APP下载

真菌Alternaria sp.XZSBG-1的四氢蒽醌类次级代谢产物*

2016-06-05普布多吉徐爱国林永成蒋思萍

关键词:蒽醌中山大学糖苷酶

陈 彬,普布多吉,徐爱国,刘 岚,朱 勋,林永成,蒋思萍

(1.西藏自治区高原生物研究所,西藏 拉萨850001;2. 中山大学化学与化学工程学院,广东 广州510275;3. 中山大学海洋科学学院, 广东 广州510275;4. 中山大学医学院,广东 广州510275)

真菌Alternaria sp.XZSBG-1的四氢蒽醌类次级代谢产物*

陈 彬1,2,普布多吉1,徐爱国1,刘 岚2,3,朱 勋4,林永成2,蒋思萍1

(1.西藏自治区高原生物研究所,西藏 拉萨850001;2. 中山大学化学与化学工程学院,广东 广州510275;3. 中山大学海洋科学学院, 广东 广州510275;4. 中山大学医学院,广东 广州510275)

采用硅胶、C-18反相硅胶、Sephadex LH-20等柱色谱及高效液相色谱技术对真菌Alternariasp. XZSBG-1的次级代谢产物进行系统研究;采用波谱分析及与文献比对等方法鉴定化合物结构;采用MTT法和比色法进行抗肿瘤和酶抑制活性筛选。结果从真菌Alternariasp. XZSBG-1的发酵物中分离得到8个四氢蒽醌类化合物,分别鉴定为Alterporriol F’(1)、Alterporriol G’(2)、Alterporriol F(3)、Alterporriol G(4)、Altersolanol A(5)、Altersolanol F(6)、Tetrahydroaltersolanol B (7)和Tetrahydroaltersolanol D (8);活性测试结果表明仅化合物6对结肠癌细胞株(HCT-116)和子宫癌细胞株(Hela)具有明显抑制活性,IC50值分别为3.026和8.094 μmol/L。

Alternariasp.;次级代谢产物;四氢蒽醌;抗肿瘤活性

蒽醌,四氢蒽醌以及它们的衍生物作为次级代谢产物存在于许多植物、地衣及真菌中,并表现出良好的生物活性[1-5]。Alternaria是这两类化合物的主要生物来源菌属[6-12]。课题组研究人员在前期对盐湖真菌Alternariasp. XZSBG-1的研究中,发现了系列二聚的蒽醌类次级代谢产物[13-14]。在此基础上,我们又从中发现8个四氢蒽醌类化合物(图1),分别为Alterporriol F’ (1), Alterporriol G’ (2), Alterporriol F (3), Alterporriol G (4), Altersolanol A (5), Altersolanol F (6), Tetrahydroaltersolanol B (7) 和Tetrahydroaltersolanol D (8);初步的活性研究发现,8个化合物对α-葡萄糖苷酶均无明显抑制活性,仅有化合物Altersolanol F (6)对结肠癌细胞株(HCT-116)和子宫癌细胞株(Hela)具有明显抑制活性,其IC50值分别为3.026和8.094 μmol/L。

1 实验试剂与仪器

UV-2501 PC紫外可见分光光度计(Shimadzu, Japan),Bruker AVANCE 400型核磁共振谱仪(Bruker Biospin, Germany),LCQ-DECA-XP型液相色谱-质联用仪(Thermo, USA),Agilent 1260型高效液相色谱仪(HPLC)(Agilent, USA)。TLC硅胶(GF254)、柱层析硅胶(200~300目)均为青岛海洋化工有限公司产品,Sephadex LH-20凝胶和C-18反相硅胶ODS-A均为北京绿百草科技有限公司产品;色谱纯甲醇为Merck产品,其他试剂均为分析纯,天津化学试剂厂产品。

2 实验方法

2.1 真菌分离

盐湖沉积物样品于2010年7月21日采自西藏自治区那曲地区班戈县巴木措(E: 90°68′84.94″, N:31°32′96.46″, 海拔4 657 m)。将沉积物样品中的腐殖部分经稀释涂布,得到10余株真菌。其中编号为XZSBG-1的菌株经分子生物学鉴定为链格孢菌属 (Alternariasp.),命名为Alternariasp.XZSBG-1,GenBank 登录号为HM622756;该菌种保存于西藏自治区高原生物研究所。

图1 真菌Alternaria sp. XZSBG-1的四氢蒽醌类次级代谢产物Fig.1 Tetrahydroanthraquinone derivatives from Alternaria sp. XZSBG-1

2.2 发酵与提取

采用马铃薯葡萄糖液体培养基作为发酵培养基。将菌株种子培养液接种到盛有马铃薯葡萄糖液体培养基的1 L三角瓶中,共接种120瓶,常温发酵培养28 d;加入少许乙酸乙酯终止发酵,并分批次进行菌体和发酵液分离,发酵液用乙酸乙酯等体积萃取3次,菌体阴干后用甲醇浸提3次,浓缩乙酸乙酯萃取液和甲醇浸提液,合并,共得浸膏112 g。

2.3 分离纯化

将浸膏用的乙酸乙酯和甲醇充分溶解,过滤,滤液用1 000 mL 200目硅胶拌样,干燥后湿法上柱,进行柱层析分离。使用石油醚-乙酸乙酯体系(V(乙酸乙酯)∶V(石油醚)梯度分别为1∶100,1∶20, 1∶10, 1∶5, 1∶3, 1∶1, 2∶1,4∶1, 1∶0)和乙酸乙酯-甲醇体系(V(甲醇)∶V(乙酸乙酯)梯度分别为1∶50, 1∶20, 1∶10, 1∶5, 1∶0)分别对柱子进行梯度洗脱,得到组分Fr.1-Fr.14。将组分Fr.5再进行柱层析,洗脱体系为甲醇-氯仿(V(甲醇)∶V(氯仿)梯度为1∶100, 1∶90,1∶80,1∶70, 1∶60, 1∶50, 1∶40, 1∶30, 1∶20, 1∶10, 1∶9, 1∶8, 1∶7, 1∶6, 1∶5, 1∶4),分别得到化合物6(6.0 mg),7(5.6 mg),8(3.8 mg)。采用甲醇-氯仿体系(V(甲醇)∶V(氯仿)梯度为1∶100, 1∶90, 1∶80,1∶70, 1∶60, 1∶50, 1∶40,1∶30, 1∶20, 1∶10, 1∶9, 1∶8, 1∶7, 1∶6, 1∶5, 1∶4)对Fr.6进行柱层析洗脱,分别得到化合物5 (5.6 mg),和Fr.6-1和Fr.6-2。采用HPLC,选择甲醇-水作为流动相,从Fr.6-1分离得到化合物1和2的混合物(11.6 mg),从Fr.6-2得到化合物3 (4.3 mg)和4 (3.5 mg)。

2.4 活性测试

2.4.1 α-葡萄糖苷酶抑制活性的测试 采用比色法测定化合物对α-葡萄糖苷酶的抑制活性[15]。结果显示8个化合物对α-葡萄糖苷酶均没有明显的抑制活性。

2.4.2 抗肿瘤细胞株的活性测试 采用MTT法测定化合物对人乳腺癌细胞株MCF-7/ADR、MDA-MB-435、人肝癌细胞株Hep3B、HepG2、人前列腺癌细胞株PC-3、人结肠癌细胞株HCT-116和子宫癌细胞株Hela等7株细胞的抑制活性[16]。化合物5、7、8没有进行抗肿瘤细胞株活性测试实验。结果表明在这6个化合物中,化合物1和2对Hep3B、MDA-MB-435以及PC-3有抑制活性,在50 μmol/L浓度下,抑制率分别达到71.8%、88.7%和93.4%;化合物3和4仅对MDA-MB-435具有轻微的抑制活性,抑制率为48.3%;化合物6则对结肠癌细胞株(HCT-116)和子宫癌细胞株(Hela)具有明显抑制活性,IC50值分别为3.026和8.094 μmol/L。

2.5 化合物波谱数据

化合物1:橙红色无定型粉末,θmp>300 ℃,易溶于甲醇;ESI-MSm/z:601 [M-H]-,分子式为C32H26O12。1H NMR (400 MHz, DMSO)δ: 2.32 (m, 1H, H-1a), 2.79 (m, 1H, H-1b), 3.67 (d, 1H, 8.0 Hz, H-2), 4.03 (d, 1H, 7.2 Hz, H-4), 6.90 (s, 1H, H-7), 3.683(s, 3H, H-11), 1.16 (s, 3H, H-12), 4.59 (d, 1H, 6.8 Hz, OH-2), 4.25 (s, 1H, OH-3), 5.42 (d, 1H, 7.60 Hz,OH-4), 13.11 (s, 1H, OH-8), 7.56 (s, 1H, H-1’), 7.69 (d, 1H, 0.8 Hz, H-4’), 6.93 (s, 1H, H-7’), 3.681 (s, 3H, H-11’), 2.19 (s, 3H, H-12’), 10.02 (br, 1H, OH-2’), 13.61(br, 1H, OH-8’);13C NMR (100 MHz, DMSO)δ: 28.8 (C-1), 66.7 (C-2), 71.9 (C-3), 69.0 (C-4), 142.6 (C-4a), 123.2 (C-5), 164.4 (C-6), 103.6 (C-7), 163.8 (C-8), 108.9 (C-8a), 188.4 (C-9), 143.7 (C-9a), 183.3 (C-10), 131.1 (C-10a), 56.7 (C-11), 21.8 (C-12), 110.5 (C-1’), 161.3 (C-2’), 125.2 (C-3’), 130.2 (C-4’), 132.2 (C-4a’), 122.3 (C-5’), 165.0 (C-6’), 104.0 (C-7’), 164.9 (C-8’), 110.0 (C-8a’), 186.7 (C-9’), 132.4 (C-9a’), 181.1 (C-10’), 128.9 (C-10a), 56.7 (C-11’), 16.1 (C-12’);以上数据与文献[8,10]报道对照基本一致,故鉴定化合物1为Alterporriol F’。

化合物2:橙红色无定型粉末,θmp>300 ℃,易溶于甲醇;ESI-MSm/z:601 [M-H]-, 分子式为C32H26O12。1H NMR (400 MHz, DMSO)δ: 2.32 (m, 1H, H-1a), 2.788 (m, 1H, H-1b), 3.67 (d, 1H, 8.0 Hz, H-2), 4.05 (d, 1H, 7.6 Hz, H-4), 6.90 (s, 1H, H-7), 3.713(s, 3H, H-11), 1.16 (s, 3H, H-12), 4.62 (d, 1H, 6.8 Hz, OH-2), 4.32 (s, 1H, OH-3), 5.30 (d, 1H, 7.20 Hz, OH-4), 13.14 (s, 1H, OH-8), 7.56 (s, 1H, H-1’), 7.67 (d, 1H, 0.8 Hz, H-4’), 6.94 (s, 1H, H-7’), 3.711 (s, 3H, H-11’), 2.19 (s, 3H, H-12’), 10.02 (br, 1H, OH-2’), 13.66(br, 1H, OH-8’);13C NMR (100 MHz, DMSO)δ: 28.7 (C-1), 66.6 (C-2), 72.0 (C-3), 68.9 (C-4), 142.7 (C-4a), 123.3 (C-5), 164.4 (C-6), 103.6 (C-7), 163.9 (C-8), 108.9 (C-8a), 189.0 (C-9), 143.6 (C-9a), 183.1 (C-10), 130.5 (C-10a), 56.8 (C-11), 21.8 (C-12), 110.4 (C-1’), 161.2 (C-2’), 125.2 (C-3’), 130.2 (C-4’), 132.2 (C-4a’), 122.8 (C-5’), 165.2 (C-6’), 104.0 (C-7’), 165.1 (C-8’), 109.9 (C-8a’), 186.6 (C-9’), 132.4 (C-9a’), 180.9 (C-10’), 128.9 (C-10a), 56.8 (C-11’), 16.1 (C-12’);以上数据与文献[8,10]报道基本一致,故鉴定2为Alterporriol G’。

化合物3:橘红色无定型粉末,易溶于甲醇;ESI-MSm/z:653 [M-H]-;分子式为C32H30O15;1H NMR (400 MHz, DMSO) δ: 3.55 (m, 1H, H-1), 3.69 (m, 1H, H-2), 4.08 (m, 1H, H-3), 6.93 (s, 1H, H-7), 3.69 (s, 3H, H-11), 1.17 (s, 3H, H-12), 2.30 (m, 1H, H-1a’), 2.80 (m, 1H, H-1b’), 4.47 (m, 1H, H-2’), 3.42 (m, 1H, H-4’), 6.91(s, 1H, H-7’), 3.69 (s, 3H, H-11’), 1.15(s, 3H, H-12’);13C NMR (100 MHz, DMSO)δ: 73.8 (C-1), 66.7 (C-2), 69.0 (C-3), 68.5 (C-4), 143.8 (C-4a), 109.3 (C-5), 164.6 (C-6), 103.9 (C-7), 164.0 (C-8), 122.6 (C-8a), 188.8 (C-9), 142.8 (C-9a), 183.8 (C-10), 129.1 (C-10a), 56.9 (C-11), 21.9 (C-12), 28.8 (C-1’), 68.4 (C-2’), 72.0 (C-3’), 73.0 (C-4’), 143.5 (C-4a’), 108.9 (C-5’), 164.9 (C-6’), 103.6 (C-7’), 164.2 (C-8’), 122.6 (C-8a’), 188.4 (C-9’), 142.8 (C-9a’), 183.2 (C-10’), 129.0 (C-10a), 56.9 (C-11’), 22.3 (C-12’);以上数据与文献[17]报道对照基本一致,故鉴定化合物3为Alterporriol F。

化合物4:橘红色无定型粉末,易溶于氯仿;ESI-MSm/z:653 [M-H]-; 分子式为C32H30O15;1H NMR (400 MHz, DMSO)δ: 3.55 (m, 1H, H-1), 3.69 (m, 1H, H-2), 4.06 (m, 1H, H-3),6.91 (s, 1H, H-7), 3.69 (s, 3H, H-11), 1.15 (s, 3H, H-12), 2.31 (m, 1H, H-1a’), 2.82 (m, 1H, H-1b’), 4.45 (m, 1H, H-2’), 3.42 (m, 1H, H-4’), 6.89 (s, 1H, H-7’), 3.69 (s, 3H, H-11’), 1.15(s, 3H, H-12’);13C NMR (100 MHz, DMSO)δ: 73.9 (C-1), 66.8 (C-2), 69.0 (C-3), 68.4 (C-4), 143.8 (C-4a), 109.4 (C-5), 163.9 (C-6), 104.2 (C-7), 163.6 (C-8), 122.0 (C-8a), 188.8 (C-9), 142.9 (C-9a), 184.2 (C-10), 130.0 (C-10a), 56.8 (C-11), 21.9 (C-12), 28.9 (C-1’), 68.3 (C-2’), 72.0 (C-3’), 73.0 (C-4’), 143.5 (C-4a’), 109.0 (C-5’), 163.9 (C-6’), 104.0 (C-7’), 163.8 (C-8’), 121.8 (C-8a’), 188.5 (C-9’), 142.7 (C-9a’), 183.2 (C-10’), 129.6 (C-10a), 56.8 (C-11’), 22.3 (C-12’);以上数据与文献[17]报道对照基本一致,故鉴定化合物4为Alterporriol G。

化合物5:橙色无定型粉末,易溶于甲醇;ESI-MSm/z:335 [M-H]-; 分子式为C16H16O8;1H NMR (400 MHz, DMSO)δ: 4.49 (dd, 1H, 6.89, 6.06 Hz, H-1), 3.64 (dd, 1H, 6.06, 6.89 Hz, H-2), 4.32 (d, 1H, 5.10 Hz, H-4), 7.03 (d, 1H, 2.5 Hz, H-5), 6.84 (d, 1H, 2.5 Hz, H-7), 3.91 (s, 3H, H-11), 1.24 (s, 3H, H-12), 5.04 (d, 1H, 5.18 Hz, OH-1), 4.87 (d, 1H, 6.41 Hz, OH-2), 4.45 (d, 1H, 5.10 Hz, OH-3), 5.67 (d, 1H, 6.08 Hz, OH-4), 12.16(br, 1H, OH-8);13C NMR (100 MHz, DMSO)δ: 68.8 (C-1), 74.1 (C-2), 73.2 (C-3), 68.7 (C-4), 142.3 (C-4a), 106.9 (C-5), 165.8 (C-6), 106.2 (C-7), 163.4 (C-8), 109.8 (C-8a), 183.9 (C-9), 144.7 (C-9a), 188.7 (C-10), 133.6 (C-10a), 56.5 (C-11), 22.5 (C-12); 以上数据与文献[8]报道对照基本一致,故鉴定化合物5为Altersolanol A。

化合物6:黄色针状晶体,易溶于甲醇;ESI-MSm/z:319 [M-H]-;分子式为C16H16O7;1H NMR (400 MHz, DMSO)δ: 2.35 (dd, 1H, 9.7, 19.4 Hz, H-1a), 2.89 (dd, 1H, 5.90, 19.4 Hz H-1b), 3.76 (d, 1H, 9.5 Hz, H-2), 4.34 (d, 1H, 6.0 Hz, H-4), 7.04 (d, 1H, 2.5 Hz, H-5), 6.82 (d, 1H, 2.5 Hz, H-7), 3.90 (s, 3H, H-11), 1.28 (s, 3H, H-12);13C NMR (100 MHz, DMSO)δ: 29.5 (C-1), 67.2 (C-2), 72.4 (C-3), 69.7 (C-4), 144.4 (C-4a), 107.4 (C-5), 166.1 (C-6), 106.1 (C-7), 163.8 (C-8), 130.6 (C-8a), 188.6 (C-9), 143.5 (C-9a), 183.4 (C-10), 133.9 (C-10a), 56.8 (C-11), 22.3 (C-12); 以上数据与文献[18]报道对照基本一致,故鉴定6为Altersolanol F。

化合物7:黄色油状,易溶于甲醇;ESI-MSm/z:303 [M-H]-; 分子式C16H16O6;1H NMR (400 MHz, DMSO)δ: 2.22 (m, 1H, H-1a), 2.40 (m, 1H, H-1b), 3.54 (m, 1H, H-2), 2.50 (m, 1H, H-4a), 2.70 (m, 1H, H-4b), 7.00 (d, 1H, 2.1 Hz, H-5), 6.78 (d, 1H, 2.1 Hz, H-7), 3.88 (s, 3H, H-11), 1.16 (s, 3H, H-12), 12.24 (br, 1H, OH-8);13C NMR (100 MHz, DMSO)δ: 35.8 (C-1), 70.2 (C-2), 69.0 (C-3), 29.4 (C-4), 142.3 (C-4a), 105.6 (C-5), 165.4 (C-6), 106.9 (C-7), 163.8 (C-8), 108.9 (C-8a), 183.1 (C-9), 142.7 (C-9a), 187.8 (C-10), 133.3 (C-10a), 56.3 (C-11), 25.2 (C-12); 以上数据与文献[8]报道对照基本一致,故鉴定7为Tetrahydroaltersolanol B。

化合物8:无色针状晶体,溶于丙酮和甲醇;ESI-MSm/z:307 [M-H]-;C16H20O6;1H NMR (400 MHz, acetone-d6)δ:6.37 (d, 1H, 2.45 Hz, H-6), 6.73 (dd, 1H, 2.45,1.21 Hz, H-8), 4.28 (dd, 1H, 7.64, 5.68 Hz, H-9), 3.79 (dd, 1H, 6.80 Hz, 10.21 Hz, H-3), 2.38 (dd, 3H, 3.76, 6.12 Hz, H-4a), 1.97 (ddd, 1H, 12.0, 5.98, 3.68 Hz, H-9a), 3.82 (s, 3H, OCH3-11), 1.23 (d, 1H, 12.0 Hz, H-1a); 2.19 (dd, 1H, 3.72, 6.84 Hz, H-1b); 1.46 (dd, 1H, 12.4, 12.0 Hz, H-4a); 2.12 (ddd, 1H, 4.0, 4.0, 6.76 Hz, H-4b); 1.16 (s, 3H, H-12); 12.89(s, 1H, OH-5); 5.61(d, 1H, 7.52 Hz, OH-9); 4.42(d, 1H, 6.40 Hz, OH-3); 3.76(s, 1H, OH-2);13C NMR (100 MHz,aceton-d6)δ:42.0 (C-1), 69.5(C-2), 73.5(C-3), 29.3(C-4), 47.0(C-4a), 164.5(C-5), 99.1 (C-6), 165.9 (C-7), 104.0(C-8), 151.60 (C-8a), 70.7(C-9), 41.2(C-9a), 202.9 (C-10), 109.2 (C-10a), 55.7(C-11), 27.1 (C-12)。以上数据与文献[10]报道对照基本一致,故鉴定化合物8为Tetrahydroaltersolanol D。

3 结果与讨论

化合物1和2、3和4,均是由单体化合物通过C-5-C-5’键合形成的二聚物,而C-6和C-10a与C-6’和C-10a’关于键轴C-5-C-5’具有不对称性,因而形成轴手性,而四氢蒽醌类化合物二聚体的CD光谱的曲线趋势主要由化合物的轴手性贡献的[16]。通过比对文献[17-18],对比CD光谱谱图,推断出化合物1和3均为轴手性aR型,化合物2和4均为轴手性aS。

蒽醌类化合物普遍有多种生物活性,如抗肿瘤、抗菌消炎、舒张心血管等作用[19],还有些蒽醌类化合物对中枢神经系统有作用,如金丝桃素,被国内外认为是具有抗老年痴呆、促智、抗抑郁等方面的中枢神经系统的药物[20-21]。本文对8个蒽醌类化合物进行了抗人乳腺癌细胞株MCF-7/ADR、MDA-MB-435、人肝癌细胞株Hep3B、HepG2、人前列腺癌细胞株PC-3、人结肠癌细胞株HCT-116和子宫癌细胞株Hela等方面活性的筛选,并进行了α-葡萄糖苷酶的抑制活性试验,实验发现多数化合物没有明显的抗肿瘤活性,也没有明显抑制α-葡萄糖苷酶的活性。依据化合物的抗肿瘤细胞株活性实验结果,结合化合物的结构,可以发现具有环己烯结构的四氢蒽醌是活性官能团,当环己烯结构中尚有亚甲基未被羟基或甲基取代时,化合物具有活性,可以推断出亚甲基是该类型化合物的活性位点,这种情况在黄才欢等[9]的研究中也发现过。由于没有测试化合物7的抗肿瘤细胞株活性,因此需要进一步通过实验验证。

[1] CHE N W, BEN-ERIK V W, ILZE V, et al. Cape aloes- A review of the phytochemistry, pharmacology and commercialsation ofAloeferox[J]. Phytochemistry Letters, 2012, 5(1): 1-12.

[2] VERTIKA S, GEETA P J, RAWAT M S M. Lichens as a potential natural source of bioactive compounds: a review[J]. Pytochemistry Reviews, 2010, 9: 303-314.

[3] BHUWAN B M, DESH D S, NAVNEET K, et al. Antifungal constituents isolated from the seeds ofAeglemarmelos[J]. Phytochemistry, 2010, 71(2/3):230-234.

[4] LOCATELLI M. Anthraquinones: analytical techniques as a novel tool to investigate on the triggering of biological targets[J]. Current Drug Targets, 2011, 12(3):366-380.

[5] 李永芳,王宏雄,许佳怡,等.海百合Comanthinaschlegeli共附生真菌Alternariabrassicae93次级代谢产物研究[J].中山大学学报(自然科学版),2015,54(4):75-78.

[6]KEIICHIROO,RIKISAKUS,MSAKAZUK,etal.BiosynthesesofalterporriolDandEbyAlternariaporri[J]. Phytochemistry, 1991, 30(8): 2593-2595.

[7] RIKISAKU S, KENICHI H, MASAKAZU K, et al. Production of alterporriols, altersolanols and macrosporin byAlternariaporriandA.Solani[J]. Phytochemistry, 1990,29(5):1509-1511.

[8] PREECHA P, JAKAPHAN R, PNGPAN S, et al. New antitumour fungal metabolites fromAlternariaporri[J].Natural Product Research: Formerly Natural Product Letters. 2009, 23(12): 1063-1071.

[9] HUANG C, PAN J, CHEN B, et al. Three bianthraquinone derivatives from the mangrove endophytic fungusAlternariasp. ZJ9-6B from the South China Sea[J]. Marine Drugs, 2011, 9:832-843.

[10] ZHENG C, SHAO C, GUO Z, et al. Bioactive hydroanthraquinones and anthraquinones dimmers from a soft coral derivedAlternariasp. Fungus[J]. Journal of Natural Products, 2012, 75(2): 189-197.

[11] NOBUYUKI O, AKIRA Y, HIROYUKI H, et al. Simultaneous high-performance liquid chromatographic determination of altersolanol A, B, C, D, E and F [J]. Journal of Chromatography A, 1993, 630(1/2): 418-422.

[12] NOBUYUKI O, HIROYUKI H, KENSUKE H, et al. Altersolanol-related antimicrobial compounds from a strain ofAlternariasolani[J]. Phytochemistry, 1993, 34(4): 1005-1009.

[13] CHEN B, SHEN Q, ZHU X, et al. The anthraquinone derivatives from the fungusAlternariasp. XZSBG-1 from the Saline Lake in Bange, Tibet, China[J]. Molecules, 2014, 19(10): 16529-16542.

[14] CHEN B, LIU L, ZHU X, et al. Two new macrosporin dimers from the fungusAlternariasp. XZSBG-1[J]. Natural Product Research, 2015, 29(6): 1-5.

[15] DU Z, LIU R, SHAO W, et al. Alpha-glucosidase inhibition of natural curcuminoids and curcumin analogs[J]. European Journal of Medical Chemistry, 2006, 41:213-218.

[16] CHEN H, ZHONG L, LONG Y, et al. Studies on the synthesis of derivatives of marine-derived bostrycin and their structure-activity relationship against tumor cells[J]. Mar Drugs, 2012, 10: 932-952.

[17] SAKI K, MIHO H, TAKANORI M, et al. Absolute stereochemistry of altersolanol A and alterporriols[J]. Chirality, 2012, 24:137-146.

[18] ABDESSAMAD D, AMAL H A, RUANGELIE E E,et al. New anthracene derivatives-structure elucidation and antimicrobial activity[J]. European Journal of Organic Chemistry, 2012: 1351-1359.

[19] 张齐雄, 曹蓓. 蒽醌类化合物生物活性研究现状与展望[J]. 北方药学, 2012, 9(3): 41-42.

[20] 李文敏. 贯叶金丝桃素衍生物的合成及其抗老年痴呆和抗肿瘤活性研究[D]. 广州: 中山大学, 2005.

[21] 张筱, 卢定强, 权静, 等. 贯叶连翘抗抑郁研究进展[J]. 生物加工过程, 2004, 2(1): 11-15.

Tetrahydroanthraquinone derivatives fromAlternariasp. XZSBG-1

CHENBin1,2,PUBUDuoji1,XUAiguo1,LIULan2,3,ZHUXun4,LINYongcheng2,JIANGSiping1

(1. Tibet Platesu Institute of Biology, Lhasa 850001, China;2. School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275 China;3. School of Marine Sciences, Sun Yat-sen University, Guangzhou 510275, China;4. Zhongshan School of Medicine, SunYat-sen University, Guangzhou 510275, China)

To study the secondary metabolites ofAlternariasp. XZSBG-1 from Tibet. The chemical compounds were isolated and purified by silica gel, Sephadex LH-20, ODS-18 column chromatography, and HPLC. Their structures were characterized by NMR and MS analyses. The antitumor and enzyme inhibitory activities were investigated using MTT and colourimetry methods, respectively. Eight tetrahydroanthraquinone derivatives were isolated from the extract of the fungal strainAlternariasp. XZSBG-1, and their structures were determined to be Alterporriol F’ (1),Alterporriol G’ (2), Alterporriol F (3), Alterporriol G (4), Altersolanol A (5), Altersolanol F (6), Tetrahydroaltersolanol B (7) and Tetrahydroaltersolanol D (8). Only the compound 6 showed obvious inhibitory activity against HCT-116 and HeLa cell lines with the IC50values 3.026 and 8.094 μmol/L, respectively.

Alternariasp.; secondary metabolites; tetrahydroanthraquinones; antitumor activity

10.13471/j.cnki.acta.snus.2016.01.016

2015-07-03

西藏自治区科技计划重点资助项目 (毛瓣绿绒蒿等濒危藏药材次级代谢及其与宿主互惠共存关系的研究,2011)

陈彬(1977年生),男;研究方向:天然产物化学,特殊真菌次级代谢;通讯作者:蒋思萍,林永成;E-mail:tpibjiangsp@126.com, ceslyc@mail.sysu.edu.cn

O629.9

A

0529-6579(2016)01-0091-05

猜你喜欢

蒽醌中山大学糖苷酶
1-氨基蒽醌酰胺类化合物的合成与表征
茶条槭叶化学成分的分离鉴定及其α-葡萄糖苷酶抑制活性研究
中山大学科学家发现治疗新生儿炎症的新方法
我国最大海洋综合科考实习船“中山大学号”下水
中山大学历史地理信息系统(SYSU-HGIS)实验室简介
蒽醌法制备H2O2工艺中溶剂对γ-Al2O3 再生蒽醌降解物的影响
一击止“痛”!450余水产人聚焦第九届中山大学水产饲料技术创新大会,教你从百亿到百年
巴戟天中蒽醌类化合物及生物活性研究
木蝴蝶提取物对α-葡萄糖苷酶的抑制作用
Ce3+改性Hβ分子筛催化合成乙基蒽醌的性能研究