APP下载

髓源性抑制细胞的体外诱导及其应用

2016-03-29韩晨露赵勇李卫国

中国医药生物技术 2016年1期
关键词:骨髓细胞单核细胞免疫抑制

韩晨露,赵勇,李卫国



髓源性抑制细胞的体外诱导及其应用

韩晨露,赵勇,李卫国

作者单位:453007 新乡,河南师范大学生命科学学院(韩晨露、李卫国);100101 北京,中国科学院动物研究所膜生物学国家重点实验室(赵勇)

近来,髓源性抑制细胞(myeloid-derived suppressor cells,MDSCs)在固有免疫和适应性免疫中发挥非常重要的作用,参与多种自身免疫疾病和移植排斥反应[1-2]。MDSCs 是来源于骨髓的一群异质性细胞,由一些髓系祖细胞及树突状细胞(dendritic cells,DCs)、巨噬细胞和粒细胞的前体细胞组成,具有显著抑制免疫细胞应答的能力[3]。小鼠 MDSCs 的表面标志:粒样 MDSCs(G-MDSCs)为 CD11b+Ly6G+Ly6Clow,单核样 MDSCs(M-MDSCs)为CD11b+Ly6G−Ly6Chigh,在癌症、自身免疫性疾病中这两类细胞有不同的功能[4-5]。传统上,人类 MDSCs 被定义为CD14−CD11b+CD33+CD15+细胞,细胞表达 CD33 标记,但不表达骨髓和淋巴细胞的一些成熟标记和 HLA-DR 抗原[6]。

MDSCs 通过许多机制抑制 T 细胞激活,包括提高精氨酸酶-1(arginase-1,Arg-1)活性、增强一氧化氮(nitric oxide,NO)和活性氧(reactive oxygen species,ROS)的产生[3, 7-9]。不同亚型的 MDSCs通过不同机制发挥功能:G-MDSCs 主要通过 ROS,而 M-MDSCs 主要通过精氨酸酶和 NO 发挥其免疫抑制功能[4, 10]。MDSCs 还可以通过其他机制发挥免疫抑制功能,如分泌细胞因子 TGF-β 抑制免疫反应[11-12],消耗半胱氨酸[13],高表达 COX2 和前列腺素 E2(prostaglandin E2,PGE2)、血红素氧合酶-1 (hemeoxygenase-1,HO-1)、酶吲哚胺 2,3 加双氧酶(enzyme indoleamine 2,3 dioxygenase,IDO)、还原型烟酰胺腺嘌呤二核苷酸磷酸氧化酶(nicotinamide adenine dinucleotide phosphate oxidase-2,NOX-2)、下调 T 细胞表面 TCR-ζ 链、质膜分子选择素(CD62L)的表达、诱导调节性 T 细胞(regulatory T cells,Treg)生成[14-21],抑制自然杀伤细胞(natural killer cell,NK)的杀伤作用[22-24],影响 DC 和巨噬细胞功能等发挥其抑制功能[25]。目前,调控MDSCs 的分子机制及 MDSCs 的细胞治疗应用为该领域的研究热点。

1 MDSCs 体外诱导

研究表明,粒-巨噬细胞集落刺激因子(granulocytemacrophage colony-stimulating factor,GM-CSF)等因子可以在体外诱导骨髓细胞及外周单核细胞发育分化为CD11b+Gr-1+MDSCs[26](表1)。下面分别进行简要介绍。

表1 不同细胞因子组合诱导 MDSCs 的效率、表型

续表1

1.1骨髓细胞诱导分化 MDSCs

早期研究表明,体外用 GM-CSF、GM-CSF+ 白细胞介素-4(interleukin-4,IL-4)诱导小鼠骨髓细胞分化为 DCs。但根据细胞因子的浓度大小和刺激时间长短可以诱导免疫抑制性细胞产生[35-36]。体外高浓度GM-CSF 短期(3 ~ 4 d)/低浓度 GM-CSF 长期(8 ~ 10 d)刺激小鼠骨髓细胞产生 CD11b+Gr-1lowCD31+ER-MP58+F4/80+asialoGM1+CD11c−MDSCs,它们通过细胞接触和 NO 机制抑制CD4+T 和CD8+T 细胞应答反应[37]。

粒细胞集落刺激因子(granulocyte colony-stimulating factor,G-CSF)(100 ng/ml)、GM-CSF(250 U/ml)短期(4 d)培养鼠骨髓细胞诱导生成 CD11b+Ly6GlowLy6C+MDSCs,其中绝大多数细胞还表达 IL-4Rα(CD124)+和F4/80+,体外这些细胞通过 Arg-1 消耗精氨酸机制抑制同种异基因 T 细胞应答。与 G-CSF 或 GM-CSF 相比,G-CSF + GM-CSF 或 G-CSF + GM-CSF + IL-13(80 ng/ml)培养骨髓细胞显著增加 CD11b+Gr-1+细胞的产生。相对于其他诱导 Arg-1 的细胞因子(IL-4 和 PGE2 等),外源性 IL-13体外诱导 MDSC 亚型(MDSC-IL-13)产生,表达 CD11c+(60%)、MHC-II+(65%)、Ly6C+(80%)、Ly6Glow(5%)、F4/80+(75%)、CD115+(55%)和 IL4Ra+(55%),显著增强 Arg-1 活力及抑制 T 细胞的同种异体反应[27]。

G-CSF+GM-CSF、GM-CSF+IL-6 短期(4 d)培养鼠骨髓细胞生成 MDSCs,高表达 CD11b、Gr-1 和 IL-4R,依赖于转录因子 CCAAT- 增强子结合蛋白 β(CCAAT enhancer binding proteinsβ,C/EBPβ)显著增强其免疫抑制活性。同样,GM-CSF+G-CSF、GM-CSF+IL-6 短期(4 d)处理人骨髓细胞诱导不成熟 CD11b+CD16−MDSCs 细胞的产生[29],免疫抑制活性依赖 C/EBPβ 转录因子。进一步研究表明,GM-CSF+G-CSF 诱导的 BM-MDSCs中 CD11blow/−/CD16−细胞亚群具有较强的免疫抑制能力,而 CD11b+/CD16−细胞和 CD11b+/CD16+细胞无免疫抑制能力[38]。G-CSF+GM-CSF+IL-6 培养小鼠骨髓细胞 3 d 诱导产生Ly6GhighLy6Cint/lowMDSCs,类似于滑膜液中的 MDSCs。滑膜液 MDSCs 通过产生 NO,显著抑制抗原特异性及多克隆 T 细胞增殖[39]。

研究表明,GM-CSF 可诱导小鼠骨髓细胞产生 DCs,但高浓度脂多糖(lipopolysaccharides,LPS)早期或长期处理 BM-DCs 培养体系能够阻断 DC 分化成熟,产生体外能够诱导同种异体抗原特异性 T 细胞无应答的不成熟细胞[30]。进一步研究表明,LPS/IFN-γ 刺激 3 d BM-GM-CSF 培养体系,能显著抑制骨髓细胞向 DCs 分化,提高 MDSCs 的免疫抑制功能[24]。体外 GM-CSF+LPS 诱导 Lin-骨髓祖细胞生成 CD11b+Gr-1+细胞[40]。

GM-CSF+IL-4 处理视网膜色素上皮(retinal pigment epithelial,RPE)细胞与骨髓细胞共培养 6 d 可诱导产生CD11b+Gr-1+MDSCs,以剂量依赖的方式抑制 T 细胞增殖。深入研究表明视网膜色素上皮细胞表面蛋白和分泌的可溶性因子 IL-6 参与功能性 MDSCs 的诱导[31]。GM-CSF 联合肿瘤外植体培养上清短期处理(3 d)EL-4 荷瘤鼠骨髓细胞中分离的 CD11b+Ly6ChighLy6G−M-MDSCs 可诱导产生免疫抑制性多型核白细胞(polymorphonuclear,PMN)样MDSCs(CD11b+Ly6ClowLy6G+),抑制 T 细胞应答,促进肿瘤进展。正常小鼠单核细胞不能分化为 PMNs,而荷瘤鼠中 M-MDSCs 可以转化为 CD11b+Ly6ClowLy6G+PMN-MDSCs[41]。阿司匹林敏感性哮喘患者肺部CD11b+Gr-1highLy6G+Ly6CintPMN-MDSCs 具有免疫抑制性,可抑制气道炎症。体外实验表明,COX1-PGE2 通过PGE2 受体信号通路介导 BM-MDSCs 扩增,PGE2 促进IL-4/GM-CSF 诱导的骨髓前体细胞产生大量 Ly6C+Ly6G+PMN-MDSCs,激活 PMN-MDSCs 成为治疗支气管哮喘的潜在治疗策略[42]。肝星状细胞(hepatic stellate cells,HSCs)加入到 GM-CSF+IL-4-DC 培养体系中可以促进 HSC-MDSCs产生,高表达 iNOS 和 Arg-1,能显著抑制混合淋巴细胞体系中 T 淋巴细胞的增殖反应[43]。

1.2外周血单核细胞诱导分化 MDSCs

外周血单核细胞(peripheral blood mononuclear cells,PBMCs)由于在循环系统中具有相对丰富的细胞量,可为体外诱导 MDSCs 提供一个方便的细胞来源。研究表明肿瘤模型中扩增和激活 MDSCs 的相关因素,包括生长因子如(stem cell factor,SCF)、VEGF、GM-CSF、G-CSF 和M-CSF[32];细胞因子如 IFN-γ、IL-1β、IL-6、IL-10、IL-12、IL-13、COX2 和 PGE2[3, 44]。体内肿瘤微环境中诱导MDSCs 所需的细胞因子将为体外诱导具有免疫抑制功能MDSCs 的产生提供依据。进一步研究表明,不同细胞因子培养健康人 PBMCs 可诱导不同功能、表型的 MDSCs 产生[45]。

外源性 PGE2 和不同 COX2 激活剂(如 LPS、IL-1β 和 IFN-γ)诱导单核细胞表达 COX2,阻止其向 CD1a+DCs分化和诱导 MDSCs 相关抑制因子 PGE2、IDO1、IL-4Rα、NOS2、IL-10 的产生,PGE2 和 COX2 在诱导人卵巢癌患者体内分离的 CD1a+DCs 向 CD14+CD33+CD34+M-MDSCs 分化中发挥决定性作用[17]。更进一步的研究发现,rhGM-CSF、IL-4、PGE2 处理健康人外周血分离的 CD14+单核细胞(6 d)阻断 DCs 分化,诱导CD1a−DCSIGN−CD14+CD33+CD34+CD80−CD83−-MDSCs产生,高表达 PGE2-COX2、IDO1、诱导型一氧化氮合酶(inducible nitric oxide synthase,iNOS)、IL-10、IL-4Rα 等MDSCs 相关细胞因子抑制细胞毒性 T 淋巴细胞的功能[46]。这些数据表明,COX2 和 PGE2 是参与调控 MDSCs 分化和影响 MDSCs 功能的关键信号分子。多聚肌苷酸多聚胞苷酸(polyiosinic-polycytidylic acid,polyI:C)或者 LPS 刺激 GM-CSF+IL-4 与人 PBMCs 培养体系 24 h,单核样CD14+CD33+HLA-DR−MDSCs 显著增多,通过 IDO 依赖的方式诱导异基因细胞毒性 T 淋巴细胞凋亡,显著增强MDSCs 吞噬凋亡的能力[47]。LPS 或 poly(I:C)激活的MDSCs 成为移植潜在的治疗策略。

人实体瘤细胞与 PBMCs 共培养,体外可产生两种不同的 MDSCs 亚型:CD33+HLA-DRlowHIF1a+/STAT3+及CD11b+HLA-DRlowC/EBPβ+。CD33+MDSCs 的诱导主要依赖肿瘤来源细胞因子 GM-CSF、IL-1β、IL-6、VEGF、PGE2、TNF-α 高表达,CD11b+MDSCs 诱导与酪氨酸激酶受体 3配体(Fms-liket tyrosine kinase 3 ligand,FLT3L)、TGF-β 高表达相关[33]。肝星状细胞通过 CD44 介导的细胞之间的彼此接触来诱导人外周血单核细胞分化为 CD14+HLA−DR−/lowMDSCs[48]。而 HIV gp120 处理健康人外周血细胞产生CD11b+CD33+CD14+HLA-DR−/low细胞。gp120-CD33+细胞产生 IL-10 和诱导 CD4+CD25+FoxP3+Treg 细胞扩增,依赖 iNOS 和 ROS 介导 T 细胞抑制。HIV 患者体内MDSCs 细胞数明显增多,因此探讨 MDSCs 在 HIV 感染中的作用及其诱导因素可为治疗 HIV 提供依据[49]。

1.3其他细胞诱导分化 MDSCs

此外,小鼠胚胎干细胞(embryonic stem cells,ESCs)体外也可诱导功能型 MDSCs 分化。ESCs 诱导的 MDSCs分泌 NO 和 IL-10,诱导 CD4+CD25+Foxp3+Treg 细胞产生,表现较强的抑制活性[50]。IL-17(10 ng/ml)体外能够促进 MMTV-PyMT FVB 荷瘤鼠脾脏中分离的CD11b+Gr-1+MDSCs 分泌 Arg-1、IDO、COX2,增强其抑制能力[51]。GM-CSF、G-CSF、IL-6 培养脐带血来源的CD34+细胞产生不同功能 MDSCs。G-CSF 和(或)IL-6 能显著增加 CD14+HLA-DRlow/−和 CD14+PD-L1+细胞产生,并显著提高 Arg-1 和 C/EBPβ 的表达进而调控 MDSCs 的功能。GM-CSF+IL-6 诱导 Lin−CD34+CD38+CD123+CD45RA+粒-单核系祖细胞的产生,高表达 CD11b、CD14、CD15。GM-CSF+G-CSF 或 GM-CSF+IL-6 诱导产生的CD11b+CD14+CB-MDSCs 能抑制 CD3+、CD3+CD4+、CD3+CD4−T 细胞的增殖,下调 T 细胞表面 CD3+ξ 表达,并且诱导 Foxp3+Treg 细胞的产生[52]。深入研究表明rh-GM-CSF 和 rh-G-CSF 处理人脐带血细胞(4 d),可产生 MDSCs,表达 IDO 选择性诱导扩增 Foxp3+Treg 细胞,具有较强的耐受活性和抑制活性[53]。

2 MDSCs 细胞免疫疗法

过继转移体内分离的功能性 MDSCs 可以有效降低器官移植排斥反应,促进同种异体皮肤、肾脏移植长期存活和预防自身免疫性疾病,如 I 型糖尿病、脑脊髓炎、败血症、肠炎、肝炎、关节炎和肾损伤的发生[34, 54-62]。

一些自身免疫性疾病小鼠模型中,过继转移体外诱导的 MDSCs 能够抑制自身免疫性反应,限制组织损伤。在实验性自身免疫性葡萄膜炎模型中,过继转移体外诱导的MDSCs 能抑制特异性 T 细胞应答,减小葡萄膜炎的发病[31]。在蛋白聚糖诱导的关节炎小鼠模型中,过继转移体外诱导的 BM-MDSCs 可以减弱 PG 特异性 T 细胞应答,减缓关节炎进展[39]。将体外诱导 BM-MDSC-IL-13 注入小鼠体内能更有效地抑制 T 细胞增殖、激活以及分泌 IFN-γ的能力,并能依赖 Arg-1 机制有效抑制移植物抗宿主病(GVHD)[27]。此外,给小鼠过继体外诱导产生的 ES-MDSCs也可以有效防止同种反应性 T 细胞介导的 GVHD[50]。同样,过继转移体外骨髓细胞产生的 GM-CSF/G-CSF-MDSCs能有效抑制 GVHD 死亡率[62]。在 I 型糖尿病小鼠模型中,过继转移体外诱导的 MDSCs 联合 UCB-T 淋巴细胞,能够诱导 Treg 细胞,维持血糖浓度正常,延缓糖尿病发病[53]。

MDSCs 参与移植免疫耐受的诱导,MDSCs 在器官(肾脏、心脏和皮肤)移植部位发挥局部免疫抑制效应,诱导免疫耐受[2]。在同种异体胰岛移植模型中,给糖尿病鼠过继转移体外诱导的 BM-MDSCs,能减少抗原特异性 CD8+T 细胞的功能,有效维持糖尿病小鼠正常血糖浓度,显著地促进胰岛移植长期存活[29]。体内共转移 HSC-MDSCs,能通过Inos 介导的 T 细胞抑制显著延长同种异体胰岛移植存活[43]。过继转移LPS 或者 poly(I:C)激活的 MDSCs 同样具有这种保护机制,成为潜在的移植治疗策略[47]。过继转移实验表明,MDSCs 能够在体内诱导移植免疫耐受反应,延缓移植排斥,使得 MDSCs 成为潜在的临床治疗移植排斥反应的有效方法。

3 小结

体外诱导的 MDSCs 具有抑制自身免疫性疾病、移植排斥反应的功效,利用该细胞过继疗法治疗相关疾病具有潜在临床应用价值。建立稳定的体外诱导 MDSCs 体系将为MDSCs 的临床应用提供重要的技术支撑。然而,到目前为止,体外分化 MDSCs 体系效率低下,而且扩增无法达到显著水平[63]。此外,MDSCs 在实验和临床前研究的治疗效率,特异性及安全性仍待解决。因此,理解 MDSCs 的诱导通路和建立有效的扩增 MDSCs 诱导体系及深入了解MDSCs 体外诱导的分子机制将大大推进 MDSCs 的临床应用。

参考文献

[1] Crook KR, Liu P. Role of myeloid-derived suppressor cells in autoimmune disease. World J Immunol, 2014, 4(1):26-33.

[2] Wu T, Zhao Y, Zhao Y. The roles of myeloid-derived suppressor cells in transplantation. Expert Rev Clin Immunol, 2014, 10(10):1385-1394.

[3] Gabrilovich DI, Nagaraj S. Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol, 2009, 9(3):162-174.

[4] Movahedi K, Guilliams M, Van den Bossche J, et al. Identification of discrete tumor-induced myeloid-derived suppressor cell subpopulations with distinct T cell-suppressive activity. Blood, 2008, 111(8):4233-4244.

[5] Dietlin TA, Hofman FM, Lund BT, et al. Mycobacteria-induced Gr-1+ subsets from distinct myeloid lineages have opposite effects on T cell expansion. J Leukoc Biol, 2007, 81(5):1205-1212.

[6] Schmielau J, Finn OJ. Activated granulocytes and granulocyte-derived hydrogen peroxide are the underlying mechanism of suppression of t-cell function in advanced cancer patients. Cancer Res, 2001, 61(12): 4756-4760.

[7] Bronte V, Zanovello P. Regulation of immune responses by L-arginine metabolism. Nat Rev Immunol, 2005, 5(8):641-654.

[8] Rodriguez PC, Ochoa AC. Arginine regulation by myeloid derived suppressor cells and tolerance in cancer: mechanisms and therapeutic perspectives. Immunol Rev, 2008, 222:180-191.

[9] Sica A, Bronte V. Altered macrophage differentiation and immune dysfunction in tumor development. J Clin Invest, 2007, 117(5):1155-1166.

[10] Youn JI, Nagaraj S, Collazo M, et al. Subsets of myeloid-derived suppressor cells in tumor-bearing mice. J Immunol, 2008, 181(8): 5791-5802.

[11] Yang L, Huang J, Ren X, et al. Abrogation of TGF beta signaling in mammary carcinomas recruits Gr-1+CD11b+ myeloid cells that promote metastasis. Cancer Cell, 2008. 13(1):23-35.

[12] Li H, Han Y, Guo Q, et al. Cancer-expanded myeloid-derived suppressor cells induce anergy of NK cells through membrane-bound TGF-beta 1. J Immunol, 2009, 182(1):240-249.

[13] Srivastava MK, Sinha P, Clements VK, et al. Myeloid-derived suppressor cells inhibit T-cell activation by depleting cystine and cysteine. Cancer Res, 2010, 70(1):68-77.

[14] Rodriguez PC, Hernandez CP, Quiceno D, et al. Arginase I in myeloid suppressor cells is induced by COX-2 in lung carcinoma. J Exp Med, 2005, 202(7):931-939.

[15] De Wilde V, Van Rompaey N, Hill M, et al. Endotoxin-induced myeloid-derived suppressor cells inhibit alloimmune responses via heme oxygenase-1. Am J Transplant, 2009, 9(9):2034-2047.

[16] Jia W, Jackson-Cook C, Graf MR. Tumor-infiltrating, myeloid-derived suppressor cells inhibit T cell activity by nitric oxide production in an intracranial rat glioma + vaccination model. J Neuroimmunol, 2010, 223(1-2):20-30.

[17] Obermajer N, Muthuswamy R, Lesnock J, et al. Positive feedback between PGE2 and COX2 redirects the differentiation of human dendritic cells toward stable myeloid-derived suppressor cells. Blood, 2011, 118(20):5498-5505.

[18] Corzo CA, Cotter MJ, Cheng P, et al. Mechanism regulating reactive oxygen species in tumor-induced myeloid-derived suppressor cells. J Immunol, 2009, 182(9):5693-5701.

[19] Ezernitchi AV, Vaknin I, Cohen-Daniel L, et al. TCR zeta down-regulation under chronic inflammation is mediated by myeloid suppressor cells differentially distributed between various lymphatic organs. J Immunol, 2006, 177(7):4763-4772.

[20] Hanson EM, Clements VK, Sinha P, et al. Myeloid-derived suppressor cells down-regulate L-selectin expression on CD4+ and CD8+ T cells. J Immunol, 2009, 183(2):937-944.

[21] Huang B, Pan PY, Li Q, et al. Gr-1+CD115+ immature myeloid suppressor cells mediate the development of tumor-induced T regulatory cells and T-cell anergy in tumor-bearing host. Cancer Res, 2006, 66(2):1123-1131.

[22] Elkabets M, Ribeiro VS, Dinarello CA, et al. IL-1β regulates a novel myeloid-derived suppressor cell subset that impairs NK celldevelopment and function. Eur J Immunol, 2010, 40(12):3347-3357.

[23] Mundy-Bosse BL, Thornton LM, Yang HC, et al. Psychological stress is associated with altered levels of myeloid-derived suppressor cells in breast cancer patients. Cell Immunol, 2011, 270(1):80-87.

[24] Greifenberg V, Ribechini E, Rössner S, et al. Myeloid-derived suppressor cell activation by combined LPS and IFN-gamma treatment impairs DC development. Eur J Immunol, 2009, 39(10):2865-2876.

[25] Ostrand-Rosenberg S, Sinha P, Beury DW, et al. Cross-talk between myeloid-derived suppressor cells (MDSC), macrophages, and dendritic cells enhances tumor-induced immune suppression. Semin Cancer Biol, 2012, 22(4):275-281.

[26] Bronte V, Apolloni E, Cabrelle A, et al. Identification of a CD11b(+)/Gr-1(+)/CD31(+) myeloid progenitor capable of activating or suppressing CD8(+) T cells. Blood, 2000, 96(12):3838-3846.

[27] Highfill SL, Rodriguez PC, Zhou Q, et al. Bone marrow myeloid-derived suppressor cells (MDSCs) inhibit graft-versus-host disease (GVHD) via an arginase-1-dependent mechanism that is up-regulated by interleukin-13. Blood, 2010, 116(25):5738-5747.

[28] Messmann JJ, Reisser T, Leithäuser F, et al. In vitro-generated MDSCs prevent murine GVHD by inducing type 2 T cells without disabling antitumor cytotoxicity. Blood, 2015, 126(9):1138-1148.

[29] Marigo I, Bosio E, Solito S, et al. Tumor-induced tolerance and immune suppression depend on the C/EBPbeta transcription factor. Immunity, 2010, 32(6):790-802.

[30] Lutz MB, Kukutsch NA, Menges M, et al. Culture of bone marrow cells in GM-CSF plus high doses of lipopolysaccharide generates exclusively immature dendritic cells which induce alloantigen-specific CD4 T cell anergy in vitro. Eur J Immunol, 2000, 30(4):1048-1052.

[31] Tu Z, Li Y, Smith D, et al. Myeloid suppressor cells induced by retinal pigment epithelial cells inhibit autoreactive T-cell responses that lead to experimental autoimmune uveitis. Invest Ophthalmol Vis Sci, 2012, 53(2):959-966.

[32] Saleem SJ, Conrad DH. Hematopoietic cytokine-induced transcriptional regulation and Notch signaling as modulators of MDSC expansion. Int Immunopharmacol, 2011, 11(7):808-815.

[33] Lechner MG, Liebertz DJ, Epstein AL. Characterization of cytokine-induced myeloid-derived suppressor cells from normal human peripheral blood mononuclear cells. J Immunol, 2010, 185(4): 2273-2284.

[34] Dugast AS, Haudebourg T, Coulon F, et al. Myeloid-derived suppressor cells accumulate in kidney allograft tolerance and specifically suppress effector T cell expansion. J Immunol, 2008, 180(12):7898-7906.

[35] Lutz MB, Kukutsch N, Ogilvie AL, et al. An advanced culture method for generating large quantities of highly pure dendritic cells from mouse bone marrow. J Immunol Methods, 1999, 223(1):77-92.

[36] Jin Y, Fuller L, Ciancio G, et al. Antigen presentation and immune regulatory capacity of immature and mature-enriched antigen presenting (dendritic) cells derived from human bone marrow. Hum Immunol, 2004, 65(2):93-103.

[37] Rössner S, Voigtländer C, Wiethe C, et al. Myeloid dendritic cell precursors generated from bone marrow suppress T cell responses via cell contact and nitric oxide production in vitro. Eur J Immunol, 2005, 35(12):3533-3544.

[38] Solito S, Falisi E, Diaz-Montero CM, et al. A human promyelocytic-like population is responsible for the immune suppression mediated by myeloid-derived suppressor cells. Blood, 2011, 118(8):2254-2265.

[39] Kurkó J, Vida A, Ocskó T, et al. Suppression of proteoglycan-induced autoimmune arthritis by myeloid-derived suppressor cells generated in vitro from murine bone marrow. PLoS One, 2014, 9(11):e111815.

[40] Arora M, Poe SL, Ray A, et al. LPS-induced CD11b+Gr1(int)F4/80+ regulatory myeloid cells suppress allergen-induced airway inflammation. Int Immunopharmacol, 2011, 11(7):827-832.

[41] Youn JI, Kumar V, Collazo M, et al. Epigenetic silencing of retinoblastoma gene regulates pathologic differentiation of myeloid cells in cancer. Nat Immunol, 2013, 14(3):211-220.

[42] Shi M, Shi G, Tang J, et al. Myeloid-derived suppressor cell function is diminished in aspirin-triggered allergic airway hyperresponsiveness in mice. J Allergy Clin Immunol, 2014, 134(5):1163-1174. e16.

[43] Arakawa Y, Qin J, Chou HS, et al. Cotransplantation with myeloid-derived suppressor cells protects cell transplants: a crucial role of inducible nitric oxide synthase. Transplantation, 2014, 97(7): 740-747.

[44] Mao Y, Sarhan D, Steven A, et al. Inhibition of tumor-derived prostaglandin-e2 blocks the induction of myeloid-derived suppressor cells and recovers natural killer cell activity. Clin Cancer Res, 2014, 20(15):4096-4106.

[45] Lechner MG, Megiel C, Russell SM, et al. Functional characterization of human Cd33+ and Cd11b+ myeloid-derived suppressor cell subsets induced from peripheral blood mononuclear cells co-cultured with a diverse set of human tumor cell lines. J Transl Med, 2011, 9:90.

[46] Obermajer N, Kalinski P. Generation of myeloid-derived suppressor cells using prostaglandin E2. Transplant Res, 2012, 1(1):15.

[47] Maeda A, Kawamura T, Ueno T, et al. Monocytic suppressor cells derived from human peripheral blood suppress xenogenic immune reactions. Xenotransplantation, 2014, 21(1):46-56.

[48] Höchst B, Schildberg FA, Sauerborn P, et al. Activated human hepatic stellate cells induce myeloid derived suppressor cells from peripheral blood monocytes in a CD44-dependent fashion. J Hepatol, 2013, 59(3): 528-535.

[49] Garg A, Spector SA. HIV type 1 gp120-induced expansion of myeloid derived suppressor cells is dependent on interleukin 6 and suppresses immunity. J Infect Dis, 2014, 209(3):441-451.

[50] Zhou Z, French DL, Ma G, et al. Development and function of myeloid-derived suppressor cells generated from mouse embryonic and hematopoietic stem cells. Stem Cells, 2010, 28(3):620-632.

[51] Novitskiy SV, Pickup MW, Gorska AE, et al. TGF-β receptor II loss promotes mammary carcinoma progression by Th17 dependent mechanisms. Cancer Discov, 2011, 1(5):430-441.

[52] Wu WC, Sun HW, Chen HT, et al. Circulating hematopoietic stem and progenitor cells are myeloid-biased in cancer patients. Proc Natl Acad Sci U S A, 2014, 111(11):4221-4226.

[53] Zoso A, Mazza EM, Bicciato S, et al. Human fibrocytic myeloid-derived suppressor cells express IDO and promote tolerance via Treg-cell expansion. Eur J Immunol, 2014, 44(11):3307-3319.

[54] Zhang W, Liang S, Wu J, et al. Human inhibitory receptor immunoglobulin-like transcript 2 amplifies CD11b+Gr1+ myeloidderived suppressor cells that promote long-term survival of allografts. Transplantation, 2008, 86(8):1125-1134.

[55] Yin B, Ma G, Yen CY, et al. Myeloid-derived suppressor cells prevent type 1 diabetes in murine models. J Immunol, 2010, 185(10):5828-5834.

[56] Baban B, Chandler PR, Johnson BA 3rd, et al. Physiologic control ofIDO competence in splenic dendritic cells. J Immunol, 2011, 187(5): 2329-2335.

[57] Derive M, Bouazza Y, Alauzet C, et al. Myeloid-derived suppressor cells control microbial sepsis. Intensive Care Med, 2012, 38(6):1040-1049.

[58] Zhang J, Wang B, Zhang W, et al. Protein tyrosine phosphatase 1B deficiency ameliorates murine experimental colitis via the expansion of myeloid-derived suppressor cells. PLoS One, 2013, 8(8):e70828.

[59] Zhu K, Zhang N, Guo N, et al. SSC(high)CD11b(high)Ly-6C(high)Ly-6G(low) myeloid cells curtail CD4 T cell response by inducible nitric oxide synthase in murine hepatitis. Int J Biochem Cell Biol, 2014, 54:89-97.

[60] Nishimura K, Saegusa J, Matsuki F, et al. Tofacitinib facilitates the expansion of myeloid-derived suppressor cells and ameliorates arthritis in SKG mice. Arthritis Rheumatol, 2015, 67(4):893-902.

[61] Wang W, Jiao Z, Duan T, et al. Functional characterization of myeloid-derived suppressor cell subpopulations during the development of experimental arthritis. Eur J Immunol, 2015, 45(2): 464-473.

[62] Li L, Zhang T, Diao W, et al. Role of myeloid-derived suppressor cells in glucocorticoid-mediated amelioration of FSGS. J Am Soc Nephrol, 2015, 26(9):2183-2197.

[63] Escors D, Liechtenstein T, Perez-Janices N, et al. Assessing T-cell responses in anticancer immunotherapy: dendritic cells or myeloid-derived suppressor cells? Oncoimmunology, 2013, 2(10): e26148.

·协会之窗·

收稿日期:2015-10-08

通信作者:李卫国,Email:liwg0618@htu.cn

基金项目:河南省重点科技攻关计划(112102310320、122102310282)

DOI:10.3969/j.issn.1673-713X.2016.01.011

猜你喜欢

骨髓细胞单核细胞免疫抑制
单核细胞亚型在动脉粥样硬化性心脏病中的研究进展
厚壳贻贝低分子质量肽对免疫抑制小鼠免疫调节作用
不同灸法对免疫抑制兔脾脏、胸腺影响的组织学研究
尿酸水平与传染性单核细胞增多症关系的研究
单核细胞亚型与冠状动脉粥样硬化的研究进展
案例微课-翻转课堂教学法在骨髓细胞形态临床教学中的应用
移植单核细胞对中枢系统不同病变趋化作用的PET/CT示踪观察
金线莲多糖对免疫抑制小鼠脾淋巴细胞体外增殖、分泌NO及细胞因子的影响
学生自身素质及实验教学模式对骨髓形态教学效果的影响
安胎丸小鼠骨髓细胞染色体畸变试验