APP下载

非接触电能传输系统松耦合变压器传输效率分析

2016-01-31郭会平

郭会平,张 政,李 斌

(1.河南工程学院 电气信息工程学院,河南 郑州 451191;

2.河南工程学院 机械工程学院,河南 郑州 451191)



非接触电能传输系统松耦合变压器传输效率分析

郭会平1,张政2,李斌2

(1.河南工程学院 电气信息工程学院,河南 郑州 451191;

2.河南工程学院 机械工程学院,河南 郑州 451191)

摘要:在非接触能量传输系统中,松耦合变压器是影响能量传输效率的关键因素之一.对松耦合变压器的磁芯和线圈进行仿真建模,通过改变变压器磁芯和绕组的结构,可得到影响传输效率的关键因素.针对U型磁芯和不同绕组形式传输效率较低的特点,提出了一种改进型变压器.该变压器采用扁平U型磁芯和平面螺旋式绕组,仿真分析可得该改进型松耦合变压器结构可以大大提高系统能量传输的效率.

关键词:非接触能量传输;松耦合变压器;传输效率

传统的电能传输方式主要是通过导线实现的,在电能传输过程中易产生火花、电击、滑动磨损等问题,会对企业和人身造成危险.随着社会经济的飞速发展,传统的电能传输方式在易燃易爆、潮湿等恶劣环境中的应用受到限制,已不能满足这些场合的供电要求.因此,非接触电能传输(Contactless Inductive Power Transfer,CIPT)技术应运而生.CIPT技术克服了传统供电方式的缺陷,在水下作业、喷漆车间、医疗、交通运输、航空航天、钻井工矿和军事等领域有着广泛的应用[1-3].

非接触式感应电能传输系统主要由高频逆变部分、松耦合变压器和整流滤波等构成.在整个非接触能量传输系统中,松耦合变压器是其核心组成部分[4-5].松耦合变压器原副边之间存在气隙,漏磁较多,耦合系数不高,所以对电能传输效率有较大的影响.分析了影响常规变压器传输效率的主要因素,在此基础上提出了一种改进型变压器,通过仿真实验证明了改进型变压器能够大大提高传输效率.

1松耦合变压器传输效率的主要影响因素

磁芯是松耦合变压器重要的组成部分,选择合适的磁芯材料是提高传输效率的途径之一.松耦合变压器磁芯要求具有较高的磁感应密度、磁导率、居里温度及较低的铁损和合适的尺寸等.软磁铁氧体材料具有高频损耗小、抗涡流电阻率高、绕组的耦合特性好、成形方便、化学特性稳定、不易生锈等特点,故得到了广泛应用[6].

1.1 气隙大小

对U型磁芯进行仿真,图1为U型磁芯松耦合变压器的示意图.图1(a)中绕组缠绕在变压器磁芯的底部,图1(b)中绕组缠绕在变压器磁芯的端部.

图1 U型磁芯松耦合变压器示意图Fig.1 Schematic diagram for U core loosely coupled transformer

在Ansys软件中建立松耦合变压器的模型并进行仿真,图2给出了U型磁芯变压器绕组放置在端部时的磁力线分布.图2(a)是端部绕组在气隙为1 mm时的磁力线分布,图2(b)是端部绕组在气隙为2 mm时的磁力线分布.对比两幅图可以清楚地看到,当气隙增大时,原副边之间交链的磁力线有所减少,漏磁明显增多,导致传输效率较低.

图2 不同气隙时U型磁芯的磁场分布Fig.2 The distribution diagram of U core magnetic field in different air gap

针对U型磁芯变压器,绕组放置在磁芯端部时,其传输效率与气隙间的关系如图3所示.从图3中可以清楚地看到,随着气隙的增大,传输效率降低,这主要是由于松耦合变压器的耦合系数逐渐降低导致的.

图3 传输效率与气隙的关系Fig.3 The relational graph for transmission efficiency and the air gap

1.2 绕组绕制方法及安放位置

图4给出了松耦合变压器的原副边绕组的两种放置方式.图4(a)是将绕组放置在磁芯的底部,图4(b)是将绕组放置在磁芯的端部.

图4 两种绕组放置位置示意图Fig.4 Schematic diagram for winding in two places

采用U型磁芯变压器,针对不同绕组放置方式下的磁场分布和磁力线走向进行分析.图5给出了U型变压器不同绕组位置的磁场分布图(气隙都为1 mm时).其中,图5(a)是绕组放置在磁芯端部时的磁力线分布,图5(b)是绕组放置在磁芯底部中心位置时的磁力线分布.对比可以看到,图5(a)中的漏磁比图5(b)少,即绕组放置在磁芯的端部时,U型磁芯原副边之间通过的磁力线较多,漏磁较少,耦合系数较高.这说明绕组放置位置的不同,会影响松耦合变压器的耦合系数.

图5 U型磁芯不同绕组方式的磁场分布Fig.5 The distribution diagram of different winding magnetic of U core

图6所示是绕组均放置在端部、气隙大小相同、线圈的有效面积不同时的磁力线走向.

图6 端部绕组磁力线示意图Fig.6 Schematic diagram for the end winding magnetic field lines

图6(a)是线圈有效面积较小时的磁力线分布,图6(b)是线圈有效面积较大时的磁力线分布.对比两图可以看出,在相同气隙时,采用图6(a)的绕组方式时漏磁较多;采用图6(b)的绕组方式时漏磁较少,耦合系数会相应提高.这表明在相同的气隙时,原副边绕组间的有效面积增加,可以产生更多的磁力线垂直通过原副边绕组,漏磁较少,能有效地提高耦合系数,进而提高系统的传输效率.

2新型变压器的设计

综合以上仿真结果可以看出,气隙大小和绕组的放置方式对传输效率都有影响.变压器原副边之间的气隙越大,传输效率越低;原副边绕组的有效面积越小,会导致耦合系数变小,进而降低传输效率.由此得到启发,从改进松耦合变压器的磁芯形状和绕组的绕制方法入手,提出了一种采用扁平式磁芯和平面式绕组的松耦合变压器.绕组做成平面式放置在扁平U型磁芯的凹槽面上,有效面积得以增加,可以使更多的磁力线在原副边绕组之间垂直通过,减少漏磁,提高系统的传输效率.

2.1 变压器尺寸和线圈设计

2.2 新型变压器的仿真分析

在满足设计要求的同时,采用扁平U型磁芯要考虑足够的裕量,采取最大的磁芯面积,将原副边绕组放置到有效的位置上,使原副边绕组接触得比较紧密,增大横截面积,故原副边匝链的磁力线增多,耦合系数变大.松耦合变压器磁芯形状和绕组缠绕方式如图7所示.将磁芯设计成扁平U型,平面式绕组放置在U型磁芯的凹槽内,使变压器原副边之间的有效面积增加.

图7 改进的变压器磁芯和绕组示意图Fig.7 Schematic diagram for improvement of transformer core and winding

通过GUI方法对实体模型自上而下建模,得到了模型的二维图形.然后,对模型进行网格划分.Ansys软件的网格划分有自由网格划分和映射网格划分两种,本设计采用自由网格划分.扁平U型磁芯的网格划分如图8所示.

图8 扁平磁芯网格划分Fig.8 Mesh generation for flat core

对新型U型松耦合变压器原副边气隙为1~8 mm时分别进行仿真,得到其磁力线的走向分布图.图9(a)是气隙为1 mm时的磁力线分布,图9(b)是气隙为2 mm时的磁力线分布.由图9(a)和(b)可以看出,改进后的新型变压器的磁力线密度远高于普通U型变压器,这是由于原副边之间耦合系数的增大所致.

图9 不同新型变压器的磁力线走向分布Fig.9 The distribution diagram for the magnetic field lines of different transformer

分析可知,和普通U型磁芯相比,扁平U型磁芯中的原副边绕组间通过的磁力线较多.普通U型磁芯由于磁芯柱较长,一部分磁通在磁芯柱中流失,降低了原副边之间的耦合系数,导致了传输效率的降低.另外,对原副边绕组的电路分析发现,在相同输入电流的条件下,扁平U型磁芯副边的电压电流要高于普通U型磁芯.

图10为普通U型磁芯变压器及新型变压器的效率分布.由图10可以看出,随着气隙的增大,变压器的传输效率降低.采用改进的新型变压器后,耦合系数得到了提高,传输效率也得到了明显提高,曲线也更加平缓.

图10 变压器传输效率Fig.10 Schematic diagram for transformer transmission efficiency of transformer

3结语

利用Ansys软件对松耦合变压器进行了有限元仿真分析,得到了影响松耦合变压器传输效率的关键因素;对松耦合变压器的磁芯形状和绕组的绕制方法进行了改进,采用扁平U型磁芯和平面式绕组,磁芯面积得到了一定的增加,有效地提高了松耦合变压器的耦合系数和系统的传输效率,得到了传输效率较高的变压器结构.

参考文献:

[1]詹厚剑,吴杰康.非接触感应电能传输系统松耦合变压器参数设计[J].现代电力,2009(2):40-44.

[2]STANIMIR V,SENIOR M.Resonant contactless energy transfer with improved efficiency[J].IEEE Transactions on Power Electronics,2009,24(3):685-699.

[3]武瑛,陆严光,黄常纲.新型无接触电能传输系统的性能分析[J].电工电能新技术,2003,22(4):10-13.

[4]姜田贵,张峰,工慧贞.松耦合感应能量传输系统中补偿网络的分析[J].电力电子技术,2007,41(8):42-44.

[5]庞明鑫,高晓旭.松耦合感应式电能传输技术的应用研究[J].机械工程与自动化,2010(10):121-126.

[6]周静,安慰东.提高感应电能传输效率的研究[J].电子测试,2010(1):5-10.

[7]韩亚荣,熊小娟,张琦,等.非接触式电能传输系统的松耦合变压器特性分析[J].中国制造业信息化,2007(15):55-57.

The transmission efficiency analysis of loose coupling transformer

in contactless power transmission system

GUO Huiping1, ZHANG Zheng2, LI Bin2

(1.DepartmentofElectricalInformationEngineering,HenanInstituteofEngineering,Zhengzhou451191,China;

2.DepartmentofMechanicalEngineering,HenanInstituteofEngineering,Zhengzhou451191,China)

Abstract:In the contactless energy transmission system, loose coupling transformer is one of the key factors affecting energy transmission efficiency. The model of loose coupling transformer is established in this paper. By changing the structure of the magnetic core and winding, the main parameters which impact loose coupling transformer transmission efficiency have been analyzed. According to characteristics that transmission efficiency is low of the U type core and different winding form, the flat type core and plane winding is used to design loose coupling transformer. Through the simulation and comparison, the new loose coupling transformer structure can improve the system energy transfer efficiency greatly.

Key words:contactless energy transmission; loose coupling transformer; transmission efficiency

作者简介:郭会平(1981-),女,河南舞阳人,讲师,主要从事自动控制和设备管理方面的研究.

收稿日期:2015-09-10

中图分类号:TM421

文献标志码:A

文章编号:1674-330X(2015)04-0040-04