APP下载

加气滴灌提高大棚甜瓜品质及灌溉水分利用效率

2016-04-09牛文全张若婵王京伟张明智西北农林科技大学水土保持研究所杨凌700西北农林科技大学水利与建筑工程学院杨凌700

农业工程学报 2016年1期
关键词:利用效率甜瓜灌水

李 元,牛文全,※,许 健,张若婵,王京伟,张明智(.西北农林科技大学水土保持研究所,杨凌700;.西北农林科技大学水利与建筑工程学院,杨凌700)



加气滴灌提高大棚甜瓜品质及灌溉水分利用效率

李元1,牛文全1,2※,许健1,张若婵2,王京伟1,张明智2
(1.西北农林科技大学水土保持研究所,杨凌712100;2.西北农林科技大学水利与建筑工程学院,杨凌712100)

摘要:为揭示加气频率和滴灌带埋深等对甜瓜产量、品质及水分利用效率的影响,以甜瓜(陕甜一号)为研究对象,采用追加正交试验设计,研究不同加气频率、地下滴灌带埋深及灌水控制上限对大棚甜瓜果实形态、产量、品质及灌溉水分利用效率的影响。结果表明:对果实形态、品质及产量影响的大小顺序依次为加气频率、滴灌带埋深和灌水控制上限。对水分利用效率的影响大小顺序依次为灌水控制上限、加气频率和滴灌带埋深。根区加气能够显著改善果实产量及品质,滴灌带埋深为25 cm,每天加气1次品质及果实形态指标最好,产量最高。灌水量控制在田间持水量的80%时,果实可溶性固形物含量最高,但灌水量为70%田间持水量时,可溶性总糖、产量、水分利用效率最高。综合考虑,最优处理组合为滴灌带埋深25 cm,每天通气一次,灌水控制上限为70%田间持水量。

关键词:灌溉;土壤;品质控制;甜瓜;根区加气;地下滴灌;产量;灌溉水分利用效率

李元,牛文全,许健,张若婵,王京伟,张明智.加气滴灌提高大棚甜瓜品质及灌溉水分利用效率[J].农业工程学报,2016,32(01):147-154.doi:10.11975/j.issn.1002-6819.2016.01.020 http://www.tcsae.org

Li Yuan, Niu Wenquan, Xu Jian, Zhang Ruochan, Wang Jingwei, Zhang Mingzhi.Aerated irrigation enhancing quality and irrigation water use efficiency of muskmelon in plastic greenhouse[J].Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(01): 147-154.(in Chinese with English abstract)doi:10.11975/j.issn.1002-6819.2016.01.020 http://www.tcsae.org

0 引言

甜瓜(Cucumis melo L.)是葫芦科(Cucurbitaceae)甜瓜属(Cucumis)一年生草本植物,是世界各国普遍种植的瓜类作物。2013世界粮农组织(FAO)数据显示全球甜瓜总产量2946.3万t,中国约占全球总产量的48.6%。其次,土耳其、伊朗和埃及也是甜瓜的主要生产国[1]。甜瓜又分为厚皮甜瓜和薄皮甜瓜两个亚种,著名的哈密瓜也是甜瓜的变种之一[2]。甜瓜果肉松脆多汁、含糖量高、富含多种维生素,且具有特殊芳香气味,因此深受消费者喜爱[3-4]。然而,品质低劣,产量低下一直困扰着甜瓜生产,其中水资源短缺和根际低氧胁迫是限制产量和品质提升的重要因素。甜瓜对水分十分敏感,水分亏缺易造成甜瓜减产,而过量灌溉易造成品质降低和根区低氧胁迫,且无效蒸腾加大,造成水资源浪费[5]。

地下滴灌将毛管埋设在地面以下,能够减少土壤表层无效蒸发,与地表滴灌相比更为节水[6]。其次,地埋配水设施还能够有效防止肥分下移,延缓管材老化速度,除杂、施肥、耕地等日常田间管理更为简便[7]。地下滴灌的经济效益显著,和地表滴灌、沟灌相比能够在更少的灌水量下获得更高的产量,因此在水源稀缺地区有着广阔的应用前景[8-10]。

土壤中的氧与水分、养分同等重要,根系需要持续的氧供应来维持呼吸以保障生理功能的正常运转。土壤中的氧来源于气体介质扩散到根区的氧和土壤水中的溶解氧。然而,地下滴灌下植株主根区常集中于灌溉土壤湿润体当中,菲克定律表明25℃下氧气在气体中的扩散速率(0.176 cm2/s)约是水体中扩散速率(2.6×10-5cm2/s)的6769倍[11]。因此,根系获取的氧主要来源于土壤气体,这也解释了表层土壤根系密度大于深层以及水培植物需要连续加气的原因[12]。

近年来,设施农业发展迅速,然而过度灌溉、农业机械碾压、过量施肥土壤板结、少中耕等人为因素均可能导致土壤紧实,减小土壤孔隙度,造成根区低氧胁迫。一些自然因素,如地下水位过高、降雨、黏土或黏壤土条件下耕作也常导致土壤中氧含量的降低,限制作物产量、品质的提升[13]。大棚种植与室外大田种植不同,大棚内土壤的践踏频率远高于大田土壤。大棚内次表土层(16~30 cm)平均容重有随耕作年限增加而增加的规律[14]。且大棚内土壤通常以一季一次的浅耕为主,这就造成了耕层以下土壤板结、通透性差,作物根区低氧胁迫时有发生。前人研究表明,番茄低氧胁迫下叶绿素含量和光合速率降低、果实提早成熟、果实氨氮含量显著升高,维生素C和番茄红素降低[15],甜瓜根际CO2浓度升高或氧含量降低植株生长受到抑制,可溶性蛋白含量降低,谷氨酸合成酶、硝酸盐、氨基酸、热稳定蛋白、多胺及H2O2含量均升高,根系有氧呼吸受到明显抑制,果实发育受到影响[16-19]。

改善土壤气体环境能够间接增强根区土壤酶活性,提高根系有氧呼吸,改善水肥吸收速率,利于作物生长发育,提高产量[20-24]。目前已初步探明,加气灌溉能够改善甜瓜口感风味,同时获得更好的果型指数以取得更好的经济效益[25]。然而目前加气灌溉对甜瓜品质的研究还不够深入,缺乏系统性,不同加气灌溉参数对甜瓜品质的影响尚不完全明确。为解除根区低氧胁迫同时达到节水的目的,本研究在大棚内开展试验,借助气泵和地下滴灌带为黏壤土种植下甜瓜根区供水、供气。旨在阐明加气灌溉对甜瓜品质的影响规律,以期得出适宜的水、气、滴灌带埋深组合,为加气灌溉下甜瓜增产及改善品质提供相关理论依据和实践指导。

1 材料与方法

1.1试验地概况及供试材料

试验于2014年4—7月在陕西杨凌大寨村(E108°02′,N34°17′)大棚内进行,大棚长108 m,宽8 m,脊高3.8 m。年均日照时数2 163.8 h,无霜期210 d。大棚前茬种植作物为番茄,试验用土为当地塿土,土样基本物理性质如表1所示。

表1 供试土样基本物理性质Table 1 Physical properties of tested soil

供试甜瓜品种为陕甜一号,购自杨凌西北农林科大新天地设施农业开发有限公司,大棚内穴盘育苗,20 d秧龄时选取长势一致的种苗移栽,定植时统一用沟灌灌水,定植后覆膜,定植时间为2014年4月24日。每个栽培小区长5.5 m,宽1.5 m。种植行距50 cm,株距40 cm,每个小区种植26株。定植前小区内预埋直径16 mm,滴头间距30 cm的两条地下滴灌带,两地下滴灌带间距50 cm。滴灌带干管与气泵相连,借助地下滴灌带为作物供水、供气。所有小区施肥、打药等田间管理措施均一致。

1.2试验设计

试验设3水平灌水上限、4水平加气频率、3水平地下滴灌带埋深。采用部分追加正交试验设计。即两张L9(34)正交表叠加后剔除重复,得到L12(4×32)准正交表。两张正交表滴灌带埋深均设10、25、40 cm 3个梯度;灌水上限均设70%、80%、90%田间持水量3个梯度;加气频率分别设不加气、1 d一次、2 d一次3个梯度和1 d一次、2 d一次、4 d一次3个梯度。剔除重复后共12个处理(表2),随机区组排列,3次重复。

每次加气量为

式中V为每次加气量,L;S为垄的横截面积,1 500 cm2;L为垄长,550 cm;ρb为土壤容重,1.34 g/cm3;ρs为土壤密度,2.65 g/cm3。据此得出每个小区加气量为407.83 L,按照气泵铭牌标示功率及出气量换算为相应的加气时间,以时间控制加气量,于每天17:00-19:00间一次性加气,试验中不考虑土壤中气体的逃逸。

灌水量依据公式(2)计算

式中M为灌水量,m3;s为计划湿润面积,5.5 m2;h为湿润层深度,0.2 m;θf为田间最大持水量,质量含水量,%;q1、q2分别为灌水上限、土壤实测含水率,质量含水率,%;η为水分利用系数,地下滴灌取值0.95。用烘干法测定土壤含水量,全生育期共灌水共3次,定植时漫灌,各小区灌水量相同,定植后25 d和54 d各灌水一次,每次补充水分至试验设计所需水分。

表2 试验处理方案Table 2 Experimental design of aeration

1.3测定指标与方法

1.3.1产量及品质

电子秤称量单果质量和单株产量,并换算成单位面积产量。果实形态指标(果实纵、横径,肉厚)利用电子游标卡尺测定。果实可溶性固形物用手持测糖仪测定[27];可溶性蛋白质采用考马斯亮蓝G-205染色法测定[27];可溶性总糖采用蒽酮比色法测定,有机酸用碱滴定法测定,并计算糖酸比(可溶性总糖/可滴定酸)[27-28];维生素C利用钼蓝比色法测定[27]。

1.3.2生长指标及灌溉水分利用效率

株高用米尺测量,茎粗用电子游标卡尺于基茎部测量,测量时间均为打顶前。成熟期对植株地上部分进行刈割,将茎、叶分放入烘箱中于105℃杀青15 min,75℃烘干至恒量用1/100天平称质量。

土壤水分测定采用土钻取土,烘干法测定土壤质量含水率。灌溉水分利用效率(irrigation water use efficiency,IWUE)计算如下:

式中IWUE为灌溉水分利用效率,kg/m3;Y为甜瓜产量或成熟期植株干质量,kg,不含果实部分;I为实际灌水量,m3。

1.4数据处理与分析

试验数据采用Excel软件进行数据整理,采用SPSS22.0软件Duncan’s新复极差法进行显著性检验、交互作用方差分析,OriginPro9.0软件作图。

2 结果与分析

2.1根区通气对甜瓜株高茎粗的影响

由图1可知,加气灌溉对植株打顶前5次株高均有显著影响,对25、40和48 d茎粗有显著性差异。其中18、25、40和48 d株高最高处理均为D10A1I80处理。对茎粗分析发现,25和48 d处理下D25A1I90处理达最大值。48 d时埋深40 cm每天一次和两天一次加气处理株高、茎粗均显著高于4 d加气1次和不加气处理。

图1 根区加气技术对甜瓜株高和茎粗影响Fig.1 Effects of aeration on plant height and stem diameter of muskmelon

2.2不同通气灌溉处理对果实品质的影响

2.2.1对果实形态的影响

加气频率、灌水上限、滴灌带埋深对甜瓜果实形态的影响见表3。D25A1I90、D40A1I70和D25A2I70处理果实纵径达最大值,D25A2I70处理果实横径达最大值,D25A1I90处理果肉厚度达到最大值,每天加气1次处理平均单果质量均达到最大值。滴灌带埋深和加气频率对果实纵、横径,果肉厚、单果质量均有极显著影响,灌水上限仅对单果质量有显著影响。交互作用下,滴灌带埋深和加气频率对果实形态指标均无显著影响,滴灌带埋深和灌水控制上限对果实形态指标均有极显著影响,加气频率和灌水控制上限对果肉厚有显著性影响,对果实纵、横径,单果质量有极显著影响。甜瓜皮厚介于0.19~0.24mm之间,纵横比介于1.12~1.16mm之间,但各处理之间无显著性差异,为节省篇幅该数据在表3中略去。

表3 加气灌溉对甜瓜果实形态的影响Table 3 Effects of aeration on fruit shape of muskmelon

极差分析结果(表4)表明,三因素对果实横径、纵径、果肉厚的影响由大到小依次为:加气频率、滴灌带埋深和灌水控制上限。滴灌带埋深25 cm时,果实横径、纵径、果肉厚达到最大值,埋深40 cm时,果实横径、纵径次之,埋深10 cm时横径、纵径最小,但果肉厚度的最小值出现于埋深40 cm。果实横径、纵径、果肉厚均随加气频率的升高而升高。灌水控制上限对果实形态指标影响较小,控水上限为田间持水量的80%时果形指标均达到最大值,但90%田间持水量时果肉厚度降低。提高果实横径、纵径、果肉厚的最优处理组合为D25A1I80。

2.2.2对果实品质的影响

加气频率、灌水控制上限、滴灌带埋深对果实品质的影响见表5。D40A1I70处理果实总可溶性固形物(total soluble solid,TSS)含量、可溶性蛋白、可溶性总糖含量均达到最大值。D25A1I90处理维生素C含量最高。试验处理对可滴定酸及糖酸比无显著影响。单因素中滴灌带埋深仅对可溶性总糖有显著影响,对其他品质指标均无显著影响。加气频率对边缘TSS含量及可溶性总糖有极显著影响,对中心TSS含量有显著性影响。灌水控制上限对品质指标均无显著性影响。交互作用中,滴灌带埋深和加气频率仅对边缘TSS含量有极显著影响,对其他品质指标均无显著性影响。滴灌带埋深和灌水控制上限对边缘TSS含量及可溶性糖有极显著影响,对中心TSS含量有显著性影响。加气频率和灌水控制上限对边缘TSS含量及可溶性总糖有极显著影响。

表4 根区加气技术对甜瓜果实形态的影响极差分析Table 4 Effects of different factors on fruit shape of muskmelon by range analysis

表5 加气灌溉对甜瓜果实品质的影响Table 5 Effects of aeration on fruit quality of muskmelon

极差分析结果(表6)显示,D25A1I80处理边缘TSS含量达最大值,但D40A1I80处理中心TSS含量达到最大值。埋深25cm下边缘TSS含量最高,但中心TSS含量有随埋深增加而增加的趋势。随加气频率的升高TSS含量均升高,但4天加气一次边缘TSS含量略低于不加气处理。最适宜的灌水控制上限为田间持水量的80%,提高或降低灌水控制上限TSS含量均降低。对可溶性总糖及Vc分析表明,最适宜的埋深均为25cm,埋深40cm可溶性总糖及Vc含量次之,埋深10cm最低。可溶性总糖及Vc含量均随加气频率的升高而升高。可溶性总糖含量随灌水控制上限的升高而降低,灌水上限为90%田间持水量时维生素C含量最高,70%田间持水量维生素C含量次之,80%田间持水量维生素C含量最低。

表6 根区加气技术对甜瓜果实品质的影响极差分析Table 6 Effects of aeration on fruit quality of muskmelon by range analysis

2.3不同通气灌溉处理对甜瓜产量和灌溉水分利用效率的影响

加气灌溉对甜瓜产量及灌溉水分利用效率的影响见表7。D40A1I70处理产量及灌溉水分利用效率均最高,其次,D25A1I90、D25A2I70及D10A1I80处理产量也显著高于其他处理。同等埋深下产量有随加气频率升高而升高的趋势。极差分析表明(表8),三因素对产量水分利用效率的影响由大到小依次为灌水控制上限、加气频率、滴灌带埋深;对产量的影响由大到小顺序依次为加气频率、滴灌带埋深和灌水控制上限。埋深25 cm时产量及产量灌水利用效率均最高,但干物质量灌水利用效率随滴灌带埋深的增加而增加。产量和灌水利用效率均随加气频率的升高而升高。灌水至田间持水量的90%时产量有降低趋势,而水分利用效率均随灌水上限的升高而降低。产量及灌溉水分利用效率的最优处理组合均为D25A1I70。

表7 加气灌溉对甜瓜产量及灌溉水利用效率的影响Table 7 Effects of aeration on fruit yield and IWUE of muskmelon

表8 加气灌溉对甜瓜产量及灌溉水利用效率的影响极差分析Table 8 Effects of aeration on fruit yield and IWUE of muskmelon by range analysis

3 讨论

作物的产量受自身遗传因子和环境因子的双重影响,植株根际土壤水分、养分、盐分、气体、温度和紧实度是影响作物产量的主要土壤环境因子[29]。土壤气体对植株的作用与土壤水、养分同等重要,低氧胁迫导致作物蒸腾减少,养分吸收受到限制,抑制植株生长,必然会影响到作物的产量及品质[30-31]。然而土壤中水气两相是一对矛盾体,传统灌溉方式在满足作物水分需求的同时,驱排土壤气体,导致土壤中氧含量降低[32]。O2对于作物生长至关重要,在有氧呼吸过程中氧是线粒体电子传递链的电子受体,是有氧呼吸中ATP生成的必备条件之一[31]。前人研究表明,低氧胁迫下根细胞线粒体、蛋白质结构受到破坏,细胞能荷降低,细胞质酸中毒,抑制植株生长,甚至导致死亡[33]。对土壤通气加快了土壤中气体的交换,提高了土壤中氧的含量,保障了根系生理活动的顺利进行。本试验结果表明,采用空气压缩机借助地下滴管带对土壤通气能够有效提高甜瓜品质。土壤通气有效缓解了土壤低氧胁迫,滴灌带埋深决定了水、气的供给位置。

植株通过光合作用合成有机物,积累干物质,株高、茎粗、叶面积等指标是对干物质积累的直接反映[34]。本试验中,甜瓜打顶前株高生长速率呈先快后慢趋势,相同埋深条件下加气处理能够提高株高和茎粗,但对株高和茎粗的影响规律并不一致。

大量研究表明,加气灌溉能够提高作物产量,但对果实形态的研究相对不足。本研究中,加气处理能够改善根际土壤气体环境,提高果实横、纵径及果肉厚,进而增加了单果质量,且果实横、纵径及果肉厚均随加气频率的升高而升高。该结论与前人对多种作物研究结论相一致[23,35-36]。最适宜的滴灌带埋深为25 cm,是由于甜瓜主根系多集中于地下30 cm范围内,滴灌带埋深10 cm供气位置处于主根区之上,气体逸散严重,根系实际获取到的氧相对不足,加气效率低。且地表10 cm范围内土壤气体与大气进行气体交换相对充足,该区域根区氧胁迫并不严重,所以10 cm范围内加气效益并不显著。而40 cm埋深滴灌带位于植株主根区之下,加气过程中气体上行,虽能够在一定程度上缓解根区低氧胁迫,但效益并不如埋深25 cm的好。灌水控制上限对果实形态影响并不显著,但90%田间持水量下果肉厚有降低趋势。是由于甜瓜的需水规律为前期小,中期大,后期小的特点[37],过量灌水导致营养生长阶段植株徒长,对生殖生长阶段造成不利影响。

根区通气改善了根际氧环境,保障了植株生理功能的正常运转,对果实品质有一定的提升作用。本研究表明,加气灌溉下TSS含量、可溶性总糖及维生素C均得到提升。可溶性固形物直接反映了甜瓜总营养物质含量,决定了果实的品质,是糖、酸、维生素、矿物质等多种成分的混合物[38]。其含量的高低直接影响甜瓜的营养价值、甜度、酸度及风味。前人研究表明,灌水或施肥过高或过低均会导致果实可溶性固形物的降低,这与本研究结果相似[5,39]。加气处理能够提高果实边缘和中心部位TSS,但4 d加气1次处理TSS略有降低趋,其原因尚不明确,可能是由于4 d加气一次处理使得土壤中部分好氧性微生物活动增强,而土壤中低氧胁迫又未完全解除,因此形成了土壤中部分好氧性微生物与植株根系竞争根区养分及氧,导致甜瓜TSS含量比不通气处理略有降低。中心TSS含量随滴灌带埋深的增加而增加,但埋深25 cm时边缘TSS含量最高。本试验还发现,加气处理及三因素之间的交互作用对果实边缘TSS含量的影响大于中心部位。

本研究发现灌水控制上限由田间持水量的70%提升到80%维生素C含量有降低趋势,与前人研究得到适度亏缺灌溉维生素C含量增加相一致[40-41]。可溶性总糖随灌水上限的升高呈降低趋势,是由于过量灌水对果实可溶性总糖有稀释作用[42]。可溶性总糖和维生素C含量均随加气频率的升高而升高。埋深25 cm时可溶性总糖和VC含量均最高,是由于根系主根区集中于地下30 cm范围内,埋深25 cm为根系供水供气效益最为佳,过深或过浅都不利于根区水、气供应。

试验处理对水分利用效率和产量的影响与品质影响规律相似,水分利用效率和产量均随加气频率的升高而升高,该结论与Mohamed得到加气条件下IWUE、产量高于滴灌和地下滴灌相一致[43]。滴灌带埋深25 cm、灌水控制上限为70%田间持水量时产量和水分利用效率均最高。

4 结论

1)对果实形态、品质和产量影响的大小顺序依次为:加气频率、滴灌带埋深和灌水控制上限。对灌溉水分利用效率影响的大小顺序依次为:灌水控制上限、加气频率、和滴灌带埋深。

2)加气处理能够增加果肉厚度、果实横、纵径,提高单果质量及水分利用效率。对于甜瓜品质,加气处理能够提高TSS含量、维生素C和可溶性总糖含量。

3)滴灌带埋深25 cm,每天加气1次,灌水控制上限为田间持水量的70%处理产量、可溶性糖含量及水分利用效率最高;滴灌带埋深25 cm,每天加气1次,灌水控制上限为田间持水量的80%处理下果实形态、TSS含量达最高值;滴灌带埋深25 cm,每天加气1次,灌水控制上限为田间持水量的90%处理下维生素C含量最高。对产量、品质、水分利用综合考虑,可选择滴灌带埋深25 cm,每天加气1次,灌水控制上限为田间持水量的70%处理组合为陕西关中地区大棚甜瓜适宜的加气灌溉方式。

[参考文献]

[1] FAOSTAT.http://faostat3.fao.org/browse/Q/QC/E.

室温下,将有涂层和无涂层的Q235钢片样品分别浸泡模拟海水中,试验中发现,有涂层样品浸泡34天后,涂层表面没有出现任何裂纹,所泡盐水也没有出现黄色的腐蚀产物;无涂层样品浸泡6 h后溶液中出现大量的褐色腐蚀物.有涂层的原始样品在模拟海水中室温浸泡不同时间的照片如图7所示.图7显示,有涂层的样品在模拟海水中室温浸泡不同时间后,其颜色仍全是银白色的,没有受海水腐蚀的影响.

[2]伊鸿平,吴明珠,冯炯鑫,等.中国新疆哈密瓜资源与品种改良研究进展[J].园艺学报,2013(9):1779-1786.Yi Hongping, Wu Mingzhu, Feng Jiongxin, et al.Advances in genetic improvement of Hami Melon in Xinjiang, China[J].Acta Horticulturae Sinica, 2013(9): 1779-1786.(in Chinese with English abstract)

[3] Lin D, Huang D F, Wang S P.Effects of potassium levels on fruit quality of muskmelon in soilless medium culture[J].Scientia Horticulturae, 2004, 102(1):53-60.

[4] Beaulieu J C, Grimm C C.Identification of volatile compounds in cantaloupe at various developmental stages using solid phase microextraction[J].Journal of Agricultural and Food Chemistry, 2001, 49(3): 1345-1352.

[5]李毅杰,原保忠,别之龙,等.不同土壤水分下限对大棚滴灌甜瓜产量和品质的影响[J].农业工程学报,2012(06):132-138.Li Yijie, Yuan Baozhong, Bie Zhilong, et al.Effects of drip irrigation threshold on yield and quality of muskmelon in plastic greenhouse[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2012(06): 132-138.(in Chinese with English abstract)

[6] Payero J O, Tarkalson D D, Irmak S, et al.Effect of irrigation amounts applied with subsurface drip irrigation on corn evapotranspiration, yield, water use efficiency, and dry matter production in a semiarid climate[J].Agricultural Water Management, 2008, 95(8): 895-908.

[7]吕谋超,冯俊杰,翟国亮.地下滴灌夏玉米的初步试验研究[J].农业工程学报,2003(01):67-71.Lu Mouchao, Feng Junjie, Zhai Guoliang.Preliminary test of soil water influence on root system and yield of summer corn in subsurface drip irrigation[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2003 (01): 67-71.(in Chinese with English abstract)

[8]何华,康绍忠.地下滴灌的经济与环境效益研究综述[J].西北农业大学学报,2000(3):79-83.He Hua, Kang Shaozhong.The economic and environmental effect of subsurface drip irrigation[J].Acta Univ.Agric.Borealioccidentalis,2000(3):79-83.(inChinesewithEnglishabstract)

[9] Lamm F R, Trooien T P.Subsurface drip irrigation for corn production:a review of 10 years of research in Kansas [J].Irrigation Science, 2003, 22(3-4): 195-200.

[11] Cussler E L.Diffusion:Mass transfer in fluid systems(2nd ed.)[M].New York: Cambridge University Press, 1997.

[12] Wu C, Ye Z H, Li H, et al.Do radial oxygen loss and external aeration affect iron plaque formation and arsenic accumulationand speciation in rice?[J].Journal of Experimental Botany, 2012, 63(8): 2961-2970.

[13] Blokhina O.Antioxidants, Oxidative damage and oxygen deprivation stress:a review [J].Annals of Botany, 2003, 91(2): 179-194.

[14]王国庆,何明,封克.温室土壤盐分在浸水淹灌作用下的垂直再分布[J].扬州大学学报,2004(3):51-54.Wang Guoqing, He Ming, Feng Ke.Salt redistribution on soil profiles in greenhouse under the leaching flooding[J].Journal of Yangzhou University(Agricultural and Life Science Edition), 2004(3): 51-54.(in Chinese with English abstract)

[15] Horchani F, Gallusci P, Baldet P, et al.Prolonged root hypoxia induces ammonium accumulation and decreases the nutritional quality of tomato fruits[J].Journal of Plant Physiology, 2008, 165 (13): 1352-1359.

[16] Gao H B, Jia Y X, Guo S R, et al.Exogenous calcium affects nitrogen metabolism in root-zone hypoxia-stressed muskmelon roots and enhances short-term hypoxia tolerance[J].Journal of Plant Physiology, 2011, 168(11): 1217-1225.

[17]李天来,陈亚东,刘义玲,等.根际CO2浓度对网纹甜瓜根系生长和活力的影响[J].农业工程学报,2009(04):210-215.Li Tianlai, Chen Yadong, Liu Yiling, et al.Effects of rhizosphere CO2concentration on root growth and activity of netted muskmelon[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2009(04): 210-215.(in Chinese with English abstract)

[18]刘义玲,孙周平,李天来,等.根际CO2浓度升高对网纹甜瓜光合特性及产量和品质的影响[J].应用生态学报,2013(10): 2871-2877.Liu Yiling, Sun Zhouping, Li Tianlai, et al.Effects of elevated rhizosphere CO2concentration on the photosynthetic characteristics, yield, and quality of muskmelon[J].Chinese Journal of Applied Ecology, 2013(10): 2871-2877.(in Chinese with English abstract)

[19]刘义玲,李天来,孙周平,等.根际CO2浓度对网纹甜瓜生长和根系氮代谢的影响[J].中国农业科学, 2010(11):2315-2324.Liu Yiling, Li Tianlai, Sun Zhouping, et al.Effects of rhizosphere CO2concentration on plant growth and root nitrogen metabolism of muskmelon[J].Scientia Agricultura Sinica, 2010(11): 2315-2324.(in Chinese with English abstract)

[20]李元,牛文全,张明智,等.加气灌溉对大棚甜瓜土壤酶活性与微生物数量的影响[J].农业机械学报,2015, 46(8):54-62.Li Yuan, Niu Wenquan, Zhang Mingzhi, et al.Effects of aeration on rhizosphere soil enzyme activities and soil microbes for muskmelon in plastic greenhouse[J].Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(8): 54-62.(in Chinese with English abstract)

[21] Heuberger H, Livet J, Schnitzler W.Effect of soil aeration on nitrogen availability and growth of selected vegetablespreliminary results[J].Acta Hort., 2001, 563: 147-154.

[22] Ityel E, Ben-Gal A, Silberbush M, et al.Increased root zone oxygen by a capillary barrier is beneficial to bell pepper irrigated with brackish water in an arid region[J].Agricultural Water Management, 2014, 131: 108-114.

[23] Niu W Q, Fan W T, Naraine P, et al.Effect of post-irrigation aeration on growth and quality of greenhouse cucumber [J].Pedosphere, 2013, 23(6): 790-798.

[24] Pendergast L, Bhattarai S P, Midmore D J.Benefits of oxygation of subsurface drip-irrigation water for cotton in a Vertosol [J].Crop & Pasture Science, 2013, 64: 1171-1181.

[25]谢恒星,蔡焕杰,张振华.温室甜瓜加氧灌溉综合效益评价[J].农业机械学报,2010(11):79-83.Xie Hengxing, Cai Huanjie, Zhang Zhenhua.Evaluation of comprehensive benefit in greenhouse muskmelon under aeration irrigation[J].Transactions of the Chinese Society for Agricultural Machinery, 2010(11): 79-83.(in Chinese with English abstract)

[26]裴芸,别之龙.塑料大棚中不同灌水量下限对生菜生长和生理特性的影响[J].农业工程学报,2008(09):207-211.Pei Yun, Bie Zhilong.Effects of different irrigation minima on the growth and physiological characteristics of lettuce under plastic greenhouse[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2008(09): 207-211.(in Chinese with English abstract)

[27]李合生.植物生理生化实验原理和技术[M].高等教育出版社,2006.

[28]高俊凤.植物生理学实验指导[M].北京:高等教育出版社,2006.

[29] Boyer J S.Plant productivity and environment[J].Science, 1982, 218(4571): 443-448.

[30] Morard P, Silvestre J.Plant injury due to oxygen deficiency in the root environment of soilless culture:A review [J].Plant and Soil, 1996, 184(2): 243-254.

[31] Biemelt S, Keetman U, Albrecht G.Re-aeration following hypoxia or anoxia leads to activation of the antioxidative defense systeminrootsofwheatseedlings1[J].Plant Physiol, 1998, 116(2): 651-658.

[32] Rieu M, Sposito G.Fractal fragmentation, soil porosity, and soil water properties: I.theory[J].Soil Science Society of America Journal, 1991, 55(5): 1231-1238.

[33] Drew M C.Oxygen deficiency and root metabolism:injury and acclimation under hypoxia and anoxia[J].Annu Rev Plant Physiol Plant Mol Biol., 1997(48): 223-250.

[34]邹志荣,李清明,贺忠群.不同灌溉上限对温室黄瓜结瓜期生长动态、产量及品质的影响[J].农业工程学报,2005(S2): 77-81.Zou Zhirong, Li Qingming, He Zhongqun.Effects of different irrigation maximums on growth dynamics, yield and quality of cucumber during fruit-bearing stage in green house [J].Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2005(S2): 77-81.(in Chinese with English abstract)

[35] Chen X M, Dhungel J, Bhattarai S P, et al.Impact of oxygation on soil respiration, yield and water use efficiency of three crop species[J].Journal of Plant Ecology, 2011, 4(4): 236-248.

[36] Bhattarai S P, Midmore D J.Oxygation enhances growth, gas exchange and salt tolerance of vegetable soybean and cotton in a saline vertisol[J].Journal of Integrative Plant Biology, 2009, 51 (7): 675-688.

[37]曾春芝.不同水分处理对大棚滴灌甜瓜产量与品质的影响[D].武汉:华中农业大学,2009.Ceng Chunzhi.Effects of Different Water Treatments on Yield and Quality of Drip-irrigated Muskmelon in Plastic Greenhouse [D].Wuhan: Huazhong Agricultural University, 2009.(in Chinese with English abstract)

[38]赵志华,李建明,潘铜华,等.水氮耦合对大棚甜瓜产量和品质的影响[J].西北农林科技大学学报(自然科学版),2014(9):97-103.Zhao Zhihua, Li Jianming, Pan Tonghua, et al.Effects of water and nitrogen coupling on yield and quality of muskmelon in plastic greenhouse[J].Journal of Northwest A&F University(Nat.Sci.Ed.), 2014(9): 97-103.(in Chinese with English abstract)

[39]李立昆,李玉红,司立征,等.不同施氮水平对厚皮甜瓜生长发育和产量品质的影响[J].西北农业学报,2010(3):150-153.Li Likun, Li Yuhong, Si Lizheng, et al.Effects of different nitrogen levels on growth and development, yield and quality ofmuskmelon[J].Acta Agriculturae Boreali-occidentalis Sinica, 2010(3): 150-153.(in Chinese with English abstract)

[40]刘明池,张慎好,刘向莉.亏缺灌溉时期对番茄果实品质和产量的影响[J].农业工程学报,2005(S2):92-95.Liu Mingchi, Zhang Shenhao, Liu Xiangli.Effects of different deficit irrigation periods on yield and fruit quality of tomato[J].Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2005(S2): 92-95.(in Chinese with English abstract)

[41]齐红岩,李天来,张洁,等.亏缺灌溉对番茄蔗糖代谢和干物质分配及果实品质的影响[J].中国农业科学,2004(7):1045-1049.Qi Hongyan, Li Tianlai, Zhang Jie, et al.Effects of irrigation on sucrose metabolism, dry matter distribution and fruit quality of tomato under water deficit[J].Scientia Agricultura Sinica, 2004 (7): 1045-1049.(in Chinese with English abstract)

[42]郭琳.灌水量对日光温室番茄产量及土壤营养变化的影响[D].郑州:河南农业大学,2014.Guo Lin.The Effect of Different Irrigation Quantities on Tomato Yield and Soild Nutrient Changes in Solar Greenhouse [D].Zhenzhou: Henan Agricultural University, 2014.(in Chinese with English abstract)

[43] Shahien M M, Abuarab M E, Magdy E.Root aeration improves yield and water use efficiency of irrigated potato in sandy clay loam soil[J].International Journal of Advanced Research, 2014, 2(10): 310-320.

Aerated irrigation enhancing quality and irrigation water use efficiency of muskmelon in plastic greenhouse

Li Yuan1, Niu Wenquan1,2※, Xu Jian1, Zhang Ruochan2, Wang Jingwei1, Zhang Mingzhi2
(1.Institute of Soil and Water Conservation, Northwest A&F University, Yangling 712100, China; 2.College of Water Resource and Architectural Engineering, Northwest A&F University, Yangling 712100, China)

Abstract:It is plagued by poor quality and low yields that muskmelon production in the semi-arid climate in China.In addition to soil water, it is well-known that muskmelon plant roots require an adequate and continuous supply of soil air in order to respire, grow, develop, and function normally.Rhizosphere hypoxia effects influence crop yield, shoot and root growth, and quality of production negatively.Hypoxia causes stomatal closure and reduction in transpiration rate, photosynthesis and leaf chlorophyll as well as protein content.Artificial aeration has been shown to promote root metabolism and growth, also it enhanced nutrient absorption and soil redoxase enzyme activity as well as accelerated the growth and yield of vegetables.In this context, under sub-surface drip irrigation, in the wetted portion of the root zone, the possibility of hypoxia is almost certain, especially in heavy soils with slow internal drainage and during the period immediately after irrigation.It was hypothesized that varying the irrigation rate, aeration frequencies and amount along with the depth of the drip irrigation tubing would result in different yield and quality of muskmelon.To explore the influence of root zone aeration frequency, lateral depths of subsurface drip irrigation belt and irrigation amount on fruit yield, quality and irrigation water were used efficiency of muskmelon.The experiment was implemented from April to July 2014 in a 108 m long and 8 m wide greenhouse(E108°02′, N34°17′), located, at Yangling, Shaanxi Province, China.A fractional factorial experiment was designed to study the root system responding to 3 levels of sub-surface drip irrigation in combination with drip-tubing placed at each of 3 depths in the soil, and 4 levels of artificial soil aeration.Based on wetting the soil volume (Vs)in 0.60 cm of the soil profile(Vs=5.5 m2×0.6 m), the irrigation levels were designated as 70%, 80%, and 90% of the gravimetric field capacity, and the drip irrigation placement depths were 10, 25, and 40 cm below the surface of the ridge.Artificial aeration treatments were none or aeration at daily, 2-day, and 4-day intervals.The volume of air in each plot was injected into the drip tubing via a manifold connected to the air compressor.These studies suggest that according to the influence degree on fruit shape(fruit length, diameter and flesh thickness), yield and quality(total soluble solids, soluble protein, titratable acid, soluble sugar and vitamin C content), these factors can be arranged as follow(descending): aeration frequencies, depths of subsurface drip irrigation, irrigation amount; for the use of irrigation water use efficiency of muskmelon.Aeration was suggested to be applied once a day and lateral depths of subsurface drip irrigation was 25 cm, which have positive impact on muskmelon yield, quality(total soluble solids, soluble protein, titratable acid, soluble sugar and vitamin C content), fruit shape(fruit length, diameter and flesh thickness)and irrigation water use efficiency.The content of total soluble solid can reach the maximum when water soil content attended to 80% of the field capacity; the content of total soluble sugar, yield and irrigation water use efficiency can reach the maximum when irrigation amount attended to 70% of the field capacity.Therefore, based on production, quality and water use efficiency, aerating once a day, lateral depth was 25 cm and 70% field capacity would be the most appropriate treatment combination for starting irrigation grows of muskmelon in the plastic greenhouse.For the observed responses, the information on how the muskmelon adapt to artificial soil aeration would provide guidance for field production practices as well as indications of possible mechanisms.

Keywords:irrigation; soils; quality control; muskmelon; rhizosphere aeration; subsurface drip irrigation; yield; irrigation water use efficiency

通信作者:※牛文全,男(汉族),甘肃甘谷人,研究员,博士,博士生导师,主要从事灌溉理论与节水技术研究。杨凌西北农林科技大学水土保持研究所,712100。Email:nwq@nwsuaf.edu.cn,中国农业工程学会会员:E041200504S

作者简介:李元,男(汉族),陕西宝鸡人,博士生,主要从事土壤气体与设施蔬菜栽培研究。杨凌西北农林科技大学水土保持研究所,712100。Email:liy681@nenu.edu.cn

基金项目:国家高技术研究发展计划(863计划)资助项目(2011AA100507)

收稿日期:2015-07-14

修订日期:2015-11-13

中图分类号:S275.6

文献标志码:A

文章编号:1002-6819(2016)-01-0147-08

doi:10.11975/j.issn.1002-6819.2016.01.020

猜你喜欢

利用效率甜瓜灌水
甜瓜的重量
番茄灌水掌握技巧
冬季棚菜灌水四关键
避免肥料流失 提高利用效率
薄皮甜瓜新品种垦甜1号的选育
灌水秘笈
我喜欢吃甜瓜
中甜1号甜瓜
不同白菜品种对锌的响应及锌利用效率研究
嫁接与施肥对番茄产量及氮、磷、钾吸收利用效率的影响