APP下载

2.45 GHz柔性可穿戴织物天线的设计与研究

2016-12-29许德成田小建郭小辉

关键词:聚苯胺导电织物

许德成,田小建,郭小辉,刘 微

(1.吉林大学电子科学与工程学院,吉林 长春 130012;2.吉林师范大学信息技术学院,吉林 四平 136000;3.合肥工业大学电子科学与应用物理学院,安徽 合肥 230009)

2.45 GHz柔性可穿戴织物天线的设计与研究

许德成1,2,田小建1,郭小辉3,刘 微2

(1.吉林大学电子科学与工程学院,吉林 长春 130012;2.吉林师范大学信息技术学院,吉林 四平 136000;3.合肥工业大学电子科学与应用物理学院,安徽 合肥 230009)

基于柔性织物基体石墨烯/聚苯胺填充PDMS制备柔性导电复合材料,提出一种工作于2.45 GHz的柔性织物天线,旨在提升人体中心通信系统中柔性天线的穿戴舒适性.阐述柔性织物天线的拓扑结构、制备流程及性能特点,通过尺寸优化可实现2.45 GHz中心频率处实测回波损耗为-22.6 dB,-10 dB带宽为165 MHz,增益方向图与仿真结果保持良好的一致性,同时,建立的天线接近人体模型,研究了天线距人体组织不同位置处SAR值及辐射性能.提出的柔性织物天线及制备方法为可穿戴设备无线通信中柔性天线的设计提供了一种解决方案.

柔性天线;织物天线;石墨烯;聚苯胺;可穿戴

随着人体中心通信技术的快速发展,穿戴式电子产品逐渐普及,具备柔性、可形变、易穿戴特点的新型天线成为无线体域网(Wireless Body Area Network,WBAN)中研究的热点之一[1].

近些年,以PDMS[2-3]、PET[4]、聚四氟乙烯玻璃纤维[1]等柔性基体及银纳米颗粒[5]、银纳米线[3]、碳纳米管[6]、ITO[7]、铜箔[8-9]等为导电材料制备柔性可穿戴天线取得了良好效果.上述基体虽具有良好的柔性,却存在不易集成于衣服、穿戴舒适性差等弊端,为提升新型柔性天线的穿戴舒适度,基于织物质软、透气、可清洗、易于与穿戴式系统集成等优势[10],以织物为基体,通过在其表面印刷微带天线拓扑结构并制备柔性织物天线成为可穿戴天线的一种发展趋势[5,11-12].具有二维平面结构的石墨烯因其光学透明、优良的电学性能和机械性能被应用于传感器[13]、天线[14-15]等研究领域中.

微带天线在兼备天线性能的同时,还具备低剖面、易共形、体积小等优点[16],在可穿戴天线研究领域中具备重要的研究意义和广阔的应用前景.本文以织物为柔性基体,选用石墨烯与聚苯胺填充PDMS(Polydimethylsiloxane)制备柔性导电贴片与接地平面,设计一款工作于2.45 GHz的柔性可穿戴织物微带天线.

1 织物天线设计

1.1 天线拓扑结构

图1为本文提出柔性可穿戴织物天线的拓扑结构及尺寸参数示意图,选用石墨烯和聚苯胺制备高导电性辐射贴片与接地平面,并基于丝网印刷技术在丁尼布织物两面制备织物微带天线.依据传输线模型及丁尼布的特性参数(介电常数εr=1.68,损耗角tanδ=0.03[17-18]),对柔性织物天线进行优化设计.

图1 柔性织物天线拓扑结构及尺寸参数示意图

1.2 织物天线制备

柔性可穿戴织物天线的制备流程如图2所示,在质量分数为30%的石墨烯和30%的聚苯胺中加入适量分散剂并进行超声分散(VCY-300,上海研永)30 min,然后加入一定固化比例的PDMS,使用磁力搅拌机(FDWTC-D型,上海复旦天欣科教仪器有限公司)均匀搅拌30 min以制备石墨烯/聚苯胺/PDMS复合导电材料.

图2 柔性织物天线制备流程示意图

依据图1中柔性织物天线拓扑结构和尺寸参数信息,制备掩模板并成型,使用环氧型导电银胶(YC-01,南京喜力特胶黏剂有限公司)将SMA插座与馈电面连接以备天线性能表征.使用ST-2258C型多功能数字式四探针测试仪(苏州晶格电子有限公司)测试石墨烯/聚苯胺/PDMS复合导电材料的方阻约为48.3 Ω.图3为提出柔性可穿戴织物天线的实物图,该织物微带天线具备良好的柔性,为穿戴舒适度提供了保障.

图3 柔性可穿戴织物天线实物图

2 织物天线仿真与测试

利用电磁仿真软件HFSS对提出的柔性可穿戴织物微带天线进行性能仿真优化,并完成天线样品制备,使用矢量网络分析仪(ZNB8,Rohde & Schwarz)测试织物天线的特性.柔性可穿戴织物微带天线的回波损耗仿真与实测结果如图4所示.由图4可知,在中心频率2.45 GHz处实测其仿真与实测回波损耗分别为-36.2和-22.6 dB,-10 dB 带宽约165 MHz,满足工程要求.

图4 柔性织物天线回波损耗仿真与实测结果

天线方向图是表征天线辐射特性与空间角度关系的图形[19],为验证本文提出柔性可穿戴织物天线在2.45 GHz处中心频率的辐射特性,在暗室中对该柔性可穿戴织物天线进行远场参数测试(如图5和6所示).从图5和6可以看出,其XOZ与YOZ平面的方向图仿真结果与实测结果保持良好的一致性,验证了所提出柔性可穿戴织物天线的可行性.

图5 XOZ平面仿真与实测增益方向图

图6 YOZ平面仿真与实测增益方向图

柔性织物天线面向穿戴式系统应用,通常采用比吸收率(Specific Absorption Ratio,SAR)定量衡量天线辐射能量对人体组织的影响,局部SAR的计算公式为

(1)

其中σ为导电率,E为电场强度的均方根值,ρ为人体组织密度.文献[18,20]给出了2.45 GHz时三层人体组织模型(包括皮肤、脂肪和肌肉)的电磁参数,在HFSS下建立如图7所示的天线接近人体模型.

图7 HFSS下三层人体组织模型

改变天线与人体表面的距离参数(h为1,3和5 mm),并进行如图8所示(选取h=3 mm)的SAR仿真分析,表1给出了h取不同值时1 g人

图8 SAR仿真结果

体组织的最大SAR值,随着h增加,其SAR值逐渐降低,均小于1.6 W/kg的标准.

表1 不同距离下的SAR值

图9为2.45 GHz工作频率下天线模型与人体组织模型在不同距离下的回波损耗仿真结果,当天线与人体组织模型较近时,其中心频率会发生轻微偏移,然而,其-10 dB带宽、回波损耗等性能仍能满足要求.

图9 天线距离人体不同位置时的回波损耗

3 结论

基于柔性织物和石墨烯/聚苯胺/PDMS复合导电材料提出了一种柔性织物微带天线,提升了柔性天线的穿戴舒适性.介绍了织物天线的拓扑结构、制备流程以及性能特点,可实现2.45 GHz 中心频率处实测回波损耗为-22.6,-10 dB带宽为165 MHz,增益方向图与仿真结果保持良好的一致性.通过建立的天线接近人体模型,研究了人体对天线性能的影响.仿真结果显示SAR低于1.6 W/kg的标准,为可穿戴天线提供了一种实现方法.

[1] YANG H L,YAO W,YI Y,et al. A dual-band low-profile metasurface-enabled wearable antenna for WLAN devices[J]. Progress In Electromagnetics Research C,2016,61:115-125.

[2] HUANG G W,XIAO H M,FU S Y. Wearable electronics of silver-nanowire/poly (dimethylsiloxane) nanocomposite for smart clothing[J]. Scientific Reports,2015,5:1-9.

[3] SONG L,MYERS A C,ADAMS J J,et al. Stretchable and reversibly deformable radio frequency antennas based on silver nanowires[J]. ACS Applied Materials & Interfaces,2014,6(6):4248-4253.

[4] BETANCOURT D,CASTAN J. Printed antenna on flexible low-cost pet substrate for uhf applications[J]. Progress In Electromagnetics Research C,2013,38:129-140.

[5] STEMPIEN Z,RYBICKI E,RYBICKI T,et al. Inkjet-printing deposition of silver electro-conductive layers on textile substrates at low sintering temperature by using an aqueous silver ions-containing ink for textronic applications[J]. Sensors and Actuators B:Chemical,2016,224:714-725.

[6] ZAHIR H,WOJKIEWICZ J L,ALEXANDER P,et al. Design fabrication and characterisation of polyaniline and multiwall carbon nanotubes composites-based patch antenna[J]. IET Microwaves,Antennas & Propagation,2016,10(1):88-93.

[7] LEE C,KIM I,KIM Y,et al. Fabrication and analysis of flexible and transparent antenna on polyamide substrate for laptop computer[J]. Journal of the Korea Academia-Industrial Cooperation Society,2014,15(7):4457-4462.

[8] 程春霞,张福顺. 柔性微带天线设计与研究[J]. 微波学报,2014,30(4):25-28,44.

[9] MORO R,AGNEESSENS S,ROGIER H,et al. Wearable textile antenna in substrate integrated waveguide technology[J]. Electronics Letters,2012,48(16):985-987.

[10] XIAOHUI GUO,YING HUANG,XIA CAI,et al. Capacitive wearable tactile sensor based on smart textile substrate with carbon black/silicone rubber composite dielectric[J].Measurement Science and Technology,2016,27(4):045105.

[11] LI Y,TORAH R,BEEBY S,et al. Fully direct-write dispenser printed dipole antenna on woven polyester cotton fabric for wearable electronics applications[J]. Electronics Letters,2015,51(17):1306-1308.

[12] 杨福慧,杜成珠. 基于三维织物的四元阵纺织天线[J]. 电子元件与材料,2014,33(7):52-54.

[13] ZHU B,NIU Z,WANG H,et al. Microstructured graphene arrays for highly sensitive flexible tactile sensors[J]. Small,2014,10(18):3625-3631.

[14] HUANG X,LENG T,ZHANG X,et al. Binder-free highly conductive graphene laminate for low cost printed radio frequency applications[J]. Applied Physics Letters,2015,106(20):203105.

[15] VOLMAN V,ZHU Y,RAJI A R O,et al. Radio-frequency-transparent,electrically conductive graphene nanoribbon thin films as deicing heating layers[J]. ACS Applied Materials & Interfaces,2013,6(1):298-304.

[16] KURUP D,JOSEPH W,VERMEEREN G,et al. Specific absorption rate and path loss in specific body location in heterogeneous human model[J]. IET Microwaves,Antennas & Propagation,2013,7(1):35-43.

[17] RIZWAN M,RAHMAT-SAMII Y,UKKONEN L. Circularly polarized textile antenna for 2.45 GHz[C]//RF and Wireless Technologies for Biomedical and Healthcare Applications (IMWS-BIO),2015 IEEE MTT-S 2015 International Microwave Workshop Series on, Phoenix:IEEE,2015:21-22.

[18] TAHIR F A,JAVED A. A compact dual-band frequency-reconfigurable textile antenna for wearable applications[J]. Microwave and Optical Technology Letters,2015,57(10):2251-2257.

[19] KAMYSHNY A,MAGDASSI S. Conductive nanomaterials for printed electronics[J]. Small,2014,10(17):3515-3535.

[20] 刘宁. 人体中心网络可穿戴天线及传播特性研究[D]. 北京:北京邮电大学,2012.

(责任编辑:石绍庆)

Design and research of flexible wearable textile antenna for 2.45 GHz

XU De-cheng1,2, TIAN Xiao-jian1, GUO Xiao-hui3, LIU Wei2

(1.College of Electronic Science and Engineering,Jilin University,Changchun 130012,China;2.College of Information Technology,Jilin Normal University,Siping 136000,China;3.School of Electronic Science & Applied Physics,Hefei University of Technology,Hefei 230009,China)

In order to improve the wearing comfort of body centric wireless network,a flexible textile antenna based on graphene/PANI/PDMS composites and fabric flexible substrate was proposed in this paper for 2.45 GHz. The geometry and dimensions of the proposed antenna were illustrated and optimized; and the measured reflection coefficient and -10 dB bandwidth achieved -22.6 dB and 165 MHz,respectively. The radiating properties were also characterized and the measured results showed a good correlation with the simulated results. Meanwhile,the SAR under different distances was also studied based on phantom model in HFSS with three-layer tissue. The proposed antenna and preparation methods provide a feasible solution to the design of flexible antenna for wearable wireless communication system.

flexible antenna;textile antenna;grapheme;PANI;wearable

1000-1832(2016)04-0088-04

10.16163/j.cnki.22-1123/n.2016.04.019

2016-08-02

国家自然科学基金资助项目(61305082).

许德成(1977—),男,博士研究生,讲师,主要从事传感器、嵌入式控制系统、微波与天线技术等研究.

TP 391.9 [学科代码] 520·60

A

猜你喜欢

聚苯胺导电织物
无Sn-Pd活化法制备PANI/Cu导电织物
《纺织品织物折痕回复角的测定》正式发布
竹纤维织物抗菌研究进展
导电的风筝
聚苯胺-氧化铁磁性复合材料的制备及其对甲基橙吸附性能的应用
CPS导电回路电动斥力的仿真计算
聚苯胺导电复合材料研究进展
织物柔软剂的香气发展趋势
一种硅基导电橡胶
聚苯胺复合材料研究进展