APP下载

脯氨酸代谢途径在调控水稻phyB突变体干旱胁迫耐性中的作用

2014-08-20尹静静等

山东农业科学 2014年3期
关键词:脯氨酸干旱盐胁迫

尹静静等

摘要:本研究分析了水稻野生型和phyB突变体中脯氨酸代谢途径关键基因的表达水平。结果显示,干旱处理能够诱导脯氨酸生物合成相关基因OsP5CS1和OsOAT的表达,抑制脯氨酸生物降解基因OsP5CDH的表达。且phyB突变体中OsP5CS1基因的表达水平明显高于野生型,据此推测phyB负调控OsP5CS1基因的表达。为了分析OsP5CS1基因的高水平表达是否与phyB突变体较强的干旱胁迫耐性有关,本研究进一步培育了转OsP5CS1基因烟草。离体叶片失水速率结果表明,转基因烟草的失水速率小于野生型;盐胁迫条件下,转基因烟草的分化率明显高于野生型。综上所述,phyB对脯氨酸代谢途径的调控是phyB突变体具有较强干旱胁迫耐性的重要因素之一。

关键词:水稻;phyB突变体;脯氨酸;干旱;盐胁迫

中图分类号:Q786:Q945.79 文献标识号:A 文章编号:1001-4942(2014)03-0001-04

AbstractThe expression levels of key genes involved in proline metabolic pathway were compared in rice wild type (WT) and phyB mutant. The results showed that dehydration treatment induced the expression of proline biosynthetic gene OsP5CS1 and OsOAT, but suppressed the expression of proline catabolic gene OsP5CDH. And the expression level of OsP5CS1 gene in phyB mutant was obviously higher than that in WT, which suggesting that phyB negatively regulated its expression. To explore the relation between high OsP5CS1 transcript level and stronger drought tolerance in phyB mutant, the OsP5CS1 transgenic tobacco was obtained. Water loss rate assays of detached leaves revealed that transgenic tobacco showed a slower water loss rate compared to non-transgenic tobacco. In addition, the leaf disk differentiation rate under high salinity of transgenic tobacco was higher than that of non-transgenic tobacco. These findings suggested that the regulation of phyB on proline metabolic pathway was one of the important factors contributing to stronger drought tolerance in phyB mutant.

Key wordsRice; phyB mutant; Proline; Drought; Salt stress

植物受到非生物胁迫后,能够诱导许多基因的表达,其中一类基因编码参与渗透调节物质合成和解毒作用的酶及转运蛋白[1]。脯氨酸是一种重要的渗透调节物质,其在植物中的主要作用可分为两部分:一是保持原生质与环境的渗透平衡[2],它可与胞内一些化合物形成聚合物,类似亲水胶体,防止水分散失;二是保持膜结构的完整性[3]。脯氨酸与蛋白质相互作用能增加蛋白质的可溶性,减少可溶性蛋白的沉淀,增强蛋白质的水合作用。

植物体脯氨酸的合成有两条途径:谷氨酸途径和鸟氨酸途径[4]。谷氨酸途径的初始底物是谷氨酸,在吡咯琳-5-羧酸合成酶[P5CS,Delta(1)-pyrroline-5-carboxylate synthetase]的催化下生成谷氨酸半醛(GSA),GSA在吡咯琳-5-羧酸还原酶 (P5CR)的催化下生成脯氨酸。研究表明,P5CS是脯氨酸合成途径中起主要调控作用的关键酶[4],是整个反应的限速酶并受脯氨酸的反馈抑制[5]。吡咯琳-5-羧酸脱氢酶[P5CDH,Delta(1)-pyrroline-5-carboxylate dehydrogenase]催化GSA生成谷氨酸,参与脯氨酸的降解途径。鸟氨酸途径的底物是鸟氨酸,在鸟氨酸转氨酶(OAT,Ornithine-δ-aminotransferase)的催化下生成GSA,从而参与脯氨酸的合成。在渗透胁迫和氮饥饿情况下,脯氨酸经由谷氨酸途径合成占主导。

已有的研究表明,水稻光敏色素B(phyB)突变体具有较强的干旱胁迫耐性,生理机理分析结果表明,其具有较强的渗透调节能力,干旱条件下phyB突变体中脯氨酸含量高于野生型[6]。据此推测phyB影响脯氨酸代谢。为了分析phyB影响脯氨酸代谢及干旱胁迫耐性的机制,本研究比较了正常及干旱处理条件下野生型和phyB突变体中脯氨酸代谢相关基因的表达水平。此外,构建了OsP5CS1基因的过表达载体,获得了转基因烟草,并对其干旱和盐胁迫耐性进行分析。

1材料与方法

1.1植物材料

本研究所用水稻材料(野生型和phyB突变体)为日本晴(Oryza sativa L. cv. Nipponbare)[7],所用烟草品种为SR(Nicotiana tabacum cv. Petit Havana SR)。

1.2水稻的干旱处理

野生型和phyB突变体水稻种子表面消毒后,播种于0.4%(W/V)的琼脂培养基中,光照培养箱(宁波江南)中培养7 d后,移栽至温室 (光照14 h,28℃;黑暗10 h,23℃) 土壤中继续培养至六叶一心期。取第五叶在光照培养箱中(相对湿度60%,25℃,4 900 lx)失水处理4 h,取材保存于液氮中,用于分析脯氨酸代谢相关基因的表达模式。

1.3基因表达模式分析

按照RNAiso Plus(TaKaRa)说明书提取水稻RNA。利用RNase-free DNase(TaKaRa)除去RNA中的DNA,根据PrimeScript RT Enzyme Mix I(TaKaRa)说明书合成第一链。本研究所用基因在GenBank数据库中的序列号、引物序列及扩增条件如表1所示。以ACTIN为内参基因。引物由上海英潍捷基生物有限公司合成。

2结果与分析

2.1干旱处理后水稻脯氨酸代谢相关基因表达模式分析

如图1所示,正常条件下,OsP5CS1、OsP5CDH和OsOAT基因在野生型和phyB突变体中的表达水平无显著差别。干旱处理4 h后,OsP5CS1基因在野生型中的表达略有提高,但在phyB突变体中的表达明显提高。OsP5CDH基因的表达受干旱处理的抑制,且在phyB突变体中的抑制效果更明显。干旱处理同样诱导了OsOAT基因在野生型和phyB突变体中的表达。这些结果表明,干旱处理诱导脯氨酸合成途径相关基因的表达,抑制降解途径相关基因的表达,且phyB负调控干旱处理对OsP5CS1基因的诱导。

3讨论

在本研究中,干旱胁迫诱导了脯氨酸合成基因OsP5CS1和OsOAT的表达,抑制了降解基因OsP5CDH的表达。这与已有的报道一致,OsP5CS1和OsOAT基因被干旱、高盐等胁迫因素诱导[12,13]。关于干旱对OsP5CDH基因表达调控的研究尚未见报道。通过比较野生型和phyB突变体中脯氨酸代谢相关基因的表达水平,可以看出phyB负调控干旱对OsP5CS1基因的表达。phyB是水稻光敏色素家族成员,主要感受红光[7,14,15]。ABA是一种重要的植物激素,在调节植物渗透胁迫反应中具有重要作用。已有研究表明,phyB突变体中ABA的含量以及ABA敏感性均高于野生型[16]。因此,phyB可能通过影响ABA途径调控OsP5CS1基因的表达。除了ABA依赖途径,脯氨酸的积累还受ABA非依赖途径的调控[17],水稻phyB是否参与调控脯氨酸ABA非依赖途径的累积还需要进一步研究。

通过分析OsP5CS1转基因烟草的干旱和盐胁迫耐性,初步发现过表达OsP5CS1基因能够降低转基因烟草离体叶片的失水速率并提高叶盘在盐胁迫下的分化能力,据此推测OsP5CS1转基因烟草具有较强的干旱胁迫和盐胁迫耐性。因此,干旱处理后phyB突变体中OsP5CS1基因表达水平较高可能是phyB突变体具有较强干旱胁迫耐性的因素之一。

参考文献:

[1]Bhatnagar-Mathur P, Vadez V, Sharma K K. Transgenic approaches for abiotic stress tolerance in plants: retrospect and prospects[J]. Plant Cell Rep., 2008, 27(3):411-424.

[2]许祥明,叶和春,李国凤.脯氨酸代谢与植物抗渗透胁迫的研究进展[J].植物学通报,2000, 17(6):536-542.

[3]Su J, Wu R. Stress-inducible synthesis of proline in transgenic rice confers faster growth under stress conditions than that with constitutive synthesis [J]. Plant Sci., 2004, 166: 941-948.

[4]Delauney A J, Verma D P S. Proline biosynthesis and osmoregulation in plants [J]. Plant J., 1993, 4 (2): 215-223.

[5]Hong Z, Lakkineni K, Zhang Z, et al. Removal of feedback inhibition of Δ1-pyrroline-5-carboxylate synthetase results in increased proline accumulation and protection of plants from osmotic stress [J]. Plant Physiol., 2000, 122(4): 1129-1136.

[6]Liu J, Zhang F, Zhou J, et al. Phytochrome B control of total leaf area and stomatal density affects drought tolerance in rice [J]. Plant Mol. Biol., 2012, 78 (3):289-300.

[7]Takano M, Inagaki N, Xie X, et al. Distinct and cooperative functions of phytochromes A, B, and C in the control of deetiolation and flowering in rice [J]. Plant Cell, 2005, 17(12): 3311-3325.

[8]Fuse T, Sasaki T, Yano M. Ti-plasmid vectors useful for functional analysis of rice genes [J], Plant biotech., 2001, 18(3):219-222.

[9]Hood E E, Gelvin S B, Melchers L S, et al. New Agrobacterium helper plasmids for gene transfer to plants [J]. Transgenic Res., 1993(2):208-218.

[10]Horsch R B, Fry J E, Hoffmann N L, et al. A simple and general method for transferring genes into plants [J]. Science, 1985, 227: 1229-1231.

[11]戴秀玉, 王忆琴, 杨波,等. 大肠杆菌海藻糖合成酶基因对提高烟草抗逆性能的研究 [J]. 微生物学报, 2001, 41(4): 427-431.

[12]Igarashi Y, Yoshiba Y, Sanada Y, et al. Characterization of the gene for delta1-pyrroline-5-carboxylate synthetase and correlation between the expression of the gene and salt tolerance in Oryza sativa L. [J]. Plant Mol. Biol., 1997, 33(5): 857-865.

[13]You J, Hu H, Xiong L. An ornithine δ-aminotransferase gene OsOAT confers drought and oxidative stress tolerance in rice [J]. Plant Sci., 2012, 197:59-69.

[14]Kay S A, Keith B, Shinozaki K, et al. The sequence of the rice phytochrome gene[J]. Nucleic Acids Res., 1989, 17(7):2865-2866.

[15]Gu J, Liu J, Xue Y, et al. Functions of phytochrome in rice growth and development [J]. Rice Sci., 2011, 18(3): 231-237.

[16]顾建伟, 张方, 赵杰, 等.光敏色素B介导光信号影响水稻的脱落酸途径 [J]. 科学通报, 2012, 57(25):2371-2379.

[17]Hare P D, Cress W A, van Staden J. Proline synthesis and degradation: a model system for elucidating stress-related signal transduction [J]. J. Exp. Bot., 1999, 50: 413-434.

[8]Fuse T, Sasaki T, Yano M. Ti-plasmid vectors useful for functional analysis of rice genes [J], Plant biotech., 2001, 18(3):219-222.

[9]Hood E E, Gelvin S B, Melchers L S, et al. New Agrobacterium helper plasmids for gene transfer to plants [J]. Transgenic Res., 1993(2):208-218.

[10]Horsch R B, Fry J E, Hoffmann N L, et al. A simple and general method for transferring genes into plants [J]. Science, 1985, 227: 1229-1231.

[11]戴秀玉, 王忆琴, 杨波,等. 大肠杆菌海藻糖合成酶基因对提高烟草抗逆性能的研究 [J]. 微生物学报, 2001, 41(4): 427-431.

[12]Igarashi Y, Yoshiba Y, Sanada Y, et al. Characterization of the gene for delta1-pyrroline-5-carboxylate synthetase and correlation between the expression of the gene and salt tolerance in Oryza sativa L. [J]. Plant Mol. Biol., 1997, 33(5): 857-865.

[13]You J, Hu H, Xiong L. An ornithine δ-aminotransferase gene OsOAT confers drought and oxidative stress tolerance in rice [J]. Plant Sci., 2012, 197:59-69.

[14]Kay S A, Keith B, Shinozaki K, et al. The sequence of the rice phytochrome gene[J]. Nucleic Acids Res., 1989, 17(7):2865-2866.

[15]Gu J, Liu J, Xue Y, et al. Functions of phytochrome in rice growth and development [J]. Rice Sci., 2011, 18(3): 231-237.

[16]顾建伟, 张方, 赵杰, 等.光敏色素B介导光信号影响水稻的脱落酸途径 [J]. 科学通报, 2012, 57(25):2371-2379.

[17]Hare P D, Cress W A, van Staden J. Proline synthesis and degradation: a model system for elucidating stress-related signal transduction [J]. J. Exp. Bot., 1999, 50: 413-434.

[8]Fuse T, Sasaki T, Yano M. Ti-plasmid vectors useful for functional analysis of rice genes [J], Plant biotech., 2001, 18(3):219-222.

[9]Hood E E, Gelvin S B, Melchers L S, et al. New Agrobacterium helper plasmids for gene transfer to plants [J]. Transgenic Res., 1993(2):208-218.

[10]Horsch R B, Fry J E, Hoffmann N L, et al. A simple and general method for transferring genes into plants [J]. Science, 1985, 227: 1229-1231.

[11]戴秀玉, 王忆琴, 杨波,等. 大肠杆菌海藻糖合成酶基因对提高烟草抗逆性能的研究 [J]. 微生物学报, 2001, 41(4): 427-431.

[12]Igarashi Y, Yoshiba Y, Sanada Y, et al. Characterization of the gene for delta1-pyrroline-5-carboxylate synthetase and correlation between the expression of the gene and salt tolerance in Oryza sativa L. [J]. Plant Mol. Biol., 1997, 33(5): 857-865.

[13]You J, Hu H, Xiong L. An ornithine δ-aminotransferase gene OsOAT confers drought and oxidative stress tolerance in rice [J]. Plant Sci., 2012, 197:59-69.

[14]Kay S A, Keith B, Shinozaki K, et al. The sequence of the rice phytochrome gene[J]. Nucleic Acids Res., 1989, 17(7):2865-2866.

[15]Gu J, Liu J, Xue Y, et al. Functions of phytochrome in rice growth and development [J]. Rice Sci., 2011, 18(3): 231-237.

[16]顾建伟, 张方, 赵杰, 等.光敏色素B介导光信号影响水稻的脱落酸途径 [J]. 科学通报, 2012, 57(25):2371-2379.

[17]Hare P D, Cress W A, van Staden J. Proline synthesis and degradation: a model system for elucidating stress-related signal transduction [J]. J. Exp. Bot., 1999, 50: 413-434.

猜你喜欢

脯氨酸干旱盐胁迫
低温与GA3对大蒜气生鳞茎可溶性蛋白质和脯氨酸含量的影响
水分胁迫对3个枣品种脯氨酸含量的影响
植物体内脯氨酸的代谢与调控
基于距平的白城地区干旱时间分布特征分析
临夏地区干旱特征及干湿气候区划
外源NO对NaCl胁迫下高粱幼苗生理响应的调节
花生Clp家族成员的筛选、聚类和盐胁迫响应分析
夏季高温干旱时节高山蔬菜种植管理策略
基于多源卫星遥感的长江流域旱情监测研究
干旱胁迫对不同玉米品种幼苗生理特性的影响