APP下载

斯钙素的生物学特征及其与人体肿瘤关系研究进展

2016-01-31杨舒雯

中国癌症杂志 2016年10期
关键词:乳腺癌基因肿瘤

杨舒雯,马 奔,周 力,王 宇

复旦大学附属肿瘤医院头颈外科,复旦大学上海医学院肿瘤学系,上海200032

斯钙素的生物学特征及其与人体肿瘤关系研究进展

杨舒雯,马 奔,周 力,王 宇

复旦大学附属肿瘤医院头颈外科,复旦大学上海医学院肿瘤学系,上海200032

斯钙素(stanniocalcin,STC)是一种糖蛋白激素,由鱼类独有的内分泌腺斯坦尼小体所分泌。在哺乳动物中,也存在STC样蛋白,分别命名为STC-1和STC-2,通过肾脏和胃肠道来调节钙和磷酸盐的代谢,STC-1与鱼类STC氨基酸序列显示高度同源性(约50%),STC-2则较低,有35%左右的氨基酸呈同源性。一些研究已发现它们的细胞定位、基因结构在不同的生理和病理情况下的表达,为阐明哺乳动物的STC功能提供线索。此外,STC-1和STC-2在众多肿瘤细胞系中有表达,提示哺乳动物STC具有除矿物质代谢外的多种生物学功能。

斯钙素;肿瘤;细胞增殖;肿瘤微环境

斯钙素(stanniocalcin,STC)是一种糖蛋白激素,最早在硬骨鱼中发现,由鱼类独有的内分泌腺斯坦尼小体所分泌。其生理作用在于抑制腮、肠的Ca2+转运使血钙降低和促进肾脏磷酸盐的重吸收,因而是鱼类一种重要的矿物质代谢调节因子。近年来研究发现,在人类和其他哺乳动物中也存在STC样蛋白,分别命名为STC-1和STC-2。STC以旁分泌和自分泌的方式参与机体的多种生理功能,可以通过肾脏和胃肠道来调节钙和磷酸盐的代谢,STC-1和STC-2广泛表达于各种组织,STC表达的上调被证明是由细胞外Ca2+通过调控膜相关的钙敏感受体而介导[1],同时有研究表明,Na+和Cl-同样可以调节STC的表达[2]。STC在心血管疾病、炎症细胞迁移、胚泡着床和子宫的蜕膜化等多方面都起重要作用,且越来越多的研究表明,STC-1和STC-2的表达与人类肿瘤的发展过程相关。

1 STC-1

1.1STC-1的结构与功能

STC-1基因位于染色体8p11.2-p21上,包含4个外显子,编码247个氨基酸[3]。STC-1有两个亚型,其中一个相对分子质量为50×103的STC50,另一个为相对分子质量更大的大STC[4]。STC-1有多重功能,包括外伤的愈合[5]、线粒体代谢[6]、血管形成[7]、巨噬细胞的趋化作用[1]、类固醇形成[8]、肌肉和骨骼的发育[9]等。同时STC-1可以抑制凋亡,在脑缺血时保护脑细胞,并能激活多潜能间质细胞[10-12]。缺氧时神经细胞诱导STC-1[11],刺激细胞通过旁分泌、自分泌机制吸收磷酸盐,以此促进ATP的合成;另在缺血条件下,STC-1可能抑制具有细胞毒性的Ca2+进入细胞内。

1.2STC-1在哺乳动物组织中的表达

STC-1广泛表达于哺乳动物组织中。STC-1 mRNA在小鼠卵巢间质细胞和卵泡内膜细胞呈高表达,妊娠期和哺乳期的表达受到促黄体激素和孕激素的调控和催乳素的刺激[13]。在成骨细胞、软骨细胞、发育中的幼鼠骨骼与肌肉组织、大脑皮质锥体细胞、海马区、脉络丛和小脑的浦肯野细胞中都能观察到STC-1 mRNA的表达。高Ca2+可稳定原代培养细胞中STC的转录,推测STC-1 mRNA表达增加,也可能是由于STC-1转录稳定性的增强。在通常情况下,除怀孕期间,STC-1在循环血液中无法检测。然而,癌症患者的血液样本中可测得STC-1,此外,STC-1在许多肿瘤细胞系和肿瘤组织中均有表达[14]。在人神经嵴源性肿瘤细胞中,经PMA(PKC激活剂)诱导分化后STC-1表达在mRNA和蛋白水平上均增强,主要表达在完全分化的神经元细胞中[15]。因此,STC-1可能用于恶性肿瘤的分子标志检测血液或患者组织样品中的肿瘤细胞。

低氧条件下,在鼻咽癌、甲状腺髓样癌、乳腺癌、肝癌、结直肠癌和卵巢癌等多种肿瘤组织中STC-1 mRNA被证实有表达变化[16-19],可能与人类肿瘤在缺氧情况下的转录调控发生变化,STC-1通过促进缺氧区域的血管生成和提高肿瘤细胞的缺氧耐受性,以维持肿瘤细胞的能量代谢有关[20]。Liu等[21]发现在永生化的人卵巢上皮细胞、卵巢癌组织及卵巢癌患者血清中均有过表达的STC-1,推测STC-1过表达能够促进肿瘤细胞增殖、迁移和克隆形成。

2 STC-2

2.1STC-2的结构与功能

STC-2也称为斯钙素相关肽。STC-2基因位于染色体5q35上,含有302个氨基酸残基,相对分子质量为33×103,STC-2与STC-1有30%左右的氨基酸呈同源性。STC-2为同型二聚体糖蛋白结构,可被酪蛋白激酶磷酸化,STC-2原的1~18位氨基酸残基组成信号肽,19~44位氨基酸残基从STC-2原上裂解后剩余的肽段即称为成熟的STC-2[22]。与STC-1不同的是,STC-2氨基酸序列在C-末端包含一簇组氨酸残基,这提示STC-2可能与钴、铜、镍及锌等金属离子相互作用有关[23-24]。

2.2STC-2在哺乳动物组织中的表达

STC-2也可在哺乳动物多种组织细胞中表达。在骨中丰富表达提示,STC-2在骨代谢中起某些作用[2,22];Ishibashi等[25]认为,STC-2的作用在于抑制肾脏磷酸盐的摄取,因为STC-2转染CHO细胞的培养介质能抑制负鼠肾脏细胞Na+/ PO43-协同转运体启动子的活性;Moore等[26]利用Northern blot和双重免疫染色技术发现STC-2存在于胰岛素α细胞中,推测STC-2可能与血糖稳态调节有关。

与相应的正常组织相比,STC-2在多种肿瘤组织中均过表达,如乳腺癌[27]、成纤维细胞瘤[31]、食管鳞癌[32]、胃癌[33]、结直肠癌[34]、肾细胞癌[28,35]、前列腺癌[36]和子宫内膜癌[37]。其中在结直肠癌[34]、胃癌[33]和肾细胞癌[35]中,STC-2高表达与患者生存率呈负相关。在人乳腺癌中,STC-2和雌激素受体(estrogen receptor,ER)水平呈正相关,且雌激素可诱导STC-2表达[29],对雌激素敏感的人乳腺癌细胞的12 550个基因表达分析后显示,约0.4%的基因表达上调3倍以上,其中STC-2上调10倍,STC-1水平却没有变化[30]。在肾细胞癌组织中,STC-2的mRNA和蛋白均上调;在正常肾脏组织中,STC-2的表达仅限于末梢肾小管和肾小球,而在肿瘤组织中的细胞质强染色,细胞膜也染色。STC-2在透明细胞、嫌色细胞和乳突状肾细胞肾癌中都有表达。STC-2的细胞质强染色,则患者生存期较短;在没有转移的肾细胞肾癌中,有无进展的因素与患者总生存期较短相关[35]。

3 STC与肿瘤

3.1STC与肿瘤间的关联

目前许多研究证实,STC-1和STC-2参与肿瘤的发生、发展,并且高表达水平的STC-1和STC-2与不同类型癌症的不良预后相关。白血病患者外周血的高STC-1 mRNA表达生存率较低。在散发的肾透明细胞癌(clear cell renal cell carcinoma,ccRCC)及BRCA1和BRCA2突变的乳腺癌中均有染色体5q异常,STC-2基因正位于此[27-28]。cDNA微阵列和实时荧光定量聚合酶链反应(real-time fluorescent quantitative polymerase chain reaction,RTFQ-PCR)分析发现,STC-2在二甲基苯并蒽、辐射诱发的小鼠乳腺癌肿瘤组织中均有表达,并且相对于对照组,STC-2稳定转染的小鼠乳腺癌细胞发生形态学变化[38]。一项72例乳腺癌的回顾性研究结果显示,STC-2在复发较晚(术后5、10年)的原发灶及复发转移灶中的表达均高于其在早期复发转移灶中的表达(P=0.004,P=0.000 1),说明STC-2高表达作为促生存因子,有助于乳腺肿瘤细胞的休眠[27]。

相反,Kita等[32]用激光微切割和寡核苷酸微阵列分析技术分析食管癌淋巴结特异性的转移相关的基因,在识别的63个基因中,发现STC-2在食管癌组织中的表达明显高于相应正常组织(P<0.001),且与食管鳞癌淋巴结转移、淋巴管浸润及肿瘤远处转移密切相关(P值分别为0.005、0.007和0.038),STC-2高表达者5年生存率低于低表达患者(P=0.016),STC-2转染的细胞增生率高于对照组细胞(P<0.001),但STC-2在肿瘤进展中的作用和它的钙调节能力无关。

3.2STC对肿瘤细胞增殖、凋亡和肿瘤血管形成的调控

STC-1和STC-2的细胞生长相关性与细胞凋亡有关。有研究发现,在STC-1过表达卵巢细胞系和异种移植小鼠肿瘤中,STC-1有明显促增殖作用[21]。在共同培养的多能干细胞与紫外照射过的成纤维细胞、乏氧诱导的肺癌上皮细胞、人卵巢癌细胞中,STC-1起到抗凋亡作用[12,21]。而有研究证明,STC-1对碘乙酰胺(蛋白酶抑制剂)治疗下的人类鼻咽癌细胞[20]、曲古抑菌素治疗下的人结直肠癌细胞[40-41]和在氧化应激下的鼠胚胎成纤维细胞[41]均具有促凋亡作用。以上差异性结果并不矛盾,因为STC-1可能不是促或抑制细胞凋亡的关键调节点。研究推测,STC-1促或抑制细胞凋亡作用依赖于细胞适应内、外环境功能紊乱的程度。尽管STC-1促或抑制细胞凋亡作用尚未确定,但一些细胞生存相关信号分子和通路已确定调控STC-1表达,如HIF-1[16]、p53[42]、Sp1[40]、NF-κB[39,42]、ERK-1/2[41]和线粒体的抗氧化通路[43]。

STC-2能够促进人类胃细胞和缺氧下人类卵巢细胞的增殖[44-45]。实体瘤的发生、发展通常与缺氧有关。在缺氧条件下,STC-2基因是HIF-1的下游基因,且STC-2蛋白促进Rb和cyclinD的磷酸化,并促进细胞增殖、抑制凋亡。STC-2基因沉默后的乏氧细胞增殖能力明显弱于STC-2过表达的乏氧细胞[45]。有研究[36]报道,采用RTFQ-PCR和免疫组织化学检查方法在去势抵抗和恶性程度比较高的前列腺癌组织中发现STC-2呈高表达,通过小干扰RNA可有效沉默STC-2基因表达、减少前列腺细胞系的增殖,提示它可能是预测前列腺癌恶性程度和治疗前列腺癌的一个靶分子。Ieta等[34]将STC-2基因转染至分化程度高且STC-2基因低表达的结、直肠癌细胞系中,结果伴随着STC-2基因表达的增加,同时还出现细胞分化程度降低、细胞增殖旺盛等改变,提示STC-2可能通过参与调控细胞增殖来促进结肠癌细胞的侵袭及转移。在内质网功能紊乱、缺氧情况下,STC-2基因为PERK-ATF4通路和HIF-1下游靶基因,其抗凋亡能力增强[45,47],主要通过与内质网钙离子结合器结合,抑制细胞膜对钙离子的转运程序[46]。

相比之下,有研究认为,在乳腺癌细胞、体外神经细胞瘤中,STC-2起了细胞增殖抑制作用[31,46]。在无血清培养条件下,STC-2的基础表达抑制细胞增殖、迁移和细胞活性,并且雌二醇、孕酮和维甲酸可调节乳腺癌细胞中的STC2的表达[46]。高水平的STC-2抑制乳腺癌细胞增殖,与乳腺癌患者较长的无病生存期相关,并提示较好的预后[18]。此外,有研究报道,STC-2通过增加人成纤维细胞瘤细胞的基础凋亡率抑制细胞的增殖[31]。因此,关于STC-2对肿瘤增殖作用有待进一步研究。

有进一步研究报告显示,STC-1和STC-2的表达与肿瘤抑制因子和血管生成因子相关。有研究已证明,BRCA1和血管内皮生长因子(vascular endothelial growth factor,VEGF)激活STC-1的表达[48-49],且STC-1基因被确定为结肠肿瘤的一种血管特异性血管生成相关基因[50]和VEGF/Wnt2下游目标基因[50-51]。另外,血管网的建立和形成促进实体瘤生长,Law等[45]对人脐静脉内皮细胞行侵袭试验,发现STC-2可刺激内皮细胞侵袭,但其机制尚未阐明。

3.3STC与肿瘤微环境

肿瘤的发生和转移与肿瘤细胞所处的内外环境有着密切关系。它不仅包括肿瘤所在组织的结构、功能和代谢,而且亦与肿瘤细胞自身的(细胞核和细胞质)内在环境有关。肿瘤细胞在微环境中的适应性反应导致细胞的致癌性转化、凋亡抵抗和转移等概率增加,研究发现STC-1和STC-2在肿瘤细胞中的表达、对肿瘤迁移和浸润的促进作用与微环境中缺氧和内质网功能紊乱相关。此二者密切影响肿瘤的生长特性[44,47]。事实上,肿瘤进展中的微环境变化类似慢性炎症的过程,开始时缺血,而最终血管生成[49]。应用细胞迁移实验和平板克隆分析不同人类卵巢癌细胞株,Liu等[21]阐明了STC-1刺激卵巢肿瘤发生的刺激效应。

上皮-间质转化(epithelial-mesenchymal transition,EMT)是肿瘤浸润、转移的重要机制。Law等[52]运用蛋白[质]印迹法(Western blot)和免疫细胞化学法,揭示在缺氧条件下,诱导活性氧生成、激活MAPK/ERK信号通路,稳定表达的STC-2能促进卵巢癌SKOV3细胞的EMT过程,很大程度地增强了细胞运动能力和侵袭能力,胶原蛋白降解基质金属蛋白酶(matrix metallo-proteinase,MMP-2)和MMP-9活性的提高可能参与了这个过程,提示STC-2在缺氧条件下为肿瘤进展的正调节蛋白。在原发的人成纤维细胞瘤组织中,STC-2与4期和4s期转移、MYCN表达相关;转染了STC-2的成纤维细胞瘤细胞MMP-2活性增强,具有更高的侵袭潜能并引起出血,可能促进转移[31]。实验说明在一定环境下,STC-2与肿瘤转移呈正相关。

4 结语与展望

目前大量研究尝试阐明STC的生物学特性,包括细胞与组织表达的调控机制、特定细胞的受体及这些受体的信号产生的生理效应与病理生理作用。STC在人类肿瘤的发生、发展过程中发挥着比较广泛的作用,临床试验表明,STC-1、STC-2与人体肿瘤分化程度、淋巴结转移、淋巴管浸润和肿瘤分期等相关,预测STC可以应用于临床工作中,但在不同肿瘤有不同程度的表达,且调控作用不尽相同,这些研究是在不同的细胞中进行,可能存在细胞种类的依赖性,因此其生物学活性与肿瘤发生、发展及信号转导途径等具体机制需行进一步实验研究。

[1] GREENWOOD M P, FLIK G, WAGNER G F, et al. The corpuscles of stannius, calcium-sensing receptor, and stanniocalcin: responses to calcimimetics and physiological challenges[J]. Endocrinology, 2009, 150(7): 3002-3010.

[2] PIERSON P M, LAMERS A, FLIK G, et al. The stress axis,stanniocalcin, and ion balance in rainbow trout[J]. Gen Comp Endocrinol, 2004, 137(3): 263-271.

[3] ELLARD J P, MCCUDDEN C R, TANEGA C, et al. The respiratory efforts of stanniocalcin (STC-1) on intactmitochondria and cells: STC-1 uncouples oxidative phosphorylation and its actions are modulated by nucleotide triphosphates[J]. Mol Cell Endocrinol, 2007, 264(3): 90-101.

[4] PACIGA M, JAMES K, GILLESPIE J R, et al. Evidence for cross-talk between stanniocalcins[J]. Can J Physiol Pharmacol, 2005, 83(11): 953-956.

[5] PACIGA M, HIRVI E R, JAMES K, et al. Characterization of big stanniocalcin variants in mammalian adipocytes and adrenocortical cells[J]. Am J Physiol Endocrinol Metab,2005, 289(2): 197-205.

[6] MCCUDDEN C R, JAMES K A, HASILO C, et a1. Characterization of mammalian stanniocalcin receptors. Mitochondrial targeting of ligand and receptor for regulation of cellular metabolism[J]. J Biol Chem, 2002, 277(47): 45249-45258.

[7] KAHN J, MEHRABAN F, INGLE G, et al. Gene expression profiling in an in vitro model of angiogenesis[J]. Am J Pathol, 2000, 156(6): 1887-1900.

[8] PACIGA M, MCCUDDEN C R, LONDOS C, et al. Targeting of big stanniocalcin and its receptor to lipid storage droplets of ovarian steroidogenic cells[J]. J Biol Chem, 2003, 278(49): 49549-49554.

[9] JOHNSTON J, RAMOS-VALDES Y, STANTON L A, et al. Human stanniocalcin-1 or -2 expressed in mice reduces bone size and severely inhibits cranial intramembranous bone growth[J]. Transgenic Res, 2010, 19(6): 1017-1039.

[10] LI L, WONG C K. Effects of dexamethasone and dibutyryl cAMP on stanniocalcin-1 mRNA expression in rat primary Sertoli and Leydig cells[J]. Mol Cell Endocrinol, 2008,283(1-2): 96-103.

[11] ZHANG K Z, LINDSBERG P J, TATLISUMAK T, et al. Stanniocalcin: a molecular guard of neurons during cerebral ischemia[J]. Proc Natl Acad Sci U S A, 2000, 97(7): 3637-3642.

[12] BLOCK G J, OHKOUCHI S, FUNG F, et al. Multipotent stromal cells are activated to reduce apoptosis in part by upregulation and secretion of stanniocalcin-1[J]. Stem Cells, 2009, 27(3): 670-681.

[13] DEOL H K, VARGHESE R, WAGNER G F, et al. Dynamic regulation of mouse ovarian stanniocalcin expression during gestation and lactation[J]. Endocrinology, 2000, 141(9): 3412-3421.

[14] FUJIWARA Y, SUGITA Y, NAKAMORI S, et al. Assessment of stanniocalcin-1 mRNA as a molecular marker for micrometastases of various human cancers[J]. Int J Oncol,2000, 16(4): 799-804.

[15] ZHANG K Z, WESTBERG J A, PAETAU A, et al. High expression of stanniocalcin in differentiated brain neurons[J]. Am J Pathol, 1998, 153(2): 439-445.

[16] YEUNG H Y, LAI K P, CHAN H Y, et al. Hypoxia inducible factor-1-mediated activation of stanniocalcin-1 in human cancer cells[J]. Endocrinology, 2005, 146(11): 4951-4960.

[17] CHANG A C, CHA J, KOENTGEN F, et al. The murine stanniocalcin 1 gene is not essential for growth and development[J]. Mol Cell Biol, 2005, 25(23): 10604-10610.

[18] ESSEGHIR S, KENNEDY A, SEEDHAR P, et al. Identification of NTN4, TRA1, and STC2 as prognostic markers in breast cancer in a screen for signal sequence encoding proteins[J]. Clin Cancer Res, 2007, 13(11): 3164-3173.

[19] CHANG A C, JELLINEK D A, REDDEL R R. Mammalian stanniocalcins and cancer[J]. Endocrinol Relat Cancer,2003, 10(3): 359-373.

[20] LAI K P, LAW A Y, YEUNG H Y, et al. Induction of stanniocalcin-1 expression in apoptotic human nasopharyngeal cancer cells by p53[J]. Biochem Biophys Res Commun,2007, 356(4): 968-975.

[21] LIU G, YANG G, CHANG B, et al. Stanniocalcin 1 and ovarian tumorigenesis[J]. J Natl Cancer Inst, 2010,102(11): 812-827.

[22] LUO C W, PISARSKA M D, HSUEH A J. Identification of a stanniocalcin paralog, stanniocalcin-2, in fish and the paracrine actions of stanniocalcin-2 in the mammalian ovary[J]. Endocrinology, 2005, 146(1): 469-476.

[23] JAMES K, SEITELBACH M, MCCUDDEN C R, et al. Evidence for stanniocalcin binding activity in mammalian blood and glomerular filtrate[J]. Kidney International,2005, 170(5): 579-590.

[24] MIURA W, MIZUNASHI K, KIMURA N, et al. Expression of stanniocalcin in zona glomerulosa and medulla of normal human adrenal glands, and some adrenal tumors and cell lines[J]. APMIS, 2000, 108(5): 367-372.

[25] ISHIBASHI K, MIYAMOTO K, TAKETANI Y, et al. Molecular cloning of a second human stanniocalcin homologue(STC2) [J]. Biochem Biophys Res Commun, 1998, 250(2): 252-258.

[26] MOORE E E, KUESTNER R E, CONKLIN D C, et al. Stanniocalcin 2: characterization of the protein and its localization to human pancreatic alpha cells[J]. Horm Metab Res, 1999, 31(7): 406-414.

[27] JOENSUU K, HEIKKILA P, ANDERSSON L C. Tumor dormancy: elevated expression of stanniocalcins in late relapsing breast cancer[J]. Cancer Lett, 2008, 265(1): 76-83.

[28] DONDETI V R, WUBBENHORST B, LAL P, et al. Integrative genomic analyses of sporadic clear cell carcinoma define disease subtypes and potential new therapeutic targets[J]. Cancer Res, 2012, 72(1): 112-121.

[29] BOURAS T, SOUTHEY M C. Stanniocalcin 2 is an estrogenresponsive gene coexpressed with the estrogen receptor in human breast cancer[J]. Cancer Res, 2002, 62(5): 1289-1295.

[30] CHARPENTIER A H, BEDNAREK A K, DANIEL R L, et al. Effects of estrogen on global gene expression: identification of novel targets of estrogen action[J]. Cancer Res, 2000,60(21): 5977-5983.

[31] VOLLAND S, KUGLER W, SCHWEIGERER L, et al. Stanniocalcin 2 promotes invasion and is associated with metastatic stages in neuroblastoma[J]. Int J Cancer, 2009,125(9): 2049-2057.

[32] KITA Y, MIMORI K, IWATSUKI M, et al. STC2: a predictive marker for lymph node metastasis in esophageal squamouscell carcinoma[J]. Ann Surg Oncol, 2011, 18(1): 261-272.

[33] YOKOBORI T, MIMORI K, ISHII H, et al. Clinical significance of stanniocalcin 2 as a prognostic marker in gastric cancer[J]. Ann Surg Oncol, 2010, 17(10): 2601-2607.

[34] IETA K, TANAKA F, YOKOBORI T, et al. Clinicopathological significance of stanniocalcin 2 gene expression in colorectal cancer[J]. Int J Cancer, 2009, 125(4): 926-931.

[35] MEYER H A, TÖLLE A, JUNG M, et al. Identification of stanniocalcin 2 as prognostic marker in renal cell carcinoma[J]. Eur Urol, 2009, 55(3): 669-678.

[36] TAMURA K, FURIHATA M, CHUNG S Y, et al. Stanniocalcin-2 overexpression in castration resistant prostate cancer and aggressive prostate cancer[J]. Cancer Sci, 2009,100(5): 914-919.

[37] KOGA Y, YASUNAGA M, KAJIKAWA M, et al. Novel virtual cytological analysis for the detection of endometrial cancer cells using autoscan fluoromicroscopy[J]. Cancer Sci, 2011,102(5): 914-919.

[38] LEE H J, LEE Y J, KANG C M. Differential gene signatures in rat mammary tumors induced by DMBA and those induced by fractionated γ radiation[J]. Radiat Res, 2008, 170(5): 579-590.

[39] LAW A Y, LAI K P, LUI W C, et al. Histone deacetylase inhibitor-induced cellular apoptosis involves stanniocalcin-1 activation[J]. Exp Cell Res, 2008, 314(16): 2975-2984.

[40] LAW A Y, YEUNG B H, CHING L Y, et al. Sp1 is a transcription repressor to stanniocalcin-1 expression in TSA-treated human colon cancer cells, HT29[J]. J Cell Biochem, 2011, 112(8): 2089-2096.

[41] NGUYEN A, CHANG A C, REDDEL R R. Stanniocalcin-1 acts in a negative feedback loop in the prosurvival ERK1/2 signaling pathway during oxidative stress[J]. Oncogene,2009, 28(18): 1982-1992.

[42] YEUNG H Y, CHAN D K, MAK N K, et al. Identification of signal transduction pathways that modulate dibutyryl cyclic adenosine monophosphate activation of stanniocalcin gene expression in neuroblastoma cells[J]. Endocrinology, 2003,144(10): 4446-4452.

[43] SHEIKH-HAMAD D. Mammalian stanniocalcin-1 activates mitochondrial antioxidant pathways: new paradigms for regulation of macrophages and endothelium[J]. Am J Physiol Renal Physiol, 2010, 298(2): F248-F254.

[44] LAW A Y, LAI K P, IP C K, et al. Epigenetic and HIF-1 regulation of stanniocalcin-2 expression in human cancer cells[J]. Exp Cell Res, 2008, 314(8): 1823-1830.

[45] LAW A Y, WONG C K. Stanniocalcin-2 is a HIF-1 target gene that promotes cell proliferation in hypoxia[J]. Exp Cell Res, 2010, 316(3): 466-476.

[46] RAULIC S, RAMOS-VALDES Y, DIMATTIA G E. Stanniocalcin 2 expression is regulated by hormone signalling and negatively affects breast cancer cell viability in vitro[J]. J Endocrinol, 2008, 197(3): 517-529.

[47] ITO D, WALKER J R, THOMPSON C S, et al. Characterization of stanniocalcin 2, a novel target of the mammalian unfolded protein response with cytoprotective properties[J]. Mol Cell Biol, 2004, 24(21): 9456-9469.

[48] JAUHIAINEN S, HÄKKINEN S K, TOIVANEN P I, et al. Vascular endothelial growth factor (VEGF)-D stimulates VEGF-A, stanniocalcin-1, and neuropilin-2 and has potent angiogenic effects[J]. Arterioscler Thromb Vasc Biol, 2011,31(7): 1617-1624.

[49] LIU D, JIA H, HOLMES D I, et al. Vascular endothelial growth factor-regulated gene expression in endothelial cells: KDR-mediated induction of Egr3 and the related nuclear receptors Nur77, Nurr1, and Nor1[J]. Arterioscler Thromb Vasc Biol, 2003, 23(11): 2002-2007.

[50] HOLMES D I, ZACHARY I C. Vascular endothelial growth factor regulates stanniocalcin-1 expression via neuropilin-1-dependent regulation of KDR and synergism with fibroblast growth factor-2[J]. Cell Signal, 2008, 20(3): 569-579.

[51] KLEIN D, DEMORY A, PEYRE F, et al. Wnt2 acts as an angiogenic growth factor for non-sinusoidal endothelial cells and inhibits expression of stanniocalcin-1[J]. Angiogenesis, 2009, 12(3): 251-265.

[52] LAW A Y, WONG C K. Stanniocalcin-2 promotes epithelialmesenchymal transition and invasiveness in hypoxia human ovarian cancer cells[J]. Exp Cell Res, 2010, 316(20): 3425-3434.

The progress of the research on the relationship between stanniocalcins and cancers


YANG Shuwen,MA Ben, ZHOU Li, WANG Yu
(Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China)
Correspondence to: WANG Yu E-mail: neck130@hotmail.com

Stanniocalcin (STC) was first found as a calcium- and phosphate-regulating hormone produced in bony fish by the corpuscles of Stannius. In mammals, the homolog STC-1 displays a relative high amino acid sequence identity (nearly 50%) with fish STC, and STC-2 has a lower identity (nearly 35%) with STC-1 and fish STC. Both STC-1 and STC-2 are expressed in a variety of tissues. The functions of STC have not been understood. But some findings have been reported on their cellular localization, gene structure, and expression in different physiological and pathological conditions, which will be clues in elucidating the functions of STC in mammals. Moreover, STC-1 and STC-2 are expressed in many tumor cell lines, suggesting other biological functions of STC in mammals other than mineral metabolism.

Stanniocalcin; Tumor; Cell proliferation; Tumor microenvironmemt

10.19401/j.cnki.1007-3639.2016.10.012

R73-37

A

1007-3639(2016)10-0875-06

王 宇 E-mail: neck130@hotmail.com

(2015-02-10

2015-10-15)

猜你喜欢

乳腺癌基因肿瘤
绝经了,是否就离乳腺癌越来越远呢?
Frog whisperer
与肿瘤“和平相处”——带瘤生存
廖美琳:肿瘤治疗没有百分百
修改基因吉凶未卜
乳腺癌是吃出来的吗
滚蛋吧!肿瘤君
胸大更容易得乳腺癌吗
别逗了,乳腺癌可不分男女老少!
创新基因让招行赢在未来