APP下载

氧分压对磁控溅射VO2薄膜相变性能的影响

2015-05-12张东平朱茂东黄仁桂蔡兴民

深圳大学学报(理工版) 2015年6期
关键词:磁控溅射透射率氧分压

张东平,朱茂东,杨 凯,刘 毅,黄仁桂,蔡兴民,范 平

深圳大学物理科学与技术学院,薄膜物理与应用研究所,深圳市传感器技术重点实验室,深圳 518060

氧分压对磁控溅射VO2薄膜相变性能的影响

张东平,朱茂东,杨 凯,刘 毅,黄仁桂,蔡兴民,范 平

深圳大学物理科学与技术学院,薄膜物理与应用研究所,深圳市传感器技术重点实验室,深圳 518060

采用直流反应磁控溅射工艺在不同氧分压下制备VO2相变薄膜.分别用X射线衍射仪、扫描电子显微镜、四探针方阻测量系统和分光光度计对薄膜微结构、表面形貌、电学及光学特性进行表征.测量结果表明,薄膜样品是由包含VO2相在内的多相复杂体系构成的,随着氧分压的增加,薄膜中高价态相的钒氧化物增多.所有薄膜均呈现出压应力,压应力大小随着氧分压的升高而逐渐减小.方块电阻温变结果表明,薄膜具有明显半导体-金属相变特性,相变性能随着氧分压的升高呈先增后减特征.高低温透射谱表明,薄膜具有良好红外开关特性.氧分压改变导致膜中氧空位缺陷密度和微结构变化是VO2薄膜半导体-金属相变性能改变的主因.本实验条件下,具有良好热致相变性能的VO2薄膜的最佳生长氧分压是0.04 Pa.

凝聚态物理;VO2薄膜;磁控溅射;氧分压;相变;微结构;光学透过率

自1958年Morin首次报道具有电导率突变特性的相变金属氧化物以来,相变材料一直倍受关注.特别是VO2[1-4],在68℃左右可发生超快可逆的一级相变,从低温时的单斜相转变为高温时的四方金红石相[5].伴随着相变的发生和晶体结构的改变,VO2的光电特性也发生了急剧的变化.因为其相变温度非常接近室温,VO2可广泛用于下一代记忆材料[6],如非制冷红外探测器[7]、超快光开光[8]、磁存储材料[9]、红外传感器[10]、可调谐微波器件[11]和具有节能效果的智能窗[12]等领域.目前,VO2薄膜的制备方法有多种,如溶胶-凝胶[13]、离子束溅射[14]、磁控溅射[15]、热蒸发[16]、水热法[17]、分子 束 外 延 (molecular beam epitaxy,MBE)[18]、化学气相沉积 (chemical vapor deposition,CVD)[19]和脉冲激光沉积 (pulsed laser deposition,PLD)[20]等.其中,磁控溅射技术不仅适合于产业化生产,且其制备的薄膜具有性能稳定、重复性好、均匀性佳、附着力强和堆积密度高等特点[21],是研究最广泛的制备方法之一.实现VO2薄膜的实际应用,获得高质量的VO2依然是关键.钒的氧化物是一个复杂的体系,在很窄的化学计量比范围内 (1.5~2.5)就存在多种价态的氧化钒相,如 V2O3、V3O5、V4O7、V5O9、VO2和 V2O5等.VO2薄膜的生长条件窗口非常窄,所以要想制备出化学计量比稳定的VO2薄膜,需精确控制各个制备条件,其中氧分压是最重要的一个参数.目前,已有很多学者在不同方法和不同基底条件下研究了氧分压对VO2薄膜性能的影响,但因制备方法和基底的不同,所得结果差异较大,所以氧分压对VO2性能的影响仍有待研究,高质量VO2薄膜的制备依然面临很多挑战.本研究选择BK7玻璃为基底,利用直流反应磁控溅射制备VO2薄膜,通过X射线衍射仪 (X-ray diffraction,XRD)、扫描电子显微镜 (scanning electronic microscopy,SEM)、四探针方阻测量系统和分光光度计等手段,分析和研究氧分压对VO2薄膜光电特性及微结构的影响.

1 实验方法

以直径为60 mm,纯度为99.99%金属钒单质为靶材,采用直流反应磁控溅射技术制备VO2薄膜.沉积中,靶基间距为5 cm,基底温度为400℃.薄膜沉积前,本底真空抽到8.0×10-4Pa,然后在氩气氛围下进行5 min的预溅射以去除靶材表面的污染物.纯度为99.99%的氩气作为溅射气体,纯度为99.99%的氧气作为反应气体,通过气体质量流量计精确控制氩气和氧气进入混气室充分混合后再引入真空室.不同样品的氧分压p从0.03 Pa增至0.06 Pa,分别对应样品 A、B、C和 D(表1).沉积中溅射气压保持在0.5 Pa,溅射功率为120 W,溅射时间为1 h.沉积完薄膜后,把所有样品放在500℃,0.5 Pa的Ar环境下退火2 h.

表1 不同薄膜样品的氧分压Table 1 Oxygen partial pressures of samples

采用X射线衍射仪(型号为Rigaku Ultima IV)对薄膜样品的晶体结构进行表征,测量采用θ-2θ耦合模式,入射X光选用波长为0.154 18 nm的Cu的Kα线,测量角度间隔为0.02°,范围为15°~60°.用Lambda 950分光光度计测量薄膜样品在低温(室温为27℃)和高温(80℃)下的透射光谱,测量波长间隔为1 nm,测量范围为400~2 000 nm.用带温度控制台的四探针测试仪测量薄膜样品的方块电阻随温度变化情况,测试范围从室温到80℃,变化间隔为1℃.采用场发射扫描电镜 (型号为Carl-Zeiss Auriga)测量薄膜样品的表面形貌,其放大倍数是5万倍.

2 结果与讨论

2.1 氧分压对VO2薄膜晶体结构的影响

图1是不同氧分压下沉积的氧化钒薄膜样品的XRD图谱.

图1 不同氧分压下沉积的VO2薄膜的XRD图谱Fig.1 (Color online)X-ray diffraction spectra of VO2films prepared under different oxygen partial pressures

由图 1 可见,在 17°、28°、34°、37°和 42°附近存在不同的钒氧化物衍射峰,参考国际衍射数据中心材料粉末衍射数据库[22],这些衍射峰分别对应于V6O11(103)、VO2(011)、V2O3(110)、V3O7(314)和V2O5(002)晶面.结果表明,薄膜由多种价态的钒氧化物组成.这是由于钒具有多个价态,且作为中间价态的+4价钒为亚稳态,所以VO2的生长条件窗口非常狭窄,生长过程中沉积参数的微小波动易导致其他价态钒氧化物的生长.在本实验中,由于采用的反应溅射,靶表面氧化程度随着沉积过程中存在波动,轻微的靶中毒均会导致沉积速率等工艺参数的改变,从而使薄膜呈现复相结构.对于p=0.03 Pa的样品A来说,其衍射峰的强度非常微弱,说明此氧分压下薄膜结晶度不高.另一方面,发现衍射峰VO2(011)的强度随着氧分压的增加呈先增后减趋势,当p=0.05 Pa时,衍射强度最强.当p增至0.06 Pa时,VO2(011)衍射强度开始减弱,而V2O5(002)衍射强度增强,表明薄膜开始向高价态的钒氧化物转变.以上结果表明,

其中,d和d0分别是应变晶面间距和无应变晶面间距;E是杨氏模量;v是泊松比.晶格常数可以由布拉格公式来计算

其中,θ为X射线衍射角;k为衍射级次;λ为X射线的波长.结果表明,薄膜存在压应力,且随着氧分压的增大,VO2(011)衍射峰向小角度偏移,这暗示了压应力不断减小,该结果与Kim等[24]和Fan等[25]的报道一致.VO2薄膜的晶体结构对氧分压很敏感.表2是不同氧分压下制备的样品VO2(011)衍射峰的位置.由表2可见,这些衍射角较 VO2粉末的衍射角(27.827°)明显偏大.这是因为在不同氧分压下,薄膜内氧空位缺陷密度不同,导致薄膜内存在的残余应力产生的晶格畸变不同而引起的.薄膜内存在的应力为[23]

表2 不同氧分压下制备的VO2薄膜样品的VO2(011)的衍射峰位置Table 2 VO2(011)diffraction peak positions for samples prepared under different oxygen partial pressures

2.2 氧分压对VO2薄膜电学特性的影响

图2是不同氧分压下制备的VO2薄膜在升温与降温过程中薄膜方块电阻R□随温度t变化曲线图.由图3可见,所有样品都表现出热滞效应.在室温下,样品R□值为102~105Ω (在薄膜中常用Ω/□表示),显示了半导体特性.随着温度上升,当温度t到达40℃附近,R□值发生突变.从室温到80℃,薄膜的R□值骤降1.2~1.5个数量级.薄膜的方块电阻-温度热滞回线显示了薄膜具有明显的半导体-金属相变特性.图3是在室温和80℃时,不同样品的方块电阻随氧分压变化曲线图.由图3可见,随着p值的增加,R□值增大,当p增到0.06 Pa时,R□值接近104~105Ω;另一方面,在变化过程中,不同氧分压的样品相变前后的方块电阻变化幅度较为接近.电学性质的这种变化与薄膜的微结构变化相关,氧分压较低的薄膜,氧离子空位的浓度较大,薄膜中载流子浓度较高,R□值比较低;当氧分压增大时,氧离子空位浓度逐渐降低,载流子浓度也随之降低,钒与氧趋于形成高价的稳定钒氧化物,这时钒与氧的原子比趋于稳定的化学计量比,方块电阻很大.

图2 不同样品方块电阻对数随温度变化曲线Fig.2 (Color online)Logarithm of sheet resistances as a function of temperature for different samples

图3 室温和高温下方块电阻对数随氧流量的变化Fig.3 (Color online)Logarithm of sheet resistance variation with oxygen partial pressure at room temperature and high temperatures.

图4是样品升温过程的方块电阻取对数再对温度求导数的高斯拟合图.相变温度是对应每个样品-d(lgR□)/dt取极大值时的温度.由图4可见,所有样品的相变温度范围为42~48℃,这比单晶VO2的相变温度68℃低很多.随着氧分压的增加,相变温度先增后降,如图5.每个样品微分曲线的半高宽和VO2薄膜的微结构和空间缺陷紧密关联.在高氧分压条件下生长的薄膜含有较多高价的钒氧化物.这些高价钒氧化物的引入会使主相VO2的晶格结构发生畸变,从而影响其半导体-金属相转变[26].半高宽较窄的VO2薄膜表现出较好的相变性能,随着氧分压的增加,半高宽呈先减后增趋势.样品B的半高宽最小,这表明p=0.04 Pa是本研究制备VO2的最佳参数.当p增至0.06 Pa时,样品D的半高宽最大,其相变性能最弱.电学热滞回线结果和XRD射线衍射结果未很好的对应,原因有待进一步研究.

图4 样品升温过程中-d(lgR□)/dt与t的标准高斯拟合曲线Fig.4 (Color online)Standard Gauss fitting derivative logarithmic plots of-d(lgR□)/dt as a function of t of the samples for the heating process

图5 相变温度随氧分压的变化关系Fig.5 (Color online)Phase transition temperature variation with different oxygen partial pressure

2.3 氧分压对VO2薄膜光学特性的影响

图6 VO2薄膜的光学透射率图谱Fig.6 (Color online)Optical transmittance spectra of VO2thin films

图6是VO2薄膜在半导体态和金属态下的光学透射谱,测试波长范围是400~2 000 nm.所有样品在可见光范围内透射率都较低,红外透射率随波长增大而增强,低温状态下,在波长2 000 nm处,红外最大透射率达25%~40%.在高温金属相时,不同氧分压的样品红外透射率都接近0,可见光最大透射率范围为5%~10%.由图6可见,随着样品温度升高,红外透射率发生突变,且在波长2 000 nm处高低温透射率差值呈先升后降趋势,表明薄膜中存在VO2相,此结果和XRD谱及电学特性变化相吻合.红外透射率发生突变的原因是在VO2薄膜从半导体态转变为金属态过程中,由于等离子体振荡效应,对红外光大幅度反射,导致高温下红外透射率降低.

2.4 氧分压对VO2薄膜表面形貌的影响

图7是不同氧分压下所制备VO2薄膜的SEM形貌.由图可见,表面形貌随着氧流量变化发生了明显变化,当氧分压较低时,如图7(a)和(b),薄膜含有大量无规则孔隙,图7中未发现明显的晶粒;随着氧分压的进一步增大,出现明显颗粒,如图7(c)和(d),且颗粒尺寸随氧分压的增加而减小,薄膜结构趋于致密.当氧分压为0.06 Pa时,颗粒大小约20 nm.基于SEM形貌变化及前面相变前后薄膜电学和光学相变特性分析可知,氧分压变化将综合通过改变薄膜中非化学计量比成分和薄膜织构的改变,并通过调节薄膜中应力,从而最终影响薄膜的相变特性.

图7 VO2薄膜的扫描电子显微镜像Fig.7 SEM images of VO2thin films

结 语

采用直流反应磁控溅射工艺制备VO2薄膜,所得薄膜均表现出明显的相变特性.不同氧分压下样品相变温度为42~48℃,明显低于单晶VO2薄膜相变温度.薄膜呈现出压应力,随着氧分压的增加,压应力渐减.薄膜结构随氧分压的升高趋于向高价态的钒氧化物发展,薄膜相变特性和红外调节能力呈先增后减的变化规律.结合XRD和SEM测量结果,这种变化主要是由于不同氧分压下薄膜相成分和织构的不同,使薄膜应力和相变特性产生较大差异.本研究在p=0.04 Pa下可获得相变特性良好的VO2薄膜.

/References:

[1] Cao Chuanxiang,Gao Yanfeng,Luo Hongjie,et al.Pure single-crystal rutile vanadium dioxide powders:synthesis,mechanism and phase-transformation property[J].Journal of Physical Chemistry C,2008,112(48):18810-18814.

[2]Yang Zheng,Ko C,Shriram R,et al.Oxide electronics utilizing ultrafast metal-insulator transitions[J].Annual Review of Materials Research,2011,41(4):337-367.

[3]Zhou Jiadong,Gao Yanfeng,Zhang Zongtao,et al.VO2thermochromic smart window for energy savings and generation [J].Scientific Reports,2013,3(1):3029.

[4] Zhao Lili,Miao Lei,Tanemur S,et al.A low cost preparation of VO2thin films with improved thermochromic properties from a solution-based process[J].Thin Solid Films,2013,543(3):157-161.

[5]Wang Kevin,Cheng Chun,Cardona E,et al.Performance limits of microactuation with vanadium dioxide as a solid engine [J].American Chemical Society Nanotechnology,2013,7(3):2266-2272.

[6]Lee M J,Seo S,Kim D,et al.Two series oxide resistors applicable to high speed and high density nonvolatile memory[J].Advanced Materials,2007,19(22):3919-3923.

[7] Chen Changhong, YiXinjian, ZhangJing, etal.Micromachined uncooled IR bolometer linear array using VO2thin films[J].International Journal of Infrared and Millimeter Waves,2001,22(1):53-58.

[8]Soltan M,Chaker M,Haddad E,et al.1×2 optical switch devices based on semiconductor-to-metallic phase transition characteristics of VO2smart coatings[J].Measurement Science and Technology,2006,17(5):1052-1056.

[9] Oleinik A S.Optical data recording with vanadium dioxide-based film reversible media[J].Technical Physics,2002,47(8):1014-1018.

[10]Ishizaki H,Nakajim T,Shinod K,et al.Improvement of temperature coefficient of resistance of a VO2film on an SiN/polyimide/Si substrate by excimer laser irradiation for IR sensors [J].Japanese Journal of Applied Physics,2014,53(5):05FB15-1-05FB15-4.

[11]Dragoman M,Cismaru A,Hartnage H,et al.Reversible metal-semiconductor transitions for microwave switching applications [J].Applied Physics Letter,2006,88(7):073503-1-073503-3.

[12] Chen Zhang,Gao Yanfeng,Kang Litao,et al.VO2-based double-layered films for smart windows:Optical design,all-solution preparation and improved properties[J].Solar Energy Materials& Solar Cells,2011,95(9):2677-2684.

[13]Lu Songwei,Hou Lisong,Gan Fuxi,et al.Structure and optical property changes of sol-gel derived VO2thin films[J].Advanced Materials,1997,9(3):244-246.

[14] Chen Sihai,Ma Hong,Yi Xinjian,et al.Smart VO2thin film for protection of sensitive infrared detectors from strong laser radiation[J].Sensors Actuators A:Physical,2004,115(1):28-31.

[15]Luo Zhenfei,Zhou Xun,Yan Dawei,et al.Effects of thickness on the nanocrystalline structure and semiconductor-metaltransition characteristics ofvanadium dioxide thin films [J].Thin Solid Films,2014,550(1):227-232.

[16] Cheng Chun,Liu Kai,Xiang Bin,et al.Ultra-long,free-standing,single-crystalline vanadium dioxide micro/nanowires grown by simple thermal evaporation[J].Applied Physics Letter,2012,100(10):103-111.

[17]Lyu Weizhong,Huang Dezhen,Luo zhongkuan,et al.Hydrothermal synthesis and characterization of tungsten and fluorine co-doped vanadium dioxide[J].Journal of Shenzhen University Science and Engineering,2015,32(4):385-389.(in Chinese)

吕维忠,黄德贞,罗仲宽,等.钨-氟共掺杂二氧化钒的水热法制备及表征[J].深圳大学学报理工版,2015,32(4):385-389.

[18]Chang Y J,Koo C H,Yang J S,et al.Phase coexistence in metal-insulator transition of VO2thin films [J].Thin Solid Films,2005,486(1/2):46-49.

[19]Manning T D,Parkin I P,Pemble M E,et al.Intelligent window coatings:atmospheric pressure chemical vapor deposition of tungsten-doped vanadium dioxide [J].Chemistry Materials,2004,16(4):744-749.

[20]Fu Deyi,Liu Kai,Tao Tao,et al.Comprehensive study of the metal-insulator transition in pulsed laser deposited epitaxial VO2thin films [J].Journal of Applied Physics,2013,113(4):043707-1-043707-7.

[21]Ohring M.Materials science of thin films[M].Singapore:Elsevier(Singapore)Pte Ltd,2006:222-223.

[22] Zhang Dongping,Huang Rengui,Zhang Ting,et al.Effect of substrate temperature on the microstructure,optical,and electrical properties of reactive DC magnetron sputtering vanadium oxide films[J].Physics Status Solidi A,2012,209(11):2229-2234.

[23]Hu Juguang,Tang Huabin,Li Qiwen,et al.Study on the structure of crystallized CIGS thin films by near infrared laser annealing[J].Journal of Shenzhen University Science and Engineering,2013,30(6):623-628.(in Chinese)

胡居广,汤华斌,李启文,等.近红外激光退火晶化CIGS薄膜研究[J].深圳大学学报理工版,2013,30(6):623-628.

[24]Kim H,Charipar N,Osofsky M,et al.Optimization of the semiconductor-metal transition in VO2epitaxial thin films as a function of oxygen growth pressure[J].Applied Physics Letter,2014,104(8):081913-1-081913-5.

[25]Fan L L,Chen S,Wu YF,et al.Growth and phase transition characteristics of pure M-phase VO2epitaxial film prepared by oxide molecular beam epitaxy[J].AppliedPhysicsLetter, 2013, 103(13):131914-1-131914-5.

[26]Yang Z,Ko C,Ramana S,et al.Metal-insulator transition characteristics of VO2thin films grown on Ge(100)single crystals[J].Journal of Applied Physics,2010,108(7):073708-1-073708-6.

2015-06-17;

2015-10-20

Influence of oxygen partial pressure on phase transition characteristics of VO2thin films prepared by magnetron sputtering

Zhang Dongping,Zhu Maodong,Yang Kai,Liu Yi†,Huang Rengui,Cai Xingmin,and Fan Ping

College of Physics Science and Technology,Institute of Thin Film Physics and Applications,Shenzhen Key Laboratory of Sensor Technology,Shenzhen University,Shenzhen 518060,P.R.China

Vanadium dioxide(VO2)thin films were prepared by reactive magnetron sputtering under different oxygen partial pressures.Microstructure,surface morphology,electrical and optical properties of the samples were characterized by X-ray diffraction instrument,four-point probe system,spectrophotometer,and scanning electron microscopy,respectively.Experimental results indicate that the samples are composed of different complex vanadium oxide phases.With an increase of oxygen partial pressure,the films become higher-valence vanadium oxides.All the samples exhibit compressive intrinsic stresses,and the stress value decreases with the increase of the oxygen partial pressure.The relationship between sheet resistance and temperature reveals remarkable semiconductor-metal transition(SMT)characteristics,and the SMT performance exhibits an initial higher degree and then gets weakened.The transmittance spectra under high and low temperatures reveal that films have a high performance of optical switching in IR range.Variations in oxygen vacancy defect density and microstructure with oxygen partial pressure are the main reasons for SMT variation.In our study,the optimal oxygen partial pressure is 0.04 Pa for high SMT performance VO2films deposition.

condensed matter physics;VO2thin film;magnetron sputtering;oxygen partial pressure;phase transition;microstructure;optical transmittance

O 484.1

A

10.3724/SP.J.1249.2015.06645

Foundation:NationalNaturalScienceFoundation ofChina(11174208);Shenzhen Scienceand TechnologyProject(JCYJ20130326113026749)

Associate professor Liu Yi.E-mail:liuy@szu.edu.cn

:Zhang Dongping,Zhu Maodong,Yang Kai,et al.Influence of oxygen partial pressure on phase transition characteristics of VO2thin films prepared by magnetron sputtering [J].Journal of Shenzhen University Science and Engineering,2015,32(6):645-651.(in Chinese)

国家自然科学基金资助项目 (11174208);深圳市科技计划资助项目 (JCYJ20130326113026749)

张东平 (1972—),男 (汉族),安徽省肥东县人,深圳大学教授.E-mail:zdpsiom@mail.szu.edu.cn

引 文:张东平,朱茂东,杨 凯,等.氧分压对磁控溅射VO2薄膜相变性能的影响[J].深圳大学学报理工版,2015,32(6):645-651.

【中文责编:英 子;英文责编:木 南】

猜你喜欢

磁控溅射透射率氧分压
噪声对相干衍射成像重构物体图像的影响
C/C复合材料表面磁控溅射ZrN薄膜
静脉血中氧分压的调节
一种改进的场景透射率修正图像去雾算法
纯色太阳镜镜片耐日光辐照性能试验研究
基于《TiO2基阻变存储器件性能》的教学实践探索
复杂腔体件表面磁控溅射镀膜关键技术的研究
载人航天器组合体氧分压控制仿真分析
微波介质陶瓷谐振器磁控溅射金属化
光子晶体耦合缺陷的透射特性研究