APP下载

Fe3O4磁性纳米粒子的制备及其表面修饰

2016-06-25朱广谦何青科刘长庚肖尚马曾盈

关键词:制备

朱广谦 何青科 刘长庚 肖尚马 曾盈

摘 要 Fe3O4磁性纳米粒子的生物相容性、表面易修饰及特殊磁学性质使其在催化、材料及生物医药等众多领域中广泛应用.本文介绍了溶胶-凝胶法、化学共沉淀法、高温分解法、微乳液法和水热法等合成Fe3O4磁性纳米粒子的方法,及利用无机材料、有机功能分子和高分子聚合物对Fe3O4磁性纳米粒子的修饰策略.

关键词 Fe3O4 磁性纳米粒子;制备;表面修饰

中图分类号 TB383;O643 文献标识码 A 文章编号 1000-2537(2016)03-0046-10

Abstract The biocompatibility, ease of surface modification, and excellence of magnetic properties make Fe3O4 magnetic nanoparticles very promising materials for diverse applications. In this review five main chemical synthesis approaches, sol-gel method, co-precipitation method, high-temperature decomposition method, micro emulsions method, and solvothermal method, were described. In addition, surface modification strategies by inorganic materials, organic functional molecules and polymers were also presented.

Key words Fe3O4 magnetic nanoparticles; synthesis; surface modification

磁性纳米材料在光、电、热、磁、敏感特性等方面表现出不同于常规材料的特性[1],近年来已应用于磁流体[2]、催化剂[3]、生物工程和生物医学[4]、磁共振成像[5-6]、磁记录材料[7]和环境保护[8-9]等众多领域.Fe3O4磁性纳米粒子具有超顺磁性、小尺寸效应、表面效应、量子隧道效应等优良特性[10].1925年Welo和Baudisch首次利用化学共沉淀法[11]制备了Fe3O4磁性纳米粒子,随后热分解法、微乳液法、水热合成法和溶胶-凝胶法等不同的制备方法也相继出现.制备粒径小且分布窄、磁性优良、表面性能稳定和生物相容性好的磁性纳米Fe3O4是目前研究主要目标.

1 Fe3O4磁性纳米粒子的制备

磁性纳米Fe3O4的性能因制备方法不同而各异,目前磁性纳米Fe3O4制备方法有物理法、微生物法和化学法.

磁性纳米Fe3O4的物理制备方法主要包括蒸发冷凝法和物理气相沉积法.蒸发冷凝法是运用激光加热、微波辐射、真空蒸发等方法使原料气化或形成等离子体,产物经骤冷、分离得到超细粒子.如通过激光诱导Fe(CO)5气相热解可制备Fe基纳米粒子[12].该方法所制备的粒子纯度高、结晶组织好、粒度分布均匀且可控,但其技术难度大,对设备的结构及材质要求高.物理气相沉积法广泛应用于纳米薄膜的制备,制备过程中薄膜沉积条件的控制非常重要,并以采用高溅射气压和低溅射过程为佳,可获得纳米结构的薄膜[13-14].

利用微生物Fe(Ⅲ)还原菌:厌氧杆菌属(如Thermoanaerobacter ethanolicus strain TOR 39)和希瓦氏菌属(如Shewanella loihica strain PV 4)在厌氧条件下可制备Fe3O4纳米粒子[15].微生物法制备Fe3O4纳米粒子,产量高,重现性好,成本低及能耗低.虽然微生物法制备的磁性纳米粒子表现出明显的优势,尤其在生物相容性方面,但该方法的缺点是细菌培养困难,粒子提取过程比较繁琐,所得粒子的粒径可控范围也比较受限制.

物理法和微生物法制备Fe3O4磁性纳米材料对设备的高要求和操作过程的繁琐限制了其应用,目前磁性Fe3O4纳米粒子的制备主要依赖于化学方法,大致包括: 溶胶-凝胶法、化学共沉淀法、高温分解法、微乳液法、水热法、流体注射法、电化学法和超临界流体法.本文简要介绍较常见的几种化学方法.

1.1 溶胶-凝胶法

溶胶-凝胶法又称化学溶液沉积法.在制备过程中,金属前体悬浮在多元醇溶液中,在加热搅拌下形成纳米粒子(NP),并缓慢变成溶解状态,形成中间体,然后分解形成金属晶核,进而生长为NP,NP表面原位包覆着具有亲水性的醇配体,使纳米粒子很容易地分散到水介质及其他极性溶剂中.在合成过程中表面活性剂的加入可以适当控制晶体的成核和生长,改变NP的表面形貌和表面电荷.溶胶-凝胶法采用金属醇盐作为原料,成本偏高,且凝胶化过程慢,合成周期长,还需高温煅烧,合成的粒径在亚微米尺度[16].

1.2 化学共沉淀法

水溶液中的化学共沉淀法是最简单有效的化学合成Fe3O4磁性纳米粒子的途径.该方法以NH3·H2O或NaOH为沉淀剂,加入到一定计量比的Fe3+和Fe2+金属盐溶液中,高速搅拌进行沉淀反应,析出不溶性的氢氧化物和水合氧化物,洗涤并脱水得到所需的磁性纳米粒子.其反应式是:

Fe2++ 2Fe3+ + 8OH-Fe3O4 +4H2O

利用该方法制备Fe3O4磁性纳米粒子的过程中,离子浓度、pH值、盐的种类(如高氯酸盐、氯化物、硫酸盐和硝酸盐等)、温度、碱的特性和浓度、表面活性剂等对合成的Fe3O4磁性粒子的大小、磁响应性和表面特性都有影响[17-18].共沉淀法合成的纳米粒子粒径小,表面能高,易团聚,难以达到单分散状态,需进行表面修饰提高纳米粒子的分散性.共沉淀法得到的Fe3O4纳米粒子表面吸附了大量的—OH,可以通过与Si—OH或—COOH等官能团反应形成Fe—O—Si或者Fe—O—C实现磁性纳米粒子的表面修饰和功能化.

1.3 高温分解法

高温分解法是通过在高沸点溶剂中加热分解有机金属化合物来制备纳米粒子的方法.涂志江等采用高温热分解无毒的乙酰丙酮铁(Fe(acac)3),以聚乙二醇、聚乙烯吡咯烷酮为修饰剂,制备了水溶液中分散性好的磁性Fe3O4纳米粒子.高温分解法制得的纳米颗粒结晶度高、粒径分布较窄,粒径大小可控[19].

1.4 微乳液法

微乳液法利用两种互补相溶的溶剂,在表面活性剂的作用下形成均匀的微乳液,使纳米颗粒的成核、生长等过程局限在一个微小的液滴内,在形成纳米颗粒的同时避免了颗粒之间的进一步团聚.微乳液法制备Fe3O4磁性纳米粒子的过程中,表面活性剂种类和用量和两种互补溶剂的种类和组成等对合成的Fe3O4磁性粒子的尺寸和形貌都有影响.Okoli等采用微乳液法制备了超顺磁性和粒径范围在2~10 nm的磁性Fe3O4纳米粒子[20].Hao等采用聚乙二醇辛基苯基醚为表面活性剂,用反相微乳法合成具有尖晶石结构、粒径大小平均为15 nm的超顺磁性Fe3O4纳米粒子[21].微乳液法一次合成制备的纳米粒子产量低,粒子的分离纯化过程复杂,且水溶性差.

1.5 水热合成法

水热合成法是指在密闭体系中,以水为溶剂,在高温(高于200 ℃ )和高压(高于137.9 MPa)下制备Fe3O4纳米粒子的方法 [22].通过优化水热合成法的实验条件,如反应温度和时间、反应物的浓度和化学计量比、溶剂特性和加入晶种剂等,可以控制纳米粒子的尺寸和形貌.Hou等以(CH2)6N4和FeCl3为原料,在高压釜内进行水热反应,制备出立方状的氧化铁颗粒[23].在水热反应中,粉体经历了溶解-结晶的过程,制得的纳米晶体发育较为完整,分布范围宽,粒径小,团聚程度低,且不需要高温煅烧与处理.但由于反应在较高温度和压力下进行,所以对设备的要求较高.

Fe3O4磁性纳米粒子由于比表面能高易发生团聚,导致粒子尺寸不均匀; 且裸露的Fe3O4易被氧化,磁性能降低.通过化学或物理作用将无机材料、有机官能团(如—COOH,—NH2,—SH等)及生物大分子等在粒子表面进行包裹或修饰能避免Fe3O4的氧化并保持磁性能、提高胶体和粒子的稳定性和增加其水分散性,还能调节并丰富粒子各种性能,对粒子进行功能化,获得多功能磁性纳米粒子,拓宽其应用范围.表面修饰后的磁性纳米粒子兼具无机纳米粒子的磁响应性和表面修饰剂的化学物理特性[24-25].磁性纳米粒子表面修饰的方法根据制备工艺常分为原位反应法和后处理表面改性法.原位反应法指的是在纳米材料制备的反应过程中直接引入包覆分子;而后处理表面改性法是先制备出纳米颗粒,再将其分散在表面活性剂或聚合物中进行包覆反应.

2 Fe3O4磁性纳米粒子表面修饰

Fe3O4磁性纳米粒子表面修饰按修饰材料的种类不同可分为三类:无机材料修饰,主要包括活性炭、碳纳米管、石墨烯、硅胶、金属氧化物等无机材料,通过物理或化学方法与Fe3O4磁性纳米粒子结合;有机功能分子修饰,通过特异性化学反应如偶联、络合、酯化或酰化反应等与纳米粒子链接的有机功能分子;高分子聚合物修饰,包括天然高分子聚合物如壳聚糖、明胶、纤维素、淀粉和蛋白等,人工合成高分子聚合物修饰,如聚苯乙烯、聚丙烯酸、聚酰胺类、聚苯胺等.

2.1 无机材料/Fe3O4磁性纳米复合材料

2.1.1 Fe3O4/碳磁性纳米复合物 碳有多种单质形式,有比表面积大、化学稳定性高和表面可负载其他功能基团的优势.活性炭、石墨烯和碳纳米管等材料与Fe3O4复合物常用于分离、催化、电子、材料和生物医药等领域[26-27].Mahmoud等在活性炭(AC)表面修饰Fe3O4磁性纳米粒子,然后负载上酵母酶(BY)(图1),利用磁性固相萃取的方法从水溶液中分离Hg(II),测定了该材料在250~800 μmol/g范围内对Hg(II)的吸附能力和吸附最大值,显示其分离效率达到92.4%[28].

Stoffelbach通过自由基聚合将羧基嫁接到多壁碳纳米管上(CNTs),并通过碳纳米管上的羧基与Fe3O4磁性纳米粒子表面的羟基形成酯键,将Fe3O4磁性纳米粒子负载到碳纳米管上得到 CNTs/Fe3O4磁性纳米复合物,该复合物可作催化剂的载体(如图2a)[29], He等将Pt附着在通过酯键结合的CNTs/Fe3O4磁性纳米复合物上,并作为催化剂在还原4-硝基苯酚的反应中循环使用(如图2b)[30].经过硝酸/硫酸酸化的碳纳米管可以在Fe3O4磁性纳米粒子的制备中通过原位合成得到碳纳米管与Fe3O4磁性纳米粒子的复合物(如图2c)[31],也可与已成型的的Fe3O4磁性纳米粒子通过酯化反应得到.Sadeg等将经过硝酸/硫酸酸化的碳纳米管与直径为约6 nm的Fe3O4磁性纳米粒子通过酯化反应得到直径约50 nm长度为500~2 000 nm的磁性碳纳米管(如图2d) [32].碳纳米管不仅可以通过共价键和Fe3O4磁性纳米粒子键合,也可以通过物理作用结合.Korneva 等将直径约10 nm的Fe3O4磁性纳米粒子通过填充制得直径约300 nm的磁性碳纳米管(如图2e)[33].

He用正硅酸乙酯(TEOS)和3-氨丙基三乙氧基硅烷(APTES)在Fe3O4磁性纳米粒子表面包裹硅并引入氨基,然后与石墨烯(GO)表面被N-羟基丁二酰亚胺(NHS)活化的羧基反应,通过形成的酰胺键将Fe3O4磁性纳米粒子和石墨烯结合起来,得到G-Fe3O4磁性复合材料(如图3a)[34]. Zhang等用类似的方法制备了磁性石墨烯复合材料,将内消旋-2,3-二巯基丁二酸(DMSA)修饰的Fe3O4磁性纳米粒子,与表面嫁接有聚乙烯亚胺(PEI)的石墨烯(rGO),通过形成共价酰胺键得到DMSA@Fe3O4-rGO复合材料(如图3b).该磁性纳米复合材料中不仅尺寸、粒度分布和粒子形态可控,并能有效吸附环境中化学污染物如抗生素-四环素等 [35].Li等通过氨基功能化的磁性纳米粒子与硝酸酸化的石墨烯间的共价结合(如图3c),制备了Fe3O4@SiO2-G的磁性纳米粒子复合物,该复合物对铬离子有很好的吸附作用[36].Han等通过静电和氢键作用将Fe3O4磁性纳米粒子附着在石墨烯上,然后利用聚多巴胺对复合材料进行功能化,该多巴胺功能化的纳米材料对亚甲基蓝的吸附容量达到358 mg/g (如图3d)[37].

2.1.2 贵金属氧化物与Fe3O4磁性纳米复合物 由于Fe3O4与贵金属之间相容性较差,很难制备出单分散、透光性好且有磁响应的纳米复合颗粒.为了提高颗粒的透光性、分散性,通常在磁芯与贵金属之间插入介质层(如SiO2或C等),得到磁芯@介质层@贵金属三组分核壳复合颗粒.目前的研究主要集中在Au,Cd,Al等金属与Fe3O4磁性纳米复合物的制备和应用方面.

金由于其反应活性较低,可被含巯基的化学或生物试剂修饰,是一种理想的包裹材料.裴飞飞等先利用热分解法再用反相微乳法制备Fe3O4@SiO2纳米粒子,最后利用表面修饰的氨基还原性,获得Fe3O4@SiO2/Au核壳复合纳米颗粒 [38].

张礼松等采用表面有氨基修饰的Fe3O4磁性纳米粒子与表面巯基乙酸修饰的CdTe量子,通过形成酰胺键将CdTe量子点共价结合到Fe3O4磁性微球表面,制备出分散性好、荧光效率高的Fe3O4@SiO2@CdTe磁性荧光双功能微球(如图4)[39].Di Corato等在磁性纳米粒子表面同时修饰两亲聚合物和量子点(CdSe/ZnS),再用叶酸分子进行表面功能化,通过控制荧光量子点和磁性纳米粒子的配比来控制发光,并应用于癌细胞成像和临床治疗研究中[40].

Li等将通过溶解热反应法制备的Fe3O4微球与葡萄糖反应得到Fe3O4@C磁性微球,然后Fe3O4@C磁性微球再与异丙醇铝作用处理后得到了Fe3O4@Al2O3核壳结构的磁性微球.该磁性微球磁性良好可进行磁分离,且其Al2O3外壳对磷酸肽有高的捕获能力,能从标准酪蛋白磷酸肽和卵白蛋白的胰蛋白酶消化液中选择性地富集磷酸肽(如图5)[41].

2.2 有机官能团修饰Fe3O4磁性纳米粒子

有机小分子通过特异化学反应如硅烷化偶联反应、络合反应、酯化反应等将有机配体修饰到Fe3O4磁性纳米粒子表面,制得表面不同功能基团修饰的磁性纳米复合材料.

2.2.1 硅烷偶联剂对Fe3O4磁性纳米粒子的表面修饰 小分子硅烷偶联剂含有不同的功能集团,其通式为RSiX3,R代表氨基、巯基、乙烯基、环氧基和氰基等,X代表能够发生水解的烷氧基如甲氧基和乙氧基等.硅烷偶联剂修饰后的磁性纳米粒子表面可带有羟基、氨基、羧基和巯基等多种有机功能基团,可以防止或减少粒子间团聚,增加粒子的稳定性和分散性.硅烷偶联剂首先水解成硅醇,再与Fe3O4纳米粒子表面的羟基发生缩合反应而形成Fe-O-Si键,硅醇的另外两个Si-OH同样可能与相邻硅烷分子的Si-OH发生交联缩合反应(如图6a).Fe3O4纳米粒子表面包覆SiO2的厚度也可通过控制n(TEOS)与n(Fe3O4)的比例来实现.Liu等用氨基硅烷试剂APTES与Fe3O4磁性纳米粒子反应得到氨基官能化的磁性粒子,再通过2-溴代异丁酰溴与氨基反生酰胺化反应,最后通过自由基聚合法制备了荧光磁性纳米粒子,该粒子可应用于磁共振成像研究(如图6b) [42].Eguílaz等将APTES与Fe3O4磁性纳米粒子反应得到含氨基的磁性纳米粒子,再通过戊二醛作为交联剂,将磁性纳米粒子与聚合物修饰的碳纳米管键合,制备得到的磁性纳米粒子碳纳米管复合物已成功应用到生物传感器设计中(如图6c)[43].靳艳艳等利用高碘酸钠氧化磁性纳米粒子表面附着的油酸稳定的高温热解得到磁性纳米粒子, 简便快捷地制备了单分散羧基功能化的Fe3O4磁性纳米粒子,该粒子分散性好,粒径均一,约12 nm [44].Kohler等先通过APTES在Fe3O4纳米粒子表面修饰氨基,再利用抗肿瘤药物——氨甲叶酸(MTX)的端羧基与纳米粒子表面氨基形成酰胺基,将MTX引入到纳米粒子表面,合成了负载抗肿瘤药物的靶向传输载体(如图6d) [45].Patil等合成了超顺磁Fe3O4@SiO2复合粒子,再将其表面用氨基硅烷试剂修饰,连接一个含有二硫键的双N-羟基琥珀酰亚胺酯(NHS),用来分离和富集含氨基的肽或者蛋白[46] (如图6e).

2.2.2 表面络合剂对Fe3O4磁性纳米粒子的表面修饰 表面络合剂可与金属离子形成络合离子,对磁性纳米粒子进行改性并使粒子具有螯合性能.姜炜等利用络合剂二乙基三胺五乙酸(DTPA)对Fe3O4磁性纳米粒子进行表面化学修饰,制备出了具有表面螯合性能的磁性纳米Fe3O4/DTPA复合粒子[47],该复合粒子能对Cu2+,Mg2+等多种金属离子具有螯合性能.

2.3 高分子聚合物/Fe3O4磁性纳米复合物

高分子聚合物修饰的Fe3O4磁性纳米粒子是具有特殊核壳结构的复合纳米材料,兼具聚合物的表面功能性和Fe3O4磁核的磁响应性特点,在蛋白分离、药物靶向、细胞优化等生化领域得到广泛应用.

2.3.1 天然高分子聚合物对Fe3O4磁性纳米粒子的表面修饰 聚糖、蛋白或多肽是天然高分子聚合物,广泛存在于自然界中.聚糖的良好的生物相容性、微生物可降解性或血液相容性,蛋白或多肽具有化学性能稳定、无毒、无抗原性等特点,以及分子链上丰富的易被化学修饰的羟基、氨基或羧基的存在,使聚糖和蛋白或多肽广泛应用到磁性纳米粒子表面的修饰中.

Dung等通过悬浮交联法,以戊二醛为交联剂,制备得到壳聚糖修饰的Fe3O4磁性纳米粒子[48].Neda用提拉镀膜法将一定浓度有氨基修饰的纤维素溶液加入到Fe3O4磁性纳米粒子水溶液中,制得磁性纳米复合物,该复合物可作功能化生物材料应用在药物传递、肿瘤治疗和酶工程等领域[49].

白蛋白化学性能稳定、无毒和无抗原性,在组织中易于分布并可富集于肿瘤部位,是一种理想的药物载体材料.Iwaki等通过共价结合将表面氨基修饰的Fe3O4磁性纳米粒子,与人类血清蛋白(HSA)键合,得到HSA@Fe3O4磁性纳米粒子.该粒子通过HSA与药物之间的特异性结合作用能从人类尿液和血清中高效捕获小分子药物,且可直接通过质谱对被捕获的小分子药物进行分析鉴定[50].

2.3.2 人工合成高分子聚合物对Fe3O4磁性纳米粒子的表面修饰 人工合成高分子如聚乙二醇、聚乙烯醇、聚(N-异丙基丙烯酰胺)和多肽聚合物可通过氢键结合在Fe3O4磁性纳米粒子表面,也可通过化学键键合在磁性纳米粒子表面.人工合成高分子可通过偶联接枝让官能团化纳米粒子与高分子直接反应进行键合;可在引发剂作用下直接在纳米颗粒表面聚合生长接枝;也可聚合与表面接枝同步进行.人工合成高分子在磁性纳米粒子的表面改性,可通过粒子表面聚合物的分子量来优化材料的功能.

Euliss等利用赖氨酸和天冬氨酸的共聚物对磁性纳米粒子进行表面修饰,得到了磁性纳米胶团,提高了纳米粒子的稳定性和生物相容性[51].方伟军等通过聚合的方法成功合成以磁性Fe3O4纳米粒子为核以聚苯乙烯-马来酸酐为壳富集有Ni-氨三乙酸的复合微球,这种微球具有优良的磁响应性和分散性,对多聚组氨酸融合蛋白有选择性吸附且吸附能力大大增加[52] .Yang等将聚乙二醇和脂肪酸形成的双亲共聚体修饰在MnFe2O4磁性纳米粒子表面,形成了一种稳定性好和灵敏度较高的磁共振造影剂,该磁性纳米晶体细胞毒性低,对癌症细胞的检测能力高[53].Mondini等将内酯水解得到的羟基羧酸在乙醇、氢氧化钠和铁盐的存在下制得羟基羧酸铁盐,然后在三缩四乙二醇中高温反应制得羟基修饰的磁性纳米粒子[54],如图8.该磁性纳米粒子上的羟基还能进一步修饰,得到含羧基、甲基苯磺酰基及聚乙二醇的功能纳米粒子.

饶通德采用原位聚合法以Fe3O4磁性纳米粒子为核,以H2O2为引发剂使丙烯酸单体在粒子表面原位聚合,制得聚丙烯酸修饰的Fe3O4磁性纳米粒子吸附剂,该吸附材料具有比表面积大、表面活性中心多、外部磁场易于操控和吸附容量大等特点,可应用于去除环境污染物等领域[55].

Masoumi等用3-氨丙基三甲氧基硅烷(APTMS)在Fe3O4磁性纳米粒子表面修饰氨基,该粒子中的氨基与甲基丙烯酸甲酯(MMA)和马来酸酐(MA)形成的共聚物P(MMA-co-MA)中的酸酐发生氨解得到P(MMA-co-MA)/APTMS-Fe3O4(MNC)磁性纳米复合物(如图9),该磁性纳米复合物能通过螯合作用从水中有效地分离金属离子如Co2+,Cr3+,Zn2+和Cd2+等[56].

其他天然或人工合成高分子聚合物如葡聚糖、明胶、聚乙烯醇、聚乳酸和聚海藻酸钠等也可用于磁性粒子的表面修饰,以改善粒子的分散性、毒性和生物相容性.

3 展望

磁性纳米粒子在医学成像、生物探针、药物靶向传递、催化和吸附分离等领域具有良好的应用前景,也面临挑战.今后的研究热点集中于改进并发展合成工艺,制备形貌可控、分散性好和磁性能高的磁性纳米粒子;改进并拓展表面功能化,制备具有不同表面功能化的磁性纳米粒子;通过改性提高磁性纳米粒子的生物相容性,降低细胞毒性;制备多功能的磁性纳米材料,增加磁性纳米粒子的多样性;发展并开拓磁性纳米粒子的应用方法及范围;将改性的磁性纳米粒子运用到诊断和治疗等生物医学领域.

参考文献:

[1] BATLLE X, LABARTA A. Finite-size effects in fine particles: magnetic and transport properties [J]. J Phys D: Appl Phys, 2002,35(6):15-42.

[2] CHIKAZUMI S, TAKETOMI S, UKITA M, et al. Physics of magnetic fluids [J]. J Magn Magn Mater, 1987, 65(2):245-251.

[3] LU A H, SCHMIDT W, MATOUSSEVITCH N, et al. Nanoengineering of a magnetically separable hydrogenation catalyst [J]. Angew Chem, 2004,116(33):4403-4406.

[4] GUPTA A K, GUPTA M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications [J]. Biomaterials, 2005,26(18):3995-4021.

[5] MORNET S, VASSEUR S, GRASSET F, et al. Magnetic nanoparticle design for medical applications [J]. Prog Solid State Chem, 2006,34(2-4):237-247.

[6] LI Z, WEI L, GAO M Y, et al. One-pot reaction to synthesize biocompatible magnetite nanoparticles [J]. Adv Mater, 2005,17(8):1001-1005.

[7] HYEON T. Chemical synthesis of magnetic nanoparticles [J]. Chem Commun, 2003,39(8):927-934.

[8] ELLIOTT D W, ZHANG W X. Field assessment of nanoscale bimetallic particles for groundwater treatment [J]. Environ Sci Technol, 2001,35(24):4922-4926.

[9] TAKAFUJI M, IDE S, IHARA H, et al. Preparation of poly (1-vinylimidazole)-grafted magnetic nanoparticles and their application for removal of metal ions [J]. Chem Mater, 2004,16(10):1977-1983.

[10] 于文广, 张同来, 张建国, 等. 纳米四氧化三铁 (Fe3O4) 的制备和形貌 [J]. 化学进展, 2007,19(6):884-892.

[11] WELO L A, BAUDISCH O. The two-stage transformation of magnetite into hematite [J].Philoso Maga Ser 6, 1925,50(296):399-408.

[12] BOMATI MIGUEL O, MAZEINA L, NAVROTSKY A, et al. Calorimetric study of maghemite nanoparticles synthesized by laser-induced pyrolysis [J]. Chem Mater, 2008,20(2):591-598.

[13] MATHUR S, BARTH S, WERNER U, et al. Chemical vapor growth of one-dimensional magnetite Nanostructures [J]. Adv Mater, 2008,20(8):1550-1554.

[14] KETTELER G, WEISS W, RANKE W, et al. Bulk and surface phases of iron oxides in an oxygen and water atmosphere at low pressure [J]. Phys Chem Chem Phys, 2001,3(6):1114-1122.

[15] MOON J W, RAWN C J, RONDINONE A J, et al. Large-scale production of magnetic nanoparticles using bacterial fermentation [J]. J Ind Microbiol Biotchnol, 2010,37(10):1023-1031.

[16] CAI W, WAN J. Facile synthesis of superparamagnetic magnetite nanoparticles in liquid polyols [J]. J Colloid Interface Sci, 2007,305(2):366-370.

[17] WU J H, KO S P, LIU H L, et al. Sub 5 nm magnetite nanoparticles: synthesis, microstructure, and magnetic properties [J]. Mater Lett, 2007,61(14-15):3124-3129.

[18] 宋丽贤, 卢忠远, 刘德春, 等. 分解沉淀法制备磁性纳米 Fe3O4 的研究及表征[J]. 化工进展, 2006,25(1):54-57.

[19] 涂志江, 张宝林, 冯凌云, 等. 聚乙二醇/聚乙烯吡咯烷酮修饰的纳米 Fe3O4 粒子的制备与表征[J]. 化工学报, 2013,63(12):4089-4095.

[20] OKOLI C, SANCHEZ DOMINGUEZ M, BOUTONNET M, et al. Comparison and functionalization study of microemulsion-prepared magnetic iron oxide nanoparticles [J]. Langmuir, 2012,28(22):8479-8485.

[21] HAO J J, CHEN H L, REN C L, et al. Synthesis of superparamagnetic Fe3O4 nanocrystals in reverse microemulsion at room temperature [J]. Mater Res Innovations, 2010,14(4):324-326.

[22] GE S, SHI X, SUN K, et al. Facile hydrothermal synthesis of iron oxide nanoparticles with tunable magnetic properties[J]. J Phys Chem C, 2009,113(31):13593-13599.

[23] HOU B, WU Y, WU L, et al. Hydrothermal synthesis of cubic ferric oxide particles [J]. Mater Lett, 2006,60(25-26):3188-3191.

[24] CHEN S, LI Y, GUO C, et al. Temperature-responsive magnetite/PEO-PPO-PEO block copolymer nanoparticles for controlled drug targeting delivery [J]. Langmuir, 2007,23(25):12669-12676.

[25] 刘 旸, 赵雪松, 潘学军, 等. Fe3O4基多功能磁性纳米颗粒吸附重金属研究进展 [J]. 水处理技术, 2014,40(12):5-10.

[26] YAO Y, VELPARI V, ECONOMY J. Design of sulfur treated activated carbon fibers for gas phase elemental mercury removal [J]. Fuel, 2014,116:560-565.

[27] DE M, AZARGOHAR R, DALAI K A, et al. Mercury removal by bio-char based modified activated carbons [J]. Fuel, 2013,103:570-578.

[28] MAHMOUD E M, AHMED B S, OSMAN M M, et al. A novel composite of nanomagnetite-immobilized-bakers yeast on the surface of activated carbon for magnetic solid phase extraction of Hg (Ⅱ) [J]. Fuel, 2015,139:614-621.

[29] STOFFELBACH F, AQIL A, JEROME C, et al. An easy and economically viable route for the decoration of carbon nanotubes by magnetite nanoparticles, and their orientation in a magneticfield [J]. Chem Commun, 2005,36:4532-4533.

[30] HE H, GAO C. Synthesis of Fe3O4/Pt Nanoparticles decorated carbon nanotubes and their use as magnetically recyclable catalysts [J/OL]. J Nanomater, 2011[2015-10-30].http://www.hindawi.com/journals/jnm/ethics/.doi:10.1155/2011/193510.

[31] MITROV Z, TOMAOVICOV N, LANCZ G, et al. Preparation and characterization of carbon nanotubes functionalized by magnetite nanoparticles[J]. Nanoconference, 2010,10:12-14.

[32] SADEG H, SHAHRYARI R, KAZEMI M. Study in synthesis and characterization of carbon nanotubes decorated by magnetic iron oxide nanoparticles[J]. Int Nano Lett, 2014,4(4):129-135

[33] KORNEVA G, YE H, GOGOTSI Y, et al. Carbon nanotubes loaded with magnetic particles[J]. Nano Lett, 2005,5(5):879-884.

[34] HE F, FAN J T, MA D, et al. The attachment of Fe3O4 nanoparticles to graphene oxide by covalent bonding [J]. Carbon, 2010,48(11):3139-3144.

[35] ZHANG Y, CHEN B, ZHANG L, et al. Controlled assembly of Fe3O4 magnetic nanoparticles on graphene oxide [J]. Nanoscale, 2011,3(4):1446-1450.

[36] LI H, CHI H, LI J. Covalent bonding synthesis of magnetic graphene oxide nanocomposites for Cr(Ⅲ) removal[J].Desalin Water Treat, 2014,52(10-12):1937-1946.

[37] HAN X, ZHANG L, LI C. Preparation of polydopamine-functionalized graphene/Fe3O4 magnetic composites with high adsorption capacities [J]. RSC Adv, 2014, 4(58):30536-30541.

[38] 裴飞飞,尹剑波,赵晓鹏. 单分散Fe3O4@SiO2/Au复合纳米颗粒的制备 [J]. 材料导报:B研究篇, 2014,28(6):4-13.

[39] 张礼松,王公正,莫润阳,等. Fe3O4@SiO2@CdTe磁性荧光复合微球的制备与表征 [J]. 光子学报, 2014,43(9):1-6.

[40] DI CORATO R, BIGALL N C, RAGUSA A, et al. Multifunctional nanobeads based on quantum dots and magnetic nanoparticles: synthesis and cancer cell targeting and sorting [J]. ACS Nano, 2011,5(2):1109-1121.

[41] LI Y, LIU Y, TANG J, et al. Fe3O4@Al2O3 magnetic core-shell microspheres for rapid and highly specific capture of phosphopeptides with mass spectrometry analysis [J]. J Chromatogr A, 2007,1172(1):57-71.

[42] LIU J, HE W, ZHANG L, et al. Bifunctional nanoparticles with fluorescence and magnetism via surface-initiated AGET ATRP mediated by an iron catalyst [J]. Langmuir, 2011,27(20):12684-12692.

[43] EGUILAZ M, VILLALONGA R, YANEZ-SEDENO P, et al. Designing electrochemical interfaces with functionalized magnetic nanoparticles and wrapped carbon nanotubes as platforms for the construction of high-performance bienzyme biosensors [J]. Anal Chem, 2011,83(20):7807-7814.

[44] 靳艳艳,程 武,王 苗,等. 单分散羧基化Fe3O4 磁性纳米粒子的制备及表征[J]. 科学通报, 2014,59(18):1700-1706.

[45] KOHLER N, SUN C, WANG J, et al. Methotrexate-modified superparamagnetic nanoparticles and their intracellular uptake into human cancer cells[J]. Langmuir, 2005,21(19):8858-8864.

[46] PATIL U S, QU H, CARUNTU D, et al. Labeling primary amine groups in peptides and proteins with N-hydroxysuccinimidyl ester modified Fe3O4@SiO2 nanoparticles containing cleavable disulfide-bond linkers [J]. Bioconjug Chem, 2013,24(9):1562-1569.

[47] 姜 炜,杨 毅,李凤生. 络合剂DTPA对纳米磁性Fe3O4粒子的表面改性研究 [J].纳米材料与结构, 2006(12):577-581.

[48] DUNG DOAN THI KIM, HAI TRAN HOANG, PHUC LE HONG, et al. Preparation and characterization of magnetic nanoparticles with chitosan coating [J]. J Phys: Conf Ser, 2009,187(1):012036.

[49] NEDA H. Functional biocompatible magnetite-cellulose nanocomposite fibrous networks Characterization by Fourier transformed infrared spectroscopy, X-ray powder diffraction and field emission scanning electron microscopy analysis [J]. Spectrochim Acta, Part A: Mol Biomol Spectr, 2015,136:1450-1453.

[50] IWAKI Y, KAWASAKI H, ARAKAWA R. Human serum albumin-modified Fe3O4 magnetic nanoparticles for affinity-SALDI-MS of small-molecule drugs in biological liquids [J]. Anal Sci, 2012,28(9):893-900.

[51] EULISS L E, GRANCHAROV S G, OBRIEN S, et al. Cooperative assembly of magnetic nanoparticles and block copolypeptides in aqueous media[J]. Nano Lett, 2003,3(11):1489-1493.

[52] FANG W, CHEN X, ZHENG N. Superparamagnetic core-shell polymer particles for efficient purification of his-tagged proteins [J]. J Mater Chem, 2010,20(39):8624-8630.

[53] YANG J, LEE T I, LEE J, et al. Synthesis of ultrasensitive magnetic resonance contrast agents for cancer imaging using PEG-fatty acid [J]. Chem Mater, 2007,19(16):3870-3876.

[54] MONDINI S, CENEDESE S, MARINONI G, et al. One-step synthesis and functionalization of hydroxyl-decorated magnetite nanoparticles [J]. J Colloid Interf Sci, 2008,322(1):173-179.

[55] 饶通德. 原位聚合法合成Fe3O4/聚丙烯酸纳米粒子及其吸附性能研究 [J]. 西南民族大学学报(自然科学版), 2011,37(5):791-794.

[56] MASOUMI A, GHAEMY M, BAKH A N. Removal of metal ions from water using poly(MMA-co-MA) modified-Fe3O4 magnetic nanocomposite isotherm and kinetic study [J]. Ind Eng Chem Res, 2014,53(19):8188-8197.

(编辑 WJ)

猜你喜欢

制备
一种改性环氧树脂基体的制备及其流变性研究
邻羟基苯乙酸的制备方法研究
浅析磷酸二氢铝在氧化铝泡沫陶瓷过滤板上作用机理
金红宝石玻璃的制备历史与研究进展赵毅 刘玉林
异种去细胞肌腱的制备及其生物相容性的实验研究
头痛灵口服液的制备与疗效观察
上转换荧光纳米探针的制备及其在染料检测上的应用
一种耐高温高湿光阻剂的合成及丝印UV油墨的制备
乙酸乙酯制备演示实验的改进