APP下载

改性果胶抗肿瘤机制研究进展

2015-11-02张文博刘振华袁雪艳高启禹

食品科学 2015年15期
关键词:凝集素半乳糖聚糖

张文博,刘振华,袁雪艳,高启禹,*

(1.新乡医学院生命科学技术学院,河南 新乡 453003;2.新乡医学院公共卫生学院,河南 新乡 453003)

改性果胶抗肿瘤机制研究进展

张文博1,刘振华1,袁雪艳2,高启禹1,*

(1.新乡医学院生命科学技术学院,河南 新乡 453003;2.新乡医学院公共卫生学院,河南 新乡 453003)

果胶是一种以聚半乳糖醛酸为骨架、富含中性糖分支结构的植物杂多糖。通过理化手段对果胶进行改性,可降低其分子质量和酯化度、修饰其微观结构、提高其生物利用度,经改性后的果胶能抑制肿瘤生长、诱导细胞凋亡、增强肿瘤细胞对化疗药物的敏感性、抑制肿瘤血管新生和转移并增强机体的免疫响应。本文重点综述改性果胶的抗肿瘤机制、吸收机制和抗肿瘤构效关系,并对其开发为功能食品的前景进行展望。

半乳糖凝集素-3;改性果胶;改性柑橘果胶;果胶;抗肿瘤活性

果胶是一种存在于植物细胞壁中的复杂多糖,可用作食品添加剂和药物辅料[1]。通过化学试剂处理[2-3]、热处理[4-5]、射线辐照[6]或酶处理[7]等能降低果胶的分子质量和酯化度,并修饰其微观结构,可获得具有抗肿瘤活性的改性果胶(modified pectins,MPs)。由于改性柑橘果胶(modified citrus pectin,MCP)在抑制肿瘤生长、抑制肿瘤血管新生、抗肿瘤转移等方面均具有活性,因此,本文以MCP为代表,总结MPs的结构、抗肿瘤活性机制和构效关系。

1 果胶结构

天然果胶一般含有同聚半乳糖醛酸(homogalacturonan,HG)、鼠李糖半乳糖醛酸聚糖Ⅰ(rhamnogalacturonan-Ⅰ,RG-Ⅰ)和取代半乳糖醛酸聚糖(substituted galacturonans,GS)[8-10]。果胶结构随来源、提取工艺等因素变化较大,通常HG约占65%,RG-Ⅰ占20%~35%,其他为GS。柑橘果胶(citrus pectin,CP)中的RG-Ⅰ含量远高于RG-Ⅱ[11]。HG是由D-半乳糖醛酸(D-galacturonic acid,GalpA)经α-1,4糖苷键连接的直链分子。商业来源的CP其HG部分的长度大约为20 kD[12]。按照GalpA的C6位羧基甲酯化程度(degree of methylation,DM),果胶亦可分为高酯果胶和低酯果胶,它们的性质差别很大。RG-Ⅰ含有由鼠李糖和半乳糖醛酸组成的核心重复片段:[(→4)-α-D-GalpA-(1→2)-α-L-Rhap-(1→)]n。RG-Ⅰ的GalpA一般不连接其他支链。约20%~80%鼠李糖的C4羟基连接有多种结构各异的支链,根据植物来源的差异主要存在3 种类型的片段:由β-(1,4)键连接的寡聚半乳糖、Ⅰ型阿拉伯半乳聚糖(typeⅠ arabinogalactan,AG-Ⅰ)和Ⅱ型阿拉伯半乳聚糖(typeⅡ arabinogalactan,AG-Ⅱ)。CP的RG-Ⅰ主要由寡聚半乳糖AG-Ⅰ组成,AG-Ⅰ由β-(1,4)键和β-(1,3)键连接的两种半乳寡聚糖组成。L-阿拉伯糖常常以(1,5)键连接到由β-(1,4)键组成的半乳寡聚糖的中间或末端[13-14]。RG-Ⅱ是主要的GS,但其结构特征与RG-Ⅰ差异较大,其主链为HG结构,含有A、B两个侧链。MPs的结构特征与果胶一致,主要含有HG主链和RG-Ⅰ支链,但其分子质量和酯化度更低、分支更少(图1)[10]。

图1 改性果胶结构示意图Fig.1 Schematic structure of modified pectin

2 改性果胶的抗肿瘤活性及机制

已有的研究表明,MCP在抑制肿瘤生长、血管新生和转移等多环节起重要作用,MCP能抑制前列腺癌的肺转移[4]、黑色素瘤的肺转移[3]、结肠癌的肝转移[15]、乳腺癌[16]和血管肉瘤等[17],其抗肿瘤机制涉及对肿瘤生长的抑制、对化疗药物的增敏、对转移的抑制和对免疫细胞的调控等(图2)。

图2 改性果胶作用机制示意图Fig.2 Schematic diagram of antitumor mechanisms for MPs

2.1改性果胶对肿瘤生长的抑制作用

MCP等改性果胶能抑制多种类型实体瘤[3,16,18-19]。抑制作用可能涉及癌基因的启动[20-21]、肿瘤细胞增殖、凋亡途径等。MCP可能通过抑制其体内靶点半乳糖凝集素-3(galectin-3,Gal-3)与黏蛋白MUC2的相关作用而抑制结肠癌的发生和转移;或者通过影响肿瘤细胞周期而抑制其增殖[22-23]。MCP对肿瘤生长的抑制可能与Gal-3调控的肿瘤生存信号途径(例如MAPK途径、Wnt途径)[24-26]和凋亡途径有关[27]。苹果果胶寡乳糖有可能作用于LPS/ TLR4/NF-κB途径,抑制结肠炎和结肠癌的发生[20]。不过,不同类型MPs对肿瘤细胞的抑制作用并不一致,可能与改性方法、结构特征有关[4]。肿瘤细胞的异质性也是造成MPs抗肿瘤活性不一致的原因之一。

2.2改性果胶对化疗药物的增敏作用

化疗增敏剂能够使某些对化疗药物存在抗性的肿瘤细胞发生凋亡[28-31]。Chauhan等[32]发现改性柑橘果胶GCS-100能诱导对地塞米松、美法仑或阿霉素有抗性的人类多发性骨髓瘤细胞系的凋亡,在临床上化疗时使用改性果胶有助于减少有毒化疗药物的剂量,延缓肿瘤耐药性的发生。果胶的化疗增敏活性可能是通过抑制Gal-3而逆转肿瘤耐药性实现的[33],或者与抑制Gal-3对TRAIL与DR4/DR5的相互作用有关[34],使肿瘤细胞对化疗药物由不敏感变为敏感。

2.3改性果胶对肿瘤转移的抑制作用

MPs能通过抑制Gal-3而抑制肿瘤血管新生、细胞失巢凋亡逃逸、血管内皮细胞黏附等转移过程[16,35-37]。血液循环中游离的Gal-3与肿瘤转移有关,果胶进入血液后可能通过抑制游离的Gal-3而抑制转移相关过程[36]。此外,Gal-3能下调G1/S期细胞周期素水平(cyclin E和cyclin A),上调相关抑制蛋白(p21WAF1和p27KIP1)水平,使线粒体达到自稳平衡[38-40]。

2.4改性果胶对免疫细胞的激活作用

MPs能作为免疫调节剂(biological response modifiers,BRMs)激活免疫细胞[41]。MCP活化多种类型的细胞毒性T细胞(T cell,Tc)、B细胞、自然杀伤(natural killer,NK)细胞等免疫细胞或者刺激这些细胞释放干扰素-γ(interferon-γ,INF-γ)等细胞因子[42-43]。游离Gal-3能抑制Jurkat T细胞的生长,导致其发生凋亡[44-45]。此外,如果MPs能抑制Gal-3诱导的T细胞凋亡,则有可能增强机体的免疫监视作用。

MPs可作为益生元、BRMs和半乳糖凝集素-3抑制剂(galectin-3 inhibitor,Gal3I)而抑制肿瘤启动、生长和转移过程。MPs可能通过抑制胃肠道中有害微生物(如Helicobacter pylori)对消化道的黏附,同时被肠道菌群发酵为短链脂肪酸(short-chain fatty acid,SCFA),或阻止脂多糖(lipopolysaccharides,LPS)对TLR4/NF-κB途径的激活等机制而抑制肿瘤启动。进入血液的MPs能够直接激活B细胞和NK细胞等免疫细胞,或者阻止肿瘤细胞释放的游离Gal-3对T细胞的抑制而起到BRMs的作用。当作为Gal3I时,MPs通过干扰Gal-3参与的细胞周期、细胞生存和凋亡途径而降低某些肿瘤细胞的生长速率或增强其对化疗药物的敏感性。综上所述,MPs通过阻止肿瘤细胞表面Gal-3对配体的识别,减弱肿瘤细胞-细胞间或细胞-基质间的黏附、减少细胞运动性、增强对失巢凋亡和免疫监视的敏感性、抑制肿瘤血管新生,从而发挥抗肿瘤转移的活性。

3 MCP活性基础:可生物利用

以MCP为代表的MPs能在体内发挥抗肿瘤活性的前提是可进入血液循环,即MCP具有生物利用度[10,16]。为什么CP没有抑制肿瘤转移的活性,而MCP具有这一活性?首先,改性使果胶分子的物理性质发生变化,其溶解度增加。如碱处理使CP骨架HG通过β-消除作用而缩短,酯化度从大约80%降低至10%以下,果胶溶解度增加。其次,分子的“药效基团”含量与分布状态在改性过程中发生改变。由于呋喃糖的糖苷键比吡喃糖的糖苷键对酸更敏感,因而果胶RG-Ⅰ的木寡聚糖、阿拉伯寡聚糖等片段的酸解速率大于半乳寡聚糖片段,酸使得果胶的骨架和毛发区链长缩短,部分阿拉伯半乳寡聚糖中的阿拉伯糖被水解,半乳寡聚糖被富集,从而增强了所谓“药效基团”末端β-半乳糖苷与其靶点Gal-3的糖识别结构域间的作用[46-47]。高酯果胶在水中呈疏水团聚物或凝胶状态,而MCP分子是可溶的,其末端β-半乳糖残基易于“呈现”给靶分子Gal-3。另一个影响MCP药代动力学性质的参数是果胶分子质量。MCP的相对分子质量在3 000~60 000范围之间[10,13,42]。分子大小可能从吸收和消除两方面决定血药浓度。

MPs生物利用度的高低与其理化性质和吸收机制有关。电荷可能是决定其生物吸收的重要因素,采用Caco-2双室细胞模型对MCP的跨膜吸收进行研究,结果表明仅有果胶的中性寡糖片段穿越了膜,而富有半乳糖醛酸的果胶片段则没有透过膜[48]。MPs或许可通过被动吸收或主动捕获(如通过小肠上皮细胞、肠相关淋巴组织、M细胞吸收等)两种方式而被修饰、转运和释放[25,49]。

4 改性果胶的构效关系

构效关系研究能指导分子结构优化,以提高物质的活性。由于果胶结构非常复杂,MPs虽然经过了初步纯化和分组,但是在微观上其结构仍是不均一的。例如,MPs酸性片段和中性片段具有不同的性质,而Gao Xiaoge等[13]曾经采用DEAE纤维素层析柱将MCP的中性片段MCP-N纯化出来。因此,多糖的构效关系称为“组效关系”或许更为确切,想要阐明MPs的构效关系,需要制备出结构更加一致的果胶片段。

存在于RG-Ⅰ的半乳糖末端残基是MPs抗肿瘤活性的关键因素[13,50]。荧光显微镜、流式细胞仪和原子力电镜技术均证实,果胶的半乳寡聚糖末端能够与Gal-3相结合[50],β-D-二聚半乳糖与Gal-3间的解离常数为0.33 s-1[51]。含有较高比例RG-Ⅰ片段的黄秋葵果胶[35]和马铃薯果胶[52]均具有抗肿瘤活性。Gao Xiaoge等[13]制备的MCP-N属于果胶的AG-Ⅰ型片段,他们将MCP-N用α-L-阿拉伯呋喃糖苷酶处理,得到中性果胶片段M-MCP。M-MCP是一种分子质量约为18 kD的含有β-(1,4)糖苷键的半乳寡聚糖片段,用酸降解M-MCP得到的半乳寡聚糖比AG-Ⅰ类型的果胶片段具有更强的Gal-3抑制活性。

同聚半乳糖醛酸(HG)对抗肿瘤活性也存在贡献。首先,HG可能与抑制细胞迁移活性有关。Fan Yuying等[40]发现,人参果胶对L-929细胞迁移的抑制作用与HG相关,可能与RG-Ⅰ无关。其次,HG可能与细胞凋亡诱导活性有关。通过对CP热处理获得HTCP,使HG产生细胞凋亡诱导活性,出现天然果胶中不存在的结构[4];而MCP不具备诱导细胞凋亡的活性。HG经过β-消除改性会产生不饱和糖残基,这种糖残基或许与MCP诱导NK细胞的活性有关[42]。经过热处理,果胶会经β-消除产生带有还原性的不饱和糖残基,或发生重排,或产生带有糖酸类结构特征的片段。MPs或许可使肿瘤细胞产生失巢凋亡[53],该活性与果胶的RG-Ⅰ还是HG相关尚无定论[4,52]。此外,HG可能参与了Gal-3的非特异性识别。尽管Gal-3通过糖识别结构域(carbohydrate recognition domain,CRD)主要与MPs的半乳寡聚糖发生专一的相互作用,但是,HG骨架对抑制Gal-3活性并非毫无贡献[54]。现有文献尚不足以支持仅RG-Ⅰ的结构与抑制肿瘤有关[6,52,55]。Gao Xiaoge等[13]按照是否含有GalpA,用色谱法将MCP分离为两组:含有GalpA的组称为MCP-A,不含GalpA的组称为MCP-N,前者对Gal-3的亲和力远远高于后者。果胶片段含有GalpA的骨架对于维持半乳寡聚糖末端片段的构象有重要贡献,分布于HG骨架上的多个半乳寡聚糖能够与Gal-3发生协同相互作用[54]。糖配体与凝集素间如果发生多价效应,则其相互作用强度将增加。改性果胶上的HG骨架对于这些半乳寡聚糖配基而言,起到“桥”的作用。Gao Xiaoge等[54]观察到了几乎不含半乳糖的果胶骨架与Gal-3间的相互作用,而这种相互作用不受乳糖的抑制。因此,MPs的骨架有可能与CRD之间发生非专一相互作用,Gal-3可通过不同聚集方式来调控与配体相互作用的强度。CRD存在与Type-C自聚集有关的位点,MPs的HG骨架或许可以通过电荷相互作用或空间位阻等因素调节Type-C自聚集而影响CRD的功能。另外,HG能抑制幽门螺旋杆菌(Helicobacter pylori)对机体的侵染[56],有助于预防胃癌。硫酸化果胶能抑制幽门螺旋杆菌的黏附作用[57],引入硫酸根因带负电荷而增强了其对细菌黏附的抑制作用,因此HG也可能因羧基负电荷而具有抗黏附作用。由于半乳糖含量增加与其抗黏附作用有关,因此,硫酸化果胶的抗黏附活性可能与HG和RG结构域都有关。

MPs上其他糖残基,如阿拉伯糖会对其活性产生影响。Gao Xiaoge等[54]观察到阿拉伯糖既可以增加,也可以减少半乳寡聚糖片段与Gal-3间的相互作用。动物凝集素配基的倒数第二个糖残基会影响其识别专一性[58]。由于体内有十几种半乳糖凝集素,因此对配体末端糖残基结构的研究是十分必要的。研究MPs的抗肿瘤构效关系、代谢动力学等有助于推动筛选方案的建立,以获得性能更优的Gal3抑制剂(Gal3I)。Gal-3作为肿瘤靶点越来越引人关注,目前已经开发了许多Gal3I[59-60],Gal3I在肿瘤检测和治疗方面有着巨大应用潜力。对于靶Gal-3而言,开发其抑制剂并非只有以MPs为先导分子这一条路径。在研究化学合成的Gal3I过程中,获得了许多Gal-3的CRD与配体间相互作用的规律。这些规律对于优化以MPs为先导分子的Gal3I的结构或许有帮助。由于化学合成的Gal3I尚无毒理学研究成果,因而从植物尤其是食源性植物资源中筛选Gal3I的研究已经广泛开展[59,61-62]。目前,尚缺少一套广泛认可的、高通量的Gal3I筛选方法,能在MPs及其他类型Gal3I文库中筛选出活性更高、毒性更小的片段。

MPs的靶点并非只有Gal-3。体内存在至少有15 种活性各异的半乳糖凝集素,因而不能排除MPs与Gal-3之外的其他半乳糖凝集素发生相互作用的可能性。MPs体内的靶点除Gal-3外,是否还能够与其他家族的半乳糖凝集素(例如脱唾液酸糖蛋白受体ASGP-R)、细胞因子[63-64]、死亡受体[32]等相互作用,还有待进一步研究。此外,MPs的靶细胞也可以是免疫细胞,如RG-Ⅱ能活化CD8+T细胞而抑制肿瘤生长[65]。不过,鉴于RG-Ⅱ含量往往远低于RG-Ⅰ,因此,RG-Ⅰ或其衍生片段在改性果胶活性(包括免疫活性)中应起主要作用。

5 结 语

由于MPs具有抑制肿瘤转移、改善化疗效果及增强免疫响应的活性,因而开发MPs为抗肿瘤功能食品具有巨大潜力。MPs的活性可能主要与其RG-Ⅰ片段有关,同时其生物利用度也能影响其活性。了解MPs的构效关系可指导对其结构的优化,有助于筛选出高活性组分。

为了将MPs开发为功能食品,应重点深入研究果胶与靶点的药靶关系、获得更多的药效学、药代学以及临床研究数据。此外,一些与其作用机制和生物利用度有关的基础性问题也应得到阐明。例如,研究发现某些低分子质量的果胶具有抗氧化能力[66],但果胶的抗氧化能力与抗肿瘤活性之间是否具有因果关系[6]?果胶能够与细胞因子发生相互作用,但MPs是否通过与相关细胞因子发生作用,进而影响肿瘤的治疗[67]?由于低酯化度的果胶能够螯合一些金属离子,那么改性果胶在体内是否会对抗肿瘤的铂类化疗药物产生影响?MPs如何与肠道菌群互动?剂型和果胶的凝胶化如何影响其生物利用度?吸收促进剂能否增加MPs的生物利用度?MPs与其他功能食品(如富含多不饱和脂肪酸的鱼油)是否具有预防肿瘤的协同作用?阐明以上这些问题,将有助于改良MPs的活性并促进其市场应用。

[1] WICKER L, KIM Y, KIM M J, et al. Pectin as a bioactive polysaccharide: extracting tailored function from less[J]. Food Hydrocolloids, 2014, 42(2): 251-259.

[2] ALMEIDA E A, FACCHI S P, MARTINS A F, et al. Synthesis and characterization of pectin derivative with antitumor property against Caco-2 colon cancer cells[J]. Carbohydrate Polymers, 2015, 115: 139-145.

[3] PLATT D, RAZ A. Modulation of the lung colonization of B16-F1 melanoma cells by citrus pectin[J]. Journal of the National Cancer Institute, 1992, 84(6): 438-442.

[4] JACKSON C L, DREADEN T M, THEOBALD L K, et al. Pectin induces apoptosis in human prostate cancer cells: correlation of apoptotic function with pectin structure[J]. Glycobiology, 2007, 17(8):805-819.

[5] HAO Miao, YUAN Xiaowen, CHENG Hairong, et al. Comparative studies on the anti-tumor activities of high temperature- and pH-modified citrus pectins[J]. Food and Function, 2013, 4(6): 960-971.

[6] KANG H J, JO C, KWON J H, et al. Antioxidant and cancer cell proliferation inhibition effect of citrus pectin-oligosaccharide prepared by irradiation[J]. Journal of Medicinal Food, 2006, 9(3): 313-320.

[7] OLANO-MARTIN E, GIBSON G R, RASTALL R A. Comparison of the in vitro bifidogenic properties of pectins and pecticoligosaccharides[J]. Journal of Applied Microbiology, 2002, 93(3):505-511.

[8] CAFFALL K H, MOHNEN D. The structure, function, and biosynthesis of plant cell wall pectic polysaccharides[J]. Carbohydrate Research, 2009, 344(14): 1879-1900.

[9] LECLERE L, CUTSEM P V, MICHIELS C. Anti-cancer activities of pH- or heat-modified pectin[J]. Frontiers in Pharmacology, 2013, 4:1-8. doi: 10.3389/fphar.2013.00128.

[10] 张文博, 刘长忠, 高林. 改性柑橘果胶的制备, 表征及抗癌活性[J].高等学校化学学报, 2010, 31(5): 964-969.

[11] MOHNEN D. Pectin structure and biosynthesis[J]. Current Opinion in Plant Biology, 2008, 11(3): 266-277.

[12] YAPO B M, LEROUGE P, THIBAULT J F, et al. Pectins from citrus peel cell walls contain homogalacturonans homogenous with respect to molar mass, rhamnogalacturonan I and rhamnogalacturonan II[J]. Carbohydrate Polymers, 2007, 69(3): 426-435.

[13] GAO Xiaoge, ZHI Yuan, ZHANG Tao, et al. Analysis of the neutral polysaccharide fraction of MCP and its inhibitory activity on galectin-3[J]. Glycoconjugate Journal, 2012, 29(4): 159-165.

[14] HINZ S W, VERHOEF R, SCHOLS H A, et al. Type I arabinogalactan contains β-D-Galp-(1→3)-β-D-Galp structural elements[J]. Carbohydrate Research, 2005, 340(13): 2135-2143.

[15] LIU Haiying, HUANG Zhiliang, YANG Guohua, et al. Inhibitory effect of modified citrus pectin on liver metastases in a mouse colon cancer model[J]. World Journal of Gastroenterology, 2008, 14(48):7386-7391.

[16] NANGIA-MAKKER P, HOGAN V, HONJO Y, et al. Inhibition of human cancer cell growth and metastasis in nude mice by oral intake of modified citrus pectin[J]. Journal of the National Cancer Institute,2002, 94(24): 1854-1862.

[17] PIENTA K J, NAIK H, AKHTAR A, et al. Inhibition of spontaneous metastasis in a rat prostate cancer model by oral administration of modified citrus pectin[J]. Journal of the National Cancer Institute,1995, 87(5): 348-353.

[18] HAYASHI A, GILLEN A C, LOTT J R. Effects of daily oral administration of quercetin chalcone and modified citrus pectin on implanted colon-25 tumor growth in Balb-c mice[J]. Alternative Medicine Review, 2000, 5(6): 546-552.

[19] COBS-ROSAS M, CONCHA-OLMOS J, WEINSTEINOPPENHEIMER C, et al. Assessment of antiproliferative activity of pectic substances obtained by different extraction methods from rapeseed cake on cancer cell lines[J]. Carbohydrate Polymers, 2015, 117: 923-932.

[20] LIU L, LI Y H, NIU Y B, et al. An apple oligogalactan prevents against inflammation and carcinogenesis by targeting LPS/TLR4/NF-κB pathway in a mouse model of colitis-associated colon cancer[J]. Carcinogenesis,2010, 31(10): 1822-1832.

[21] SHAH M S, SCHWARTZ S L, ZHAO C, et al. Integrated microRNA and mRNA expression profiling in a rat colon carcinogenesis model:effect of a chemo-protective diet[J]. Physiological Genomics, 2011,43(10): 640-654.

[22] HSIEH T, WU J M. Changes in cell growth, cyclin/kinase, endogenous phosphoproteins and nm23 gene expression in human prostatic JCA-1 cells treated with modified citrus pectin[J]. Biochemistry and Molecular Biology International, 1995, 37(5): 833-841.

[23] WANG Y, BALAN V, KHO D, et al. Galectin-3 regulates p21 stability in human prostate cancer cells[J]. Oncogene, 2013, 32(42):5058-5065.

[24] LEE Y K, LIN T H, CHANG C F, et al. Galectin-3 silencing inhibits epirubicin-induced ATP binding cassette transporters and activates the mitochondrial apoptosis pathway via β-catenin/GSK-3β modulation in colorectal carcinoma[J]. PLoS ONE, 2013, 8(11): e82478. doi:10.1371/journal.pone.0082478.

[25] MAXWELL E G, BELSHAW N J, WALDRON K W, et al. Pectin:an emerging new bioactive food polysaccharide[J]. Trends in Food Science and Technology, 2012, 24(2): 64-73.

[26] SONG S, JI B, RAMACHANDRAN V, et al. Overexpressed galectin-3 in pancreatic cancer induces cell proliferation and invasion by binding Ras and activating Ras signaling[J]. PLoS ONE, 2012,7(8): e42699. doi: 10.1371/journal.pone.0042699.

[27] HARAZONO Y, NAKAJIMA K, RAZ A. Why anti-Bcl-2 clinical trials fail: a solution[J]. Cancer and Metastasis Reviews, 2014, 33(1):285-294.

[28] 鲁伟群, 汪峰, 刘海鹰. 奥沙利铂联合低分子柑橘果胶对结肠癌细胞增殖与凋亡的影响[J]. 中华胃肠外科杂志, 2013, 16(1): 84-89.

[29] 汪峰, 刘海鹰. 奥沙利铂联合低分子柑橘果胶对hct116细胞增殖的抑制作用及机制[J]. 中国普通外科杂志, 2011, 20(10): 1053-1057.

[30] HOSSEIN G, KESHAVARZ M, AHMADI S, et al. Synergistic effects of PectaSol-C modified citrus pectin an inhibitor of galectin-3 and paclitaxel on apoptosis of human SKOV-3 ovarian cancer cells[J]. Asian Pacific Journal of Cancer Prevention, 2013, 14(12): 7561-7568.

[31] JIANG J, ELIAZ I, SLIVA D. Synergistic and additive effects of modified citrus pectin with two polybotanical compounds, in the suppression of invasive behavior of human breast and prostate cancer cells[J]. Integrative Cancer Therapies, 2013, 12(2): 145-152.

[32] CHAUHAN D, LI G, PODAR K, et al. A novel carbohydrate-based therapeutic GCS-100 overcomes bortezomib resistance and enhances dexamethasone-induced apoptosis in multiple myeloma cells[J]. Cancer Research, 2005, 65(18): 8350-8358.

[33] FUKUMORI T, KANAYAMA H O, RAZ Z. The role of galectin-3 in cancer drug resistance[J]. Drug Resistance Updates, 2007, 10(3): 101-108.

[34] MAZUREK N, BYRD J C, SUN Y, et al. Cell-surface galectin-3 confers resistance to TRAIL by impeding trafficking of death receptors in metastatic colon adenocarcinoma cells[J]. Cell Death and Differentiation, 2012, 19(3): 523-533.

[35] VAYSSADE M, SENGKHAMPARN N, VERHOEF R, et al. Antiproliferative and proapoptotic actions of okra pectin on B16F10 melanoma cells[J]. Phytotherapy Research, 2010, 24(7): 982-989.

[36] ZHAO Q, BARCLAY M, HILKENS J, et al. Interaction between circulating galectin-3 and cancer-associated MUC1 enhances tumour cell homotypic aggregation and prevents anoikis[J]. Molecular Cancer,2010, 9: 154-166.

[37] DANGE M C, SRINIVASAN N, MORE S K, et al. Galectin-3 expressed on different lung compartments promotes organ specific metastasis by facilitating arrest, extravasation and organ colonization via high affinity ligands on melanoma cells[J]. Clinical and Experimental Metastasis, 2014, 31(6): 661-673.

[38] KIM H R, LIN H M, BILIRAN H, et al. Cell cycle arrest and inhibition of anoikis by galectin-3 in human breast epithelial cells[J]. Cancer Research, 1999, 59(16): 4148-4154.

[39] MATARRESE P, TINARI N, SEMERARO M L, et al. Galectin-3 overexpression protects from cell damage and death by influencing mitochondrial homeostasis[J]. FEBS Letter, 2000, 473(3): 311-315.

[40] FAN Yuying, CHENG Hairong, LIU Dan, et al. The inhibitory effectof ginseng pectin on L-929 cell migration[J]. Archives of Pharmacal Research, 2010, 33(5): 681-689.

[41] RADOSAVlJEVIC G, VOLAREVIC V, JOVANOVIC I, et al. The roles of galectin-3 in autoimmunity and tumor progression[J]. Immunologic Research, 2012, 52(1/2): 100-110.

[42] RAMACHANDRAN C, WILK B J, HOTCHKISS A, et al. Activation of human T-helper/inducer cell, T-cytotoxic cell, B-cell, and natural killer (NK)-cells and induction of natural killer cell activity against K562 chronic myeloid leukemia cells with modified citrus pectin[J]. BMC Complementary and Alternative Medicine, 2011, 11: 59-68.

[43] DEMOTTE N, WIE☒RS G, van der SMISSEN, et al. A galectin-3 ligand corrects the impaired function of human CD4 and CD8 tumorinfiltrating lymphocytes and favors tumor rejection in mice[J]. Cancer Research, 2010, 70(19): 7476-7488.

[44] PENG W, WANG H Y, MIYAHARA Y, et al. Tumor-associated galectin-3 modulates the function of tumor-reactive T cells[J]. Cancer Research, 2008, 68(17): 7228-7236.

[45] XUE Jing, GAO Xiqiang, FU Chunyan, et al. Regulation of galectin-3-induced apoptosis of Jurkat cells by both O-glycans and N-glycans on CD45[J]. FEBS Letter, 2013, 587(24): 3986-3994.

[46] KRALL S M, MCFEETERS R F. Pectin hydrolysis: effect of temperature, degree of methylation, pH, and calcium on hydrolysis rates[J]. Journal of Agricultural and Food Chemistry, 1998, 46(4):1311-1315.

[47] MORRIS V J, GROMER A, KIRBY A R, et al. Using AFM and force spectroscopy to determine pectin structure and (bio) functionality[J]. Food Hydrocolloids, 2011, 25(2): 230-237.

[48] COURTS F L. Profiling of modified citrus pectin oligosaccharide transport across Caco-2 cell monolayers[J]. PharmaNutrition, 2013,1(1): 22-31.

[49] MORRIS V J, BELSHAW N J, WALDRON K W, et al. The bioactivity of modified pectin fragments[J]. Bioactive Carbohydrates and Dietary Fibre, 2013, 1(1): 21-37.

[50] GUNNING A P, BONGAERTS R J, MORRIS V J. Recognition of galactan components of pectin by galectin-3[J]. FASEB Journal, 2009,23(2): 415-424.

[51] GUNNING A P, PIN C, MORRIS V J. Galectin 3-β-galactobiose interactions[J]. Carbohydrate Polymers, 2013, 92(1): 529-533.

[52] CHENG Hairong, ZHANG Zhongyu, LENG Jiayi, et al. The inhibitory effects and mechanisms of rhamnogalacturonan I pectin from potato on HT-29 colon cancer cell proliferation and cell cycle progression[J]. International Journal of Food Science and Nutrition, 2013, 64(1): 36-43.

[53] NEWLACZYL A U, YU L G. Galectin-3- A jack-of-all-trades in cancer[J]. Cancer Letters, 2011, 313(2): 123-128.

[54] GAO Xiaoge, ZHI Yuan, SUN Lin, et al. The inhibitory effects of a rhamnogalacturonan I (RG-I) domain from ginseng pectin on galectin-3 and its structure-activity relationship[J]. Journal of Biological Chemistry, 2013, 288(47): 33953-33965.

[55] BERGMAN M, DJALDETTI D, SALMAN H, et al. Effect of citrus pectin on malignant cell proliferation[J]. Biomedicine and Pharmacotherapy, 2010, 64(1): 44-47.

[56] INNGJERDINGEN K T, TH☒LE C, DIALLO D, et al. Inhibition of Helicobacter pylori adhesion to human gastric adenocarcinoma epithelial cells by aqueous extracts and pectic polysaccharides from the roots of Cochlospermum tinctorium A. Rich. and Vernonia kotschyana Sch. Bip. ex Walp[J]. Fitoterapia, 2014, 95: 127-132.

[57] SONG Weijuan, WANG Yalong, ZHANG Liyan, et al. Preparation and evaluation of polysaccharide sulfates for inhibiting Helicobacter pylori adhesion[J]. Carbohydrate Polymers, 2014, 103: 398-404.

[58] NAKAHARA S, RAZ A. Biological modulation by lectins and their ligands in tumor progression and metastasis[J]. Anti-Cancer Agents in Medicinal Chemistry, 2008, 8(1): 22-36.

[59] KLYOSOV A A, WITCZAK Z J, PLATT D. Food-related carbohydrate ligands for galectins[M]//MOSSINE V V, GLINSKY V V,MAWHINNEY T P. Galectin. New Jersey: John Wiley & Sons Inc.,2008: 235-270.

[60] 张文博. 半乳糖凝集素-3及其抑制剂的研究进展[J]. 中国药学杂志,2009, 44(3): 165-169.

[61] SATHISHA U V, JAYARAM S, NAYAKA M A H, et al. Inhibition of galectin-3 mediated cellular interactions by pectic polysaccharides from dietary sources[J]. Glycoconjugate Journal, 2007, 24(8): 497-507.

[62] JAYARAM S, KAPOOR S, DHARMESH S M. Pectic polysaccharide from corn (Zea mays L.) effectively inhibited multi-step mediated cancer cell growth and metastasis[J]. Chemico-Biological Interactions,2015, 235: 63-75.

[63] LIU Yan, AHMAD H, LUO Yongde, et al. Citrus pectin:characterization and inhibitory effect on fibroblast growth factorreceptor interaction[J]. Journal of Agricultural and Food Chemistry,2001, 49(6): 3051-3057.

[64] SALMAN H, BERGMAN M, DJALDETTI M, et al. Citrus pectin affects cytokine production by human peripheral blood mononuclear cells[J]. Biomedicine Pharmacotherapy, 2008, 62(9): 579-582.

[65] PARK S N, NOH K T, JEONG Y I, et al. Rhamnogalacturonan II is a Toll-like receptor 4 agonist that inhibits tumor growth by activating dendritic cell-mediated CD8+T cells[J]. Experimental and Molecular Medicine, 2013, 45(2): e8. doi: 10.1038/emm.2013.14.

[66] 杜丽娟, 李拖平, 王娜, 等. 山楂果胶分解物抗氧化作用研究[J]. 食品研究与开发, 2009, 30(6): 18-22.

[67] DENNIS J W, LAU K S, DEMETRIOU M, et al. Adaptive regulation at the cell surface by N-glycosylation[J]. Traffic, 2009, 10(11): 1569-1578.

Progress in Antitumor Mechanisms of Modified Pectin

ZHANG Wenbo1, LIU Zhenhua1, YUAN Xueyan2, GAO Qiyu1,*
(1. School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang 453003, China;2. School of Public Health, Xinxiang Medical University, Xinxiang 453003, China)

Pectin is a complex class of plant polysaccharides, composed of a galacturonan backbone and neutral sugar side chains. Antitumor modified pectin fragments (MPs) can be prepared by physical and/or chemical modification of pectin to decrease its molecular mass, reduce its degree of esterification, modify its fine structure and improve its bioavailability. MPs can reportedly inhibit tumor growth, induce apoptosis, sensitize tumor cells to chemotherapeutic drugs, interfere with angiogenesis, suppress metastasis and modulate immunological responses. This review summarizes the antitumor mechanisms, bioabsorption mechanisms and structure-activity relationship of MPs. We also analyze the prospects for developing MPs-based functional foods.

galectin-3 (Gal-3); modified pectins (MPs); modified citrus pectin (MCP); pectin; antitumor activity

TS201.2

A

1002-6630(2015)15-0293-06

10.7506/spkx1002-6630-201515054

2015-03-30

河南省教育厅科学技术研究重点项目(12B350006;14A180018)

张文博(1974—),男,讲师,博士,研究方向为多糖生化药物。E-mail:zhangwenbo@xxmu.edu.cn

高启禹(1979—),男,讲师,博士研究生,研究方向为酶工程、寡糖工程。E-mail:gaog345@163.com

猜你喜欢

凝集素半乳糖聚糖
相对分子质量对木聚糖结晶能力的影响
饲料用β-甘露聚糖酶活力的测定
泽兰多糖对D-半乳糖致衰老小鼠的抗氧化作用
黄芩-黄连药对防治D-半乳糖痴呆小鼠的作用机制
半乳糖凝集素-3与心力衰竭相关性
产木聚糖酶菌株的筛选、鉴定及其酶学性质研究
半乳糖凝集素-1在妇科恶性肿瘤中生物活性的研究进展
血清半乳甘露聚糖试验对侵袭性肺曲霉菌感染的诊断价值
半乳糖凝集素-3在心力衰竭中的研究进展
半乳糖凝集素3与急性缺血性脑卒中的相关性研究