APP下载

新疆麦后复播大豆适宜滴灌量研究

2016-08-24张永强徐文修李亚杰彭姜龙苏丽丽胡春辉

植物营养与肥料学报 2016年4期
关键词:子粒特征值单株

张永强, 徐文修, 李亚杰, 张 娜, 彭姜龙, 苏丽丽, 胡春辉

(1 新疆农业大学农学院, 新疆乌鲁木齐 830052; 2 新疆农业科学院粮食作物研究所, 乌鲁木齐 830091)



新疆麦后复播大豆适宜滴灌量研究

张永强1,2, 徐文修1*, 李亚杰1, 张 娜1, 彭姜龙1, 苏丽丽1, 胡春辉1

(1 新疆农业大学农学院, 新疆乌鲁木齐 830052; 2 新疆农业科学院粮食作物研究所, 乌鲁木齐 830091)

复播大豆; 滴灌量; 干物质; 品质

新疆地处亚欧大陆腹地,气候干燥,降雨稀少,蒸发强烈,水资源匮乏,是我国典型的绿洲灌溉农业区,92.4%的耕地为灌溉农业,没有水就没有新疆的农业[1]。近年来,在全球气候急剧变化和温室效应剧增的背景下,北疆地区秋季气温也明显增高、 初霜期有所推迟,使该区一年两熟成为了可能[2]。北疆小麦常年播种面积在6.51×105hm2左右,占全疆的56.61%[3],是新疆小麦的主产区,小麦收获后仍有较为充足的光热资源,这为复播大豆提供了广阔的空间。然而,在小麦收获后正是春播玉米等作物需水高峰期,麦后复播大豆无疑会加重农业用水的紧张程度。因此,探索复播大豆的节水高产高效栽培技术,对北疆麦后复播大豆的大面积推广具有重要意义。

1 材料和方法

1.1试验区概况

1.2试验设计

采取单因素随机区组试验设计。共设4个灌水处理: 3000、 3600、 4200、 4800 m3/hm2, 分别以W1、 W2、 W3、 W4表示, 各处理均重复3次,共计12小区。小区面积18 m2,各小区进水口均有水表控制进水量,为防止水流外渗,不同小区间设置1 m宽的隔离带。大豆品种为黑河43,种植密度52.5×104plant/hm2,30 cm等行距播种(株距约6.3 cm),每小区播种12行,毛管采用1管2的铺设方式,毛管间距60 cm。播前结合整地,深施尿素75 kg/hm2,在开花期随水滴施尿素150 kg/hm2,结荚期、 鼓粒期各喷施KH2PO4一次,其他田间管理措施同当地常规方式。

根据复播大豆各生育时期需水特性及当地气候条件,设定各处理每次滴灌定额依次为375、 450、 525、 600 m3/hm2,全生育期共灌水8次,具体灌水量及分配时期见表1。

表1 各处理不同生育阶段滴灌量(m3/hm2)

1.3测试项目与方法

1.3.1 生育进程调查各处理达到四叶期、 初花期、 盛花期、 初荚期、 盛荚期、 鼓粒期、 鼓粒满期和成熟期的日期。

1.3.3 养分含量测定植株茎、 叶柄、 叶、 荚、 子粒样品用H2SO4-H2O2消煮,萘氏比色法测定氮,钒钼黄比色法测定磷,火焰光度计法测定钾[12]。

1.3.4 相关参数的计算 采用Logistic方程拟合复播大豆干物质及养分积累变化,

y=k/[1+e(a-bt)]

式中, y为复播大豆出苗后t天单株干物质(或养分)积累量(g/plant); t为大豆出苗后的天数(d); k表示复播大豆单株干物质(或养分)理论最大积累量(g/plant); a、 b为待定系数。

根据方程计算得到的几个特征值:

最快生长时间段的起始时间t1=[ln(ea)-1.317]/b, 终止时间t2=[ln(ea)+1.317]/b;

最大相对生长速率Vm=-bk/4, 最大相对生长速率出现时间tm=-a/b;

快速增长期持续的时间△t= t2-t1;

生长特征值GT指干物质(或养分)积累已达到最大积累量的65%以上,GT=Vm×△t。

1.3.5 产量及品质测定成熟后实收小区产量,实收前每小区分别随机选取连续的10株进行考种,调查单株有效荚数、 单株粒数、 单株粒重和百粒重。大豆子粒品质由农业部农产品质量监督检验测试中心测定,其中蛋白质含量用8400型全自动凯氏定氮仪测定,脂肪含量用索氏提取法测定。

试验数据采用Microsoft Excel 2003作图,用DPS 7.05 软件统计分析。

2 结果与分析

2.1滴灌量对复播大豆干物质积累的影响

表2 大豆地上部分干物质积累的Logistic模拟及其特征值

注(Note): t—出苗后天数Days after emergence; y—干物质积累量Dry matter accumulation; Vm—干物质积累最大速率Maximum rate of dry matter accumulation; tm—干物质积累最大速率出现时间Days for the maximum dry matter accumulation rate occurred; t1和t2分别为Logistic生长函数的两个拐点 t1and t2are two inflexions of the Logistic equations; △t—干物质快速积累持续天数Lasting days for the rapid dry matter accumulation; GT—快速积累生长特征值—Eigenvalues of the fast growth.

2.2滴灌量对复播大豆干物质分配的影响

表3 不同处理复播大豆各生育期干物质分配 (g/plant)

注(Note): 同一行中不同小写字母表示差异显著(P<0.05) Different small letters mean significant differences among the treatments (P<0.05).

2.3滴灌量对复播大豆养分吸收特征的影响

表4 复播大豆地上部氮素积累的模拟方程及特征值

注(Note): t—出苗后天数Days after emergence; y—氮积累量Nitrogen accumulation; Vm—氮最大积累速率Maximum N accumulation rate; tm—氮最大积累速率出现时间Days for maximum N accumulation rate occurred; t1和t2分别为Logistic生长函数的两个拐点 t1and t2are two inflexions of the Logistic equations; △t—氮快速积累持续天数Lasting days of rapid N accumulation; GT—快速积累生长特征值Eigenvalues of fast growth.

表5 复播大豆地上部磷素积累的模拟方程及特征值

注(Note): t—出苗后天数The days after emergence; y— P2O5积累量P2O5accumulation(mg/plant); Vm—磷最大积累速率Maximum P2O5accumulation rate; tm—磷最大积累速率出现时间Days for maximum P2O5accumulation rate occurred; t1和t2分别为Logistic生长函数的两个拐点—t1and t2are two inflexions of the Logistic equations; △t—磷快速积累持续天数Lasting days of rapid P2O5accumulation; GT—快速积累生长特征值Eigenralues of fast growth.

表6 复播大豆地上部钾素积累的模拟方程及特征值

注(Note): t—出苗后天数The days after emergence; y—K2O积累量K2O accumulation; Vm—钾最大积累速率Maximum K2O accumulation rate; tm—钾最大积累速率出现时间The time for maximum K2O accumulation rate occurred; t1和t2分别为Logistic生长函数的两个拐点—t1and t2are two inflexions of the Logistic equations, respectively; △t—钾快速积累持续天数Lasting days for rapid K2O accumulation; GT—快速积累生长特征值Eigenralues of fast growth.

2.4不同滴灌量对复播大豆蛋白质、 脂肪及产量的影响

由表7可知,各处理单株荚数、 单株粒数、 百粒重及产量均随着滴灌量的增加呈“先增后降”的变化趋势,各项指标均以灌水量4200 m3/hm2处理最高,比滴灌量最少的3000 m3/hm2处理单株荚数增加了17.83%,单株粒数增多了9.03%,百粒重高出8.34%,且均达到了显著差异水平(P<0.05); 但4200 m3/hm2处理与3600、 4800 m3/hm2两个处理间单株荚数、 单株粒数以及百粒重差异不显著。通过对滴灌量(x)和产量(y)的关系进行模拟可得: y=-0.000484x2+4.1360x-5217.7998,R2=0.9175,为开口向下的抛物线。其中以4200 m3/hm2处理的产量最高,为3741.23 kg/hm2,分别较3000、 3600和4800 m3/hm2三个处理增产30.42%、 13.98%和8.44%。

不同滴灌量处理,复播大豆子粒中蛋白质与脂肪含量呈负相关关系(r= -0.77),其中子粒中蛋白质的含量随着滴灌量的增大有增加的趋势,以4200 m3/hm2处理达到最大,为35.53%,比3000、 3600 m3/hm2分别高出4.50%和1.69%,滴灌量最大的4800 m3/hm2处理反而比4200 m3/hm2处理降低0.42%,差异不显著; 子粒中脂肪含量随滴灌量的增加而降低,3600、 4200、 4800 m3/hm2较滴灌量最小的3000 m3/hm2处理降幅依次为0.56%、 2.29%和5.26%。蛋脂总量以4200 m3/hm2处理最高为53.03%,比滴灌量最小的3000 m3/hm2处理高出1.98%,比滴灌量最大的4800 m3/hm2处理高出1.05%,处理间差异不显著。综上说明,适宜的滴灌量不仅可协调复播大豆产量构成因素间的关系,达到增加产量的目的,还能改善复播大豆子粒中蛋白质和脂肪的比例,提高蛋脂总含量。

表7 不同处理大豆蛋白质、 脂肪含量及产量

注(Note): 数据后不同小写字母表示处理间差异在5%水平显著 Values followed by different small letters mean significant different among treatments at 5% level.

3 讨论

大豆脂肪和蛋白质含量是品种遗传内在属性和外在生态环境共同作用的综合表现[18-19]。Piper等[20]研究表明,子粒中的蛋白质含量与脂肪含量呈负相关,张敬荣等[21]研究表明,春大豆在开花、 结荚及鼓粒期干旱,蛋白质含量均上升,脂肪含量及脂蛋总量则下降,这与本研究结论一致,但本研究还得出,子粒中蛋白质含量在滴灌量过小和滴灌灌量过大时均会受到影响,只有在适宜的滴灌量条件下才能获得较高的蛋白质含量。

4 结论

2)大豆各器官干物质积累变化不同,叶在结荚期达到最大,茎、 叶柄在鼓粒期达到最大; 荚、 子粒随着生育进程的推进而逐渐增大。茎、 叶、 叶柄、 荚及子粒最大值均以滴灌量为4200 m3/hm2最高。不同滴灌量只改变了单株各器官干物质总重,但对其在总干物重所占比例基本无影响。

3)大豆产量在滴灌量为4200 m3/hm2最高。子粒中蛋白质含量随着滴灌量的增加而增大,脂肪含量却随着滴灌量的增加而下降,二者呈显著负相关关系(r=-0.77)。

[1]张娜, 张永强, 唐江华, 等. 滴灌带配置方式对冬小麦生长及产量的影响[J]. 麦类作物学报, 2013, 33(6): 1197-1201.

Zhang N, Zhang Y Q, Tang J H,etal. Effect of drip irrigation layout on growth and yield of winter wheat[J]. Journal of Triticeae Crops, 2013, 33(6): 1197-1201.

[2]徐娇媚. 伊犁河谷气候变化及其对农业影响初探[D]. 乌鲁木齐: 新疆农业大学硕士学位论文, 2013.

Xu J M. Climate change in Ili River Basin and its influence on agriculture[D]. Urumqi: MS Thesis of Xinjiang Agricultural University, 2013.

[3]新疆统计年鉴[M]. 中国统计出版社, 2010.

Xinjiang statistical yearbook[M]. China Statistics Press, 2010.

[4]杨鹏辉, 李贵全, 郭丽, 等. 干旱协迫对不同抗旱大豆品种花荚期质膜透性的影响[J]. 干旱地区农业研究, 2003, 21(3): 127-129.

Yang P H, Li G Q, Guo L,etal. Effect of drought stress on plasma membrane permeality of different soybean varieties during flowering-poding stage[J]. Agricultural Research in the Arid Areas, 2003, 21(3): 127-129.

[5]徐淑琴, 宋军, 吴砚.大豆需水规律及喷灌模式探讨[J]. 节水灌溉, 2003, (3): 23-25.

Xu S Q, Song J, Wu Y. Discussion on water requirement law and sprinkle irrigation module of soybean[J]. Water Saving Irrigation, 2003, (3): 23-25.

[6]赵宏伟, 李秋祝, 魏永霞. 不同生育时期干旱对大豆主要生理参数及产量的影响[J]. 大豆科学, 2006, 25(3): 329-332.

Zhao H W, Li Q Z, Wei Y X. Effect of drought at different growth stages on main physiological parameters and yield on soybean[J]. Soybean Science, 2006, 25(3): 329-332.

[7]谢甫绨, 董钻. 不同生育期干旱对大豆生长和产量的影响[J]. 沈阳农业大学学报, 1994, 25(1): 13-16.

Xie P T, Dong Z. Effect of drought at different growth stages on growth and yield on soybean[J]. Journal of Shenyang Agricultural University, 1994, 25(1): 13-16.

[8]Sort N V. Effect of water logging on soybean critical growth stages[J]. Journal of Soil and Crops, 1995, 5(2): 141-144.

[9]王培武, 李治远, 礒田昭弘, 等. 新疆大豆生产及生态的研究I开花期缺水和遮光处理对大豆干物质生产及株型的影响[J]. 作物学报, 1995, 21(2): 396-403.

Wang P W, Li Z Y, Yi T Z H,etal. The study of soybean ecotypes and its production in Xinjiang I. The effect of shading and moisture stress on flowering and dry matter production on soybean ecotypes[J]. Acta Agronomica Sinica, 1995, 21(2): 396-403.

[10]李永孝, 崔如,丁发武, 等. 夏大豆植株氮磷钾含量与水肥的关系[J]. 作物学报, 1992, 18(6): 463-474.

Li Y X, Cui R, Ding F W,etal. Relationship between the contents of N, P, K and water supply and fertilizer in summer soybean[J]. Acta Agronomica Sinica, 1992, 18(6): 463-474.

[11]张娜, 张永强, 李大平, 等. 滴灌量对冬小麦光合特性及干物质积累过程的影响[J]. 麦类作物学报, 2014, 34(6): 795-801.

Zhang N, Zhang Y Q, Li D P,etal. Effect of drip irrigation amount on photosynthesis characteristics and dry matter accumulation of winter wheat[J]. Journal of Triticeae Crops, 2014, 34(6): 795-801.

[12]邹琦. 植物生理学实验指导[M]. 北京: 中国农业出版社, 2000.

Zhou Q. Handbook of plant physiological experiment[M]. Beijing: China Agriculture Press, 2000.

[13]Yan D C, Zhu Y, Wang S H, Cao W X. A quantitative knowledge-based model for designing suitable growth dynamics in rice[J]. Plant Production Science, 2006, 9(2): 93-105.

[14]任红玉, 崔振才, 沈能展, 等. 大豆干物质积累与水分动态变化的关系[J]. 中国油料作物学报, 2005, 27(3): 41-44.

Ren H Y, Cui Z C, Shen N Z,etal. Study on relationship between accumulation of dry matter and water at growth stages of soybean[J]. Chinese Journal of Oil Crop Sciences, 2005, 27(3): 41-44.

[15]周欣, 滕云, 王孟雪, 等. 东北半干旱区大豆水肥耦合效应盆栽试验研究[J]. 东北农业大学学报, 2007, 38 (4): 442-445.

Zhou X, Teng Y. Wang M X,etal. Effect of water and fertilizer coupling on soybean yield in northeast semiarid areas[J]. Journal of Northeast Agricultural University, 2007, 38(4): 442-445.

[16]汪德水. 旱地农田肥水关系原理与调控技术[M]. 北京: 中国农业科技出版社, 1995.

Wang D S. The principle and control technology of relationship between fertilizer and water on dryland[M]. Beijing: Chinese Agricultural Science and Technology Press, 1995.

[17]王朝辉,王兵,李生秀.缺水与补水对小麦氮素吸收及土壤残留氮的影响[J]. 应用生态学报, 2004, 15(8): 1339-1343.

Wang Z H, Wang B, Li X S. Influence of water deficit and supplemental irrigation on nitrogen uptake by winter wheat and nitrogen residual in soil[J]. Chinese Journal of Applied Ecology, 2004, 15(8): 1339-1343.

[18]董钻. 大豆栽培生理[M]. 北京: 中国农业出版, 1997.

Dong Z. Cultivation physiology of soybean.[M]. Beijing: China Agriculture Press, 1997.

[19]董钻. 大豆产量生理[M]. 北京: 中国农业出版, 2000. 172-192.

Dong Z. Yield physiology of soybean[M]. Beijing: China Agriculture Press, 2000. 172-192.

[20]Piper E L, Boote K J. Temperature and cultivar effects on soybean seed oil and protein concentrations[J]. Journal of the American Oil Chemists’ Society, 1999, 76(10): 1233-1241.

[21]张敬荣, 高继国, 李辰仁, 等. 开花至鼓粒期干旱对大豆籽粒化学品质的影响[J]. 大豆科学, 1996, 15(1): 84-90.

Zhang J R, Gao J G, Li C R,etal. The effect of dry condition from flowering to seeding stage on chemical composition in soybean[J]. Soybean Science, 1996, 15(1): 84-90.

Suitable drip irrigation amount for summer soybean sown after wheat in Xinjiang

ZHANG Yong-qiang1,2, XU Wen-xiu1*, LI Ya-jie1, ZHANG Na1, PENG Jiang-long1, SU Li-li1, HU Chun-hui1

(1CollegeofAgronomy,XinjiangAgriculturalUniversity,Urumqi,Xinjiang830052,China;2ResearchInstituteofGrainCrops,XinjiangAcademyofAgriculturalScience,Urumqi,Xinjiang830091,China)

【Objectives】 In order to ease pressure on agricultural water usage caused by the enlargement of winter wheat-summer soybean cropping system in northern Xinjiang, which exacerbated the contradiction between summer soybean and spring crop, this experiment was carried out to find out an appropriate amount of drip irrigation and provide a theoretical basis with water saving, and high yield and quality cultivation techniques for summer soybean. 【Methods】 The field experiment was conducted in summer soybean (Cultivar Heihe 43) field with 4 drip irrigations: 3000, 3600, 4200 and 4800 m3/hm2by using the randomized block experimental design,and the dry matter accumulation, distribution and nutrient absorption were observed. 【Results】 The results showed that the accumulation amounts of dry matter,N,P2O5and K2O in plants of summer soybean were fitted in the Logistic equations. The accumulation amounts of dry matter per plant of summer soybean were increased first and then decreased with the increasing of drip irrigation amounts, and the same as N, P2O5and K2O contents of summer soybean. The fastest accumulation rate of total dry matter of summer soybean was found from 49.5 to 53.0 d after the emergence with the maximum average accumulation rate of 0.48 g/(plant·d), and the rapid growth period of total dry matter accumulation was from 30.3 to 31.9 d. The fast accumulation rates of N, P2O5and K2O were from 47.1 to 49.9 d, from 44.8 to 45.1 d and from 44.6 to 46.1 d after the emergence,the rapid accumulation periods were from 31.7 to 36.4 d,from 22.2 to 22.4 d and from 28.7 to 31.46 d, respectively, and the average absorption rates were 26.35,8.15 and 9.30 mg/(plant·d). The relationship between the yield and drip irrigation amount at the heading stage could be fitted with a quadratic curve, and the highest yield of 3741.23 kg/hm2was in 4200 m3/hm2treatment, which was 30.42%, 13.98% and 8.44% higher than treatments of 3000, 3600 and 4800 m3/hm2, respectively. The fat content in seed was negatively correlated with protein content in seed, and the highest total content of protein and fat was in treatment of 4200 m3/hm2(53.03%).【Conclusions】 In the 4200 m3/hm2drip irrigation condition, sowing soybean was not only higher in the dry matter accumulation and yield, but also promoted the absorption of soybean plant nutrients and improved the total content of protein and fat in seed, achieving the purpose of high yield and water saving.

summer soybean; drip irrigation amount; dry matter; quality

2015-01-25接受日期: 2016-03-14

国家自然科学基金项目(31560372, 31260312)资助。

张永强(1988—), 男, 河南平舆人, 硕士, 主要从事作物高产栽培与生理研究。 E-mail: zyq988@yeah.net

E-mail: xjxwx@sina.com

S3443; S275.6

A

1008-505X(2016)04-1133-08

猜你喜欢

子粒特征值单株
通径分析在芸豆品种筛选中的应用探讨
小豆农艺性状与单株产量的相关性及通径分析
无为市太平山枫香树不同单株叶片性状多样性分析
一类内部具有不连续性的不定Strum-Liouville算子的非实特征值问题
一类带强制位势的p-Laplace特征值问题
基于一类特殊特征值集的扩散算子逆谱问题
单圈图关联矩阵的特征值
黄淮海区域7 个玉米品种的子粒脱水特性分析
福鼎大白茶有性系后代优良单株品比试验初报
长期不同施肥对南方黄泥田水稻子粒与土壤锌、硼、铜、铁、锰含量的影响