Wei H, et al. Blocking the natural killer cell inhibitory receptor NKG2A increases activity of human natural killer cells and clears hepatitis B virus infection in mice[J]. Gastroenterology, 2013, 144(2): 392-401. doi: 10.1053/j.gastro.2012.10.039.

[32] Yang Y, Han Q, Hou Z, et al. Exosomes mediate hepatitis B virus (HBV) transmission and NK-cell dysfunction[J]. Cell Mol Immunol, 2016, 13: 1-11. doi: 10.1038/cmi.2016.24.

[33] Tjwa ET, van Oord G W, Hegmans JP, et al. Viral load reduction improves activation and function of natural killer cells in patients with chronic hepatitis B[J]. J Hepatol, 2011, 54(2): 209-218. doi: 10.1016/j.jhep.2010.07.009.

[34] Liu F, Duan X, Wan Z, et al. Lower number and decreased function of natural killer cells in hepatitis B virus related acute-on-chronic liver failure[J]. Clin Res Hepatol Gastroenterol, 2016, 40(5): 605-613. doi: 10.1016/j.clinre.2016.01.004.

[35] Gao B, Radaeva S. Natural killer and natural killer T cells in liver fibrosis[J]. Biochimica Et Biophysica Acta, 2013: 1061-1069. doi.org/10.1016/j.bbadis.2012.09.008.

[36] Vilarinho S, Ogasawara K, Nishimura S, et al. Blockade of NKG2D on NKT cells prevents hepatitis and the acute immune response to hepatitis B virus[J]. Proc Natl Acad Sci USA, 2007, 104(46): 18187-18192. doi: 10.1073/pnas.0708968104.

[37] Joyee AG, Uzonna J,Yang X. Uzonna and X. Yang, Invariant NKT cells preferentially modulate the function of CD8 alpha+ dendritic cell subset in inducing type 1 immunity against infection[J]. J Immunol, 2010, 184(4): 2095-2106. doi: 10.4049/jimmunol.0901348.

[38] Dong Z, Zhang J, Sun R, et al. Impairment of liver regeneration correlates with activated hepatic NKT cells in HBV transgenic mice[J]. Hepatology, 2007, 45(6): 1400-1412. doi: 10.1002/hep.21597.

[39] Albarran B, Goncalves L, Salmen S, et al. Profiles of NK, NKT cell activation and cytokine production following vaccination against hepatitis B[J]. APMIS, 2005, 113(7-8):526-535.

[40] Li HJ, Zhai NC, Song HX, et al. The role of immune cells in chronic HBV infection[J]. J Clin Transl Hepatol, 2015 3(4): 277-283. doi: 10.14218/JCTH.2015.00026.

[41] Kondo Y, Shimosegawa T. Significant roles of regulatory T cells and myeloidderived suppressor cells in hepatitis B virus persistent infection and hepatitis B virus-related HCCs[J]. Int J Mol Sci, 2015, 16(2):3307-3322. doi: 10.3390/ijms 16023307.

[42] Xu D, Fu J, Jin L, et al. Circulating and liver resident CD4 + CD25+ regulatory T cells actively influence the antiviral immune response and disease progression in patients with hepatitis B[J]. J Immunol, 2006, 177(1):739-747.

[43] Dong X, Gong Y, Zeng H, et al. Imbalance between circulating CD4(+) regulatory T and conventional T lymphocytes in patients with HBV-related acute-on-chronic liver failure[J].Liver Int, 2013, 33(10):1517-1526.doi:10.1111/liv.12248.

[44] Hou X, Song J, Su J, et al. CD4(+)Foxp3(+) Tregs protect against innate immune cell-mediated fulminant hepatitis in mice[J]. Mol Immunol, 2015, 63(2): 420-427. doi: 10.1016/j.molimm.2014.09.015.

[45] Chen Y, Song J, Su J, et al. CD4+CD25+ regulatory T cells inhibit natural killer cell hepatocytotoxicity of hepatitis B virus transgenic mice via membrane-bound TGF-beta and OX40[J]. J Innate Immun, 2016, 8(1): 30-42. doi: 10.1016/j. molimm.2014.09.015.

[46] Peng G, Li S, Wu W, et al. Circulating CD4+ CD25+ regulatory T cells correlate with chronic hepatitis B infection[J]. Immunology, 2008, 123(1):57-65.

[47] Kondo Y, Ueno Y, Ninomiya M, et al. Sequential immunological analysis of HBV/HCV co-infected patients during Peg-IFN/RBV therapy[J]. J Gastroenterol, 2012, 47(12):1323-1335. doi: 10.1007/s00535-012-0596-x.

[48] Wang S, Qiu L,Liu G, et al. Heat shock protein gp96 enhances humoral and T cell responses, decreases Treg frequency and potentiates the anti-HBV activity in BALB/c and transgenic mice[J]. Vaccine, 2011, 29(37): 6342-6351. doi: 10.1016/j.vaccine.2011.05.008.

[49] Shen T, Zheng J, Liang H, et al. Characteristics and PD-1 expression of peripheral CD4+CD127loCD25hiFoxP3+ Treg cells in chronic HCV infected-patients[J]. Virol J, 2011, 8: 279. doi: 10.1186/1743-422X-8-279.

[50] Claassen MA, de Knegt RJ, Tilanus HW, et al. Abundant numbers of regulatory T cells localize to the liver of chronic hepatitis C infected patients and limit the extent of fibrosis[J]. J Hepatol, 2010, 52(3): 315-21. doi: 10.1016/j.jhep.2009.12.013.

[51] Nicole E, Pagliaccetti Esther N, Chu Christopher R, et al. Lambda and alpha interferons inhibit hepatitis B virus replication through a common molecular mechanism but with different in vivo activities[J]. Virology, 2010, 401(2): 197-206. doi:10.1016/j.virol.2010.02.022.

[52] Su AI, Pezacki JP, Wodicka L, et al. Genomic analysis of the host response to hepatitis C virus infection[J]. Proc Natl Acad Sci USA, 2002, 99(24):15669-15674.

[53] Wieland S, Thimme R, Purcell RH, et al. Genomic analysis of the host response to hepatitis B virus infection[J]. Proc Natl Acad Sci USA, 2004, 101(17):6669-6674.

[54] M Jegaskanda S, Ahn SH, Skinner N, et al. Downregulation of interleukin-18-mediated cell signaling and interferon gamma expression by the hepatitis B virus e antigen[J]. J Virol, 2014, 88(18): 10412-10420. doi:10.1128/JVI.00111-14.

[55] Ratnam DT, Sievert W, Visvanathan K. Natural killer cells display impaired responses to toll like receptor 9 that support viral persistence in chronic hepatitis B[J]. Cell Immunol, 2012, 279(1):109-115. doi:10.1016/j.cellimm.2012.09.005.

[56] Wang XF, Lei Y, Chen M, et al. PD-1/PDL1 and CD28/CD80 pathways modulate natural killer T cell function to inhibit hepatitis B virus replication[J]. J Viral Hepat, 2013, 20 Suppl 1: 27-39. doi: 10.1111/jvh.12061.

[57] McClary H, Koch R, Chisari FV, et al. Relative sensitivity of hepatitis B virus and other hepatotropic viruses to the antiviral effects of cytokines[J]. J Virol, 2000, 74(5):2255-2264.

[58] Pollicino T, Bellinghieri L,Restuccia A, et al. Hepatitis B virus (HBV) induces the expression of interleukin-8 that in turn reduces HBV sensitivity to interferon-alpha[J]. Virology, 2013, 444(1-2): 317-28. doi: 10.1016/j.virol.2013.06.028.

[59] Bruder Costa J,Dufeu-Duchesne T,Leroy V, et al. Pegylated Interferon alpha-2a Triggers NK-Cell Functionality and Specific T-Cell Responses in Patients with Chronic HBV Infection without HBs Ag Seroconversion[J]. PLoS One, 2016, 11(6): e0158297. doi: 10.1371/journal.pone. 0158297.

[60] Tan AT, Hoang LT, Chin D, et al. Reduction of HBV replication prolongs the early immunological response to IFNalphatherapy[J]. J Hepatol, 2014, 60(1): 54-61. doi: 10.1016/j. jhep.2013.08.020.

[61] Lang PA, Lang KS, Xu HC, et al. Natural killer cell activation enhances immune pathology and promotes chronic infection by limiting CD8+ T-cell immunity[J]. Proc Natl Acad Sci USA, 2012, 109(4): 1210-5. doi:10.1073/pnas.1118834109.

[62] Xu HC, Grusdat M, Pandyra AA, et al. Type I interferon protects antiviral CD8+ T cells from NK cell cytotoxicity[J]. Immunity, 2014, 40(6): 949-960. doi:10.1016/j.immuni.2014.05.004.

[63] Hong SH, Cho O, KimaK, et al. Effect of interferon-lambda on replication of hepatitisB virus in human hepatoma cells[J]. Virus Res, 2007, 126(1-2): 245-249. doi:10.1016/j.virusres. 2007.03.006.

[64] Chan HL, Ahn SH, Chang TT, et al.Peginterferon lambda for the treatment of HBeAg-positive chronic hepatitis B: A randomized phase 2b study (LIRA-B)[J]. J Hepatology, 2016, 64(5):1011-1019. doi.10.1016/j.jhep.2015.12. 018.

The roll of innate immunity in the pathogenesis and treatment of HBV infectionQu

Xiaojing,ZhangLu,LiMinghui,XieYao

SecondDivisionofLiverDiseasesCenter,BeijingDitanHospital,CapitalMedicalUniversity,BeijingMunicipalAdministrationofHospitalsClinicalMedicineDevelopmentofSpecialFunding,Beijing100015,ChinaCorrespondingauthor:XieYao,Email:xieyao00120184@sina.com

Objective The pathogenesis of HBV infection is the result of a complex interactions between the host immune system and the virus, the host immune system involves innate immune and adaptive immune. Now, it is thought that host immune responses to viral particles and proteins are important factors that determine whether HBV is cleared or persists and hepatocytes injured. Innate immune system is the first defending line of host against viral infection. However, many studies have shown that HBV can develop tactics to escape innate immune recognition and interfere with innate immune signaling pathways and induce immunosuppression. It is necessary to analysis the functions and status of host innate immunity in HBV infection which may contribute to find novel approaches to eliminate HBV. This review will present the current understanding of innate immune components including pattern-recognition receptors(PRRs)、dendritic cells(DCs)、natural killer(NK)/natural killer T(NKT)cells、T regulatory cells(Tregs) and interferons(IFNs).

Hepatitis B virus; Host; Innate immunity; Immunosuppression

北京市科学技术委员会重大项目(D121100003912001)

谢尧,Email:xieyao00120184@sina.com

10.3760/cma.j.issn.1003-9279.2017.01.018

肝炎病毒,乙型;宿主;固有免疫;免疫抑制

2016-11-08)

猜你喜欢

宿主抗病毒细胞因子
慢性乙型肝炎抗病毒治疗是关键
成人HPS临床特征及多种细胞因子水平与预后的相关性
抗流感 抗病毒 抓住黄金48小时
乙肝病毒携带者需要抗病毒治疗吗?
抗GD2抗体联合细胞因子在高危NB治疗中的研究进展
病原体与自然宿主和人的生态关系
龟鳖类不可能是新冠病毒的中间宿主
桑叶中1-脱氧野尻霉素的抗病毒作用研究进展
抓住自然宿主
细胞因子在慢性肾缺血与肾小管-间质纤维化过程中的作用