APP下载

林木病原菌的传播途径概述

2014-03-20陈帅飞

桉树科技 2014年2期
关键词:桉树木材林木

陈帅飞

(国家林业局桉树研究开发中心,广东 湛江 524022)

林木病原菌的传播途径概述

陈帅飞

(国家林业局桉树研究开发中心,广东 湛江 524022)

病原菌隔离在林木分布区域之外是避免病原菌对林木危害的关键措施之一,这可以通过控制病原菌的传播来实现。病原菌的传播途径主要包括土壤/苗木基质、植物体材料、木材/木材制品、昆虫以及空气等。本文对林木病原菌的以上传播途径进行了简要概述。

林木病原菌;病原菌传播;检验检疫;病害防控

控制桉树病原菌的传播对桉树人工林的健康发展具有重要意义。自桉树被引种到非本土生区域后,新的病原菌在新的桉树种植区域不断被发现[3-4,15]。近来,陈帅飞等[16-17]通过对我国 Teratosphaeria茎干斑点溃疡病病原菌 Teratosphaeria zuluensis的种群多样性研究发现,同一基因型的T. zuluensis在广东湛江和广西崇左/河池地区被发现,这表明T. zuluensis可能已经在两个地区之间进行传播。

林木病原菌的传播途径/介质包括土壤/育苗基质、植物体材料、木材/木材制品、林业生产设施/工具、昆虫以及空气等。本文对林木病原菌的传播途径进行简要介绍。

1 林木病原菌的传播途径

1.1 土壤和育苗基质

土生植物病原菌可以随着土壤和基质的转运而传播[1,3,18],土生植物病原菌可以产生休眠结构,可以在土壤中存活很长时间[1,18],比如厚垣孢子,在合适的条件下可以萌发、繁殖并侵染植物体。土壤/病原菌可以伴随植物体、育苗设备等的转运而广泛传播。

土生植物病原菌随着转运的土壤/基质与苗圃苗木一起传播的情况十分普遍,这种方式是植物病原菌在不同地域之间传播的一个主要途径[19-20]。人工林的菌根真菌(mycorrhizal fungi)被证明可以通过土壤的转运在世界范围内传播[19,21-22],许多文献中报道过 Armillaria spp.真菌随着盆栽植物在世界各大洲之间传播[23-24]。松树(Pinus)根部病原菌Rhizina undulata是一种本土生于北半球的被广泛研究的森林土生病原菌[25],研究表明此病原菌很有可能是通过土壤被传播到许多新的非病原菌本土生区域内,包括南半球的一些国家[3]。

许多桉树苗圃病原菌通过土壤或育苗基质被传播到新的区域,例如Botrytis cinerea,Calonectria spp.,Fusarium spp.,Phytophthora spp.和Pythium spp.[1]。Ralstonia solanacearum是一种土生的具有广泛寄主的细菌病原,它可以引起青枯病细菌枯萎病[18]。此病原菌也是世界范围内桉树的一类重大病原[26-27],R. solanacearum对我国桉树人工林造成了很大的危害[28-29],研究表明此病原菌可以与土壤一起被动物携带,进而在不同地域之间传播[26]。

1.2 植物体材料

植物体材料被认为是植物病原菌传播的最普遍媒介之一[1,3-4,15,27],植物体材料包括无性繁殖的树木、幼苗、种子和花粉等[4,27,30]。许多病原菌伴随着植物体材料在世界范围内被广泛传播[20,31]。特别是一些造林类、园艺类和绿化类苗木,这些植物体材料常被转运到新的区域,世界范围内植物体材料的频繁转运加速了植物体上携带的病原菌在不同地域的传播[15]。

由细菌引起的植物体枯萎病病原菌 Ralstonia solanacearum可以给苗圃里的桉树苗带来很大的危害[1,26-27]。苗圃里携带有R. solanacearum病原菌的幼苗被认为是南非桉树人工林细菌枯萎病病原菌的一个主要来源[26]。由于R. solanacearum具有广泛的寄主,它很容易通过感病的林木幼苗或者农作物传播到新的人工林区域[32]。

内生真菌在植物体内不容易被监测但很容易被传播[8,33]。例如Botryosphaeriaceae是一个物种多样性很高的科,具有广泛的寄主,其中也包括桉树[8]。研究表明Botryosphaeriaceae包含有很多内生性或潜伏性病原菌,它们常常潜伏在植物体内而并不引起感病症状的发生[8]。近来的一些研究证明Botryosphaeriaceae很有可能通过植物体材料在世界范围内进行传播[8],比如Neofusicoccum eucalypticola以及N. eucalyptorum,它们可能本土生于澳大利亚的桉树上,通过病原菌的寄主(植物体材料)传播到智利和南非[34]。总体来说,现行的检验检疫措施可能并不能及时发现潜伏性病原菌[8],这些病原菌潜伏在表观健康的植物体内部,在相当长一段时间内并不引起植物体感病症状的发生,而一旦植物体受到外界环境的胁迫或者处在自身生理调控的某些阶段,潜伏性的病原菌就可能发作而引起病害。

松树病原菌Diplodia pinea(Botryosphaeriaceae)可以随着植物体材料而被传播,如今D. pinea被发现分布于世界范围内不同地区[8,35]。D. pinea常常内生于松树内,一般通过本土生的松树而传播到其他松树种植区域[35]。松树在南非和澳大利亚是一种被广泛种植的外来树种,在非起源地南非,D. pinea病原菌的种群多样性很高,这是因为南非的松树来源于不同区域,D. pinea随松树一起从多个起源地域频繁地传播到南非[35-36]。针对D. pinea的种群多样性研究发现,南非D. pinea的一些基因型也同时分布于澳大利亚和新西兰,这进一步反映出 D. pinea在不同地域之间传播的可能性[35]。

Chrysoporthe deuterocubensis和 Chr. cubensis是桉树的重要病原菌之一,分别被发现于南半球的一些本土生的 Melostomataceae、Lythraceae和Myrtales植物上[37-39],这些病原菌很可能起源于南半球的本土生植物[38-39]。Chrysoporthe deuterocubensis和Chr. cubensis均被发现于非洲,它们可能通过园艺类植物(例如 Tibouchina spp.)或产香料制品植物(Syzygium aromaticum)传播到非洲的桉树种植区域,并危及桉树[37-39]。

据报道,有一些病原菌被发现于树木的种子上,例如Acremomium spp.[40]、Aspergillus spp.[41]、Coniella spp.[40,42]、Cylindrocladium spp.[43]、Fusarium spp.[44]、Pilidiella spp.[40,42]以及Puccinia psidii[27]。利用基于PCR的DNA诊断技术,在巴西桉树种植园的种子上发现了桉树锈病病原菌P. psidii,而这些种子作为商品在世界范围内流通[27]。Cylindrocladium (Calonectria)和Fusarium属真菌包含一些重要的苗圃病原菌,它们可以降低种子的萌芽率或者引起种子萌发后的病害,例如猝倒病、叶枯病、炭疽病和茎溃疡。Cylindrocladium(Calonectria)和 Fusarium可以附着在种子表面,并随着种子被传播[41,43,45-46]。

桉树叶枯病和叶斑病病原菌Teratosphaeriaceae和 Mycosphaerellaceae科真菌常常发现于桉树人工林种植的初期[3,47],这表明这些叶部病原菌很有可能从澳大利亚通过植物体材料特别是种子传播到新的区域[1,48-50]。

Quambalaria属病原菌可以引起桉树叶和顶梢枯萎。由于Quambalaria属病原菌广泛分布于澳大利亚[51],且此类病原菌在很早以前就在该地区被发现,因此研究认为澳大利亚是桉树Quambalaria属病原菌的起源中心。Quambalaria被认为通过种子贸易由澳大利亚传播到其他区域[51]。澳大利亚与其他国家频繁的种子贸易加速了Quambalaria属病原菌在世界范围内的传播[51]。

1.3 木材及木材制品

木材及木材制品的转运是世界范围内林木病原菌以及害虫的主要传播途径[15,22,52-53]。Ophiostomatoid和 Botryosphaeriaceae真菌都可随着木材的转运而在全球范围内传播[3,8-9]。Ceratocystis和Ophiostoma常常存在于树皮以及潜藏在木材中昆虫的四肢上[3,9,54],这些病原菌可随着木材/昆虫进行远距离的传播。

Amylostereum areoltum 是一种与木蜂 Sirex noctilio共生的木材腐朽病菌[55]。S. noctilio/A. areoltum共生体可以对某些针叶树带来很大的危害,比如松树和云杉(Picea asperata)[55]。在过去的100 a间,S. noctilio/A. areoltum共生体被频繁地从北半球传播到南半球[3]。在非洲,S. noctilio最早于1962年发现于南非Port Elizabeth的一个贮存进口木材的场地内[56],此后,S. noctilio通过被侵害的树木和木材从南非南部的开普省传播到北方的普木兰咖省[57]。

控制携带有病原菌的木材及木材制品的转运对控制病原菌的传播十分必要。目前已经颁布了一些国际法规来减少病原菌通过木材或木材制品在各大洲之间的传播[58],比如在国际物流系统中只有除去树皮的木材才被允许转运。另外,国际上相关政策规定在木材转运之前必须采取相应的处理措施来避免病原菌随着木材被传播[52,58]。

1.4 昆虫

许多昆虫已经适应随着木材或木材制品进行远距离传播的不良环境,特别是没有经过特定处理的或者没有去皮的木材[2,59]。一些树木真菌病原菌与昆虫具有紧密的关系[9,60-63]。如 Ceratocystis和Ophiostoma真菌,它们与一些昆虫共生,特别是Coleopteran属的昆虫,包括树皮甲虫、豚草甲虫和露尾虫等,这类真菌很容易随着昆虫进行传播,特别是当昆虫随着木材或木材制品在全球范围内转运期间[60-62]。

在森林里,Ceratocystis菌和一些 Ophiostoma菌主要依靠昆虫来传播。Ceratocystis菌,特别是在Ceratocystis fimbriata多物种组合体里面的一些真菌,主要通过伤口来感染树木[9,61,63],这些真菌在树木伤口的表面产生带有芳香气味的孢子来吸引昆虫,昆虫进而携带真菌的孢子到新的树木伤口上去吮吸树叶,从而把真菌从一棵树木的伤口传播到另一棵树木的伤口[9,61]。

1.5 空气

植物病原菌可以在空气中通过气流和风来传播[64-66]。例如,锈病病原菌可以通过气流长距离的传播并存活下来[65-67],这是因为锈菌的孢子壁很厚,可以抵抗气流运动中强辐射和干燥条件带来的损伤[68]。研究表明咖啡叶锈病的病原 Hemileia vastatrix可能是靠气流和风从安哥拉传播到巴西[69]。

桉树锈病病原菌Puccinia psidii本土生于中南美洲的Myrtaceae上[70],研究表明桉树锈病病原菌可以通过风传播到很远距离的区域[68],P. psidii一旦通过风传播到新的区域,很快可以通过气流进一步传播[71]。

子囊菌很容易通过风在短距离内进行传播,很多子囊菌的子囊孢子从子囊散布于空气中后被传播[72-74]。Teratosphaeria nubilosa的子囊孢子可以通过风传播到寄主叶片上,并进行感染[75]。病原菌靠风进行传播虽然速度比较慢,距离比较短,但足以引起病原菌在相邻区域之间的扩散。

2 结语

近年来,世界范围内在林木上发现的新病原菌越来越多[4,8,15,20,53],这给林木病害的防控带来了新的压力。很多区域的病原菌来源于本区域之外,所以控制病原菌的传播对林木病害的防控具有重要意义。

本文对林木病原菌的主要传播途径,包括土壤/苗木基质、植物体材料、木材/木材制品、昆虫以及空气等进行了简要概述。在这些传播途径中,某些传播途径是无法或者很难人为干预,如昆虫与空气;而土壤/苗木基质、植物体材料、木材/木材制品等因素,完全可以通过人为措施来控制病原菌的传播。

人类活动在林木病原菌的传播过程中扮演了重要的角色,是许多病原菌传播途径的源动力[10-11,13,15,53,76]。过去一个世纪,人类活动引起了植物体材料、木材以及木材制品的广泛传播[3,10-11,15,31,76]。伴随着世界范围内贸易和国际间人员流动的日益频繁,林木病原菌的传播速度和频率将继续加快。因此,要强化控制林木病原菌通过人为因素而进行传播的意识,并对林木病原菌引起的林木病害进行及时的监测和诊断,进而建立严格的检验检疫措施来有效地阻止或减缓病原菌的传播速度,这对林木病害的防控具有重要意义。

[1] Keane P J,Kile G A,Podger F D,et al.Diseases and pathogens of Eucalypts[M].Australia:CSIRO Publishing, 2000.

[2] Campbell F T.The Science of Risk Assessment for Phytosanitary Regulation and the Impact of Changing Trade Regulations[J].BioScience,2001,51(2):148–153.

[3] Wingfield M J,Slippers B,Roux J,et al.Worldwide movement of exotic forest fungi, especially in the Tropics and the Southern Hemisphere[J].BioScience,2001,51(2): 134–140.

[4] W ingfield M J,Slippers B,Hurley B P,et al.Eucalypt pests and diseases: grow ing threats to plantation productivity[J]. Southern Forests,2008,70(2):139–144.

[5] Burgess T,Wingfield M J.Quarantine is important in restricting the spread of exotic seed-borne tree pathogens in the southern hemisphere[J].International Forestry Review, 2002,4(1):56–65.

[6] Mum ford J D.Economic issues related to quarantine in international trade[J].European Review of Agricultural Econom ics,2002,29(3):329–348.

[7] A lpert P.The advantages and disadvantages of being introduced[J].Biological Invasions,2006,8(7):1523–1534.

[8] Slippers B,Wingfield M J.Botryosphaeriaceae as endophytes and latent pathogens of woody plants: diversity, ecology and impact[J].Fungal Biology Reviews,2007, 21(2–3):90–106.

[9] Roux J,Wingfield M J.Ceratocystis species: emerging pathogens of non-native plantation Eucalyptus and Acacia species[J].Southern Forests,2009,71(2):115–120.

[10] Tatem A J,Hay S I,Rogers D J.Global traffic and disease vector dispersal[J].Proceedings of the National Academy of Sciences,2006,103(16):6242–6247.

[11] Tatem A J,Rogers D J,Hay S I.Global transport networks and infectious disease spread[J].Advances in Parasitology, 2006(62):293–343.

[12] Schwartz M W,Hoeksema J D,Gehring C A,et al.The promise and the potential consequences of the global transport of mycorrhizal fungal inoculum[J].Ecology Letters,2006,9(5):501–515.

[13] Lebarbenchon C,Brown S P,Poulin R,et al.Evolution of pathogens in a man-made world[J].Molecular Ecology, 2008,17(1):475–484.

[14] W ilson J R U,Dormontt E E,Prentis P J,et al.Something inthe way you move: dispersal pathways affect invasion success[J].Trends in Ecology & Evolution,2009,24(3): 136–144.

[15] Wingfield M J,Slippers B,Roux J,et al.Fifty years of tree pest and pathogen invasions, increasingly threatening world forests[M]//Richardson D M.Fifty years of invasion ecology:The legacy of charles Elton.UK:Blackwell Publishing Ltd,2011.

[16] Chen S F,Barnes I,Chungu D,et al.High population diversity and increasing importance of the Eucalyptus stem canker pathogen, Teratosphaeria zuluensis, in South China[J]. Australasian Plant Pathology,2011,40(4):407–415.

[17] 陈帅飞,李国清,李天会,等.桉树Teratosphaeria枝干斑点溃疡病研究进展[J].桉树科技,2013,30(2):36–42.

[18] Allen C,Prior P,Hayward A C.Bacterial w ilt disease and the Ralstonia solanacearum species complex[M].St. Paul:APS Press,2005.

[19] Jones D R,Baker R H A.Introductions of non-native plant pathogens into Great Britain,1970–2004[J].Plant Pathology, 2007,56(5):891–910.

[20] Brasier C M.The biosecurity threat to the UK and global environment from international trade in plants[J].Plant Pathology,2008,57(5):792–808.

[21] Podger F D,Kile G A,Watling R,et al.Spread and effects of Armillaria luteobubalina sp. nov. in an Australian Eucalyptus regnans plantation[J].Transactions of the British Mycological Society,1978,71(1):77–87.

[22] Shaw C J,Kile G A.Arm illaria Root Rot Disease: Agriculture Handbook No. 691.[M]//Morrison D J, W illiams R E,Whitney R D.Infection,disease development, diagnosis and detection. Washington, DC: Forest Service, United States Department of Agriculture, 1991:62–75.

[23] Coetzee M,Wingfield B D,Harrington T C,et al.The root rot fungus Armillaria mellea introduced into South Africa by early Dutch settlers[J].Molecular Ecology,2001,10(2): 387–396.

[24] Coetzee M P A,W ingfield B D,Roux J,et al.Discovery of two northern hem isphere Armillaria species on Proteaceae in South Africa[J].Plant Pathology,2003,52(5): 604–612.

[25] Booth C,Gibson I A S.Rhizina undulata. CM I Descriptions of Pathogenic Fungi and Bacteria.Report No.324[M].England:Commonwealth Mycological Institute, 1972.

[26] Coutinho T A,Roux J,Riedel K H,et al.First report of bacterial w ilt caused by Ralstonia solanacearum on eucalypts in South Africa[J].Forest Pathology,2000,30(4): 205–210.

[27] Old K M,W ingfield M J,Yuan Z Q.A manual of diseases of Eucalypts in South-East Asia[M].Indonesia:Centre for International Forenstry Research,2003.

[28] Dell B,Hardy G,Burgess T.Health and nutrition of plantation eucalypts in Asia[J].Southern Forests,2008, 70(2):131–138.

[29] Zhou X D,Xie Y J,Chen S F,et al.Diseases of eucalypt plantations in China: challenges and opportunities[J]. Fungal Diversity,2008(32):1–7.

[30] Evans G,Dempsey S,M cLachlan K,et al.Quarantine risks associated w ith importation of Eucalyptus seed[M]. Australia:Australian Quarantine and Inspection Service, 2000.

[31] Davison E M,Drenth A,Kumar S,et al.Pathogens associated with nursery plants imported into Western Australia[J].Australasian Plant Pathology,2006,35(4):473–475.

[32] A llen C,Prior P,Hayward A C.Bacterial W ilt disease and the Ralstonia solanacearum species complex[M]//Coutinho T A.Introduction and prospectus on the survival of Ralstonia solanacearum.St. Paul:APS Press,2005.

[33] Redlin S C,Carris L M.Endophytic fungi in grasses and woody plants: systematics, ecology, and evolution[M].St. Paul:APS Press,1996.

[34] Burgess T I,Sakalidis M L,Hardy G E.Gene flow of the canker pathogen Botryosphaeria australis between Eucalyptus globulus plantations and native eucalypt forests in Western Australia[J].Austral Ecology,2006, 31(5):559–566.

[35] Burgess T,W ingfield B D,W ingfield M J.Comparison of genotypic diversity in native and introduced populationsof Sphaeropsis sapinea isolated from Pinus radiata[J]. Mycological Research,2001,105(11):1331–1339.

[36] Burgess T I,Wingfield M J,Wingfield B D.Global distribution of Diplodia pinea genotypes revealed using simple sequence repeat (SSR) markers[J].Australasian Plant Pathology,2004,33(4):513–519.

[37] W ingfield M J.Increasing threat of diseases to exotic plantation forests in the Southern Hem isphere: lessons from Cryphonectria canker[J].Australasian Plant Pathology, 2003,32(2):133–139.

[38] Gryzenhout M,Wingfield B D,Wingfield M J.Taxonomy, phylogeny, and ecology of bark-inhabiting and tree-pathogenic fungi in the Cryphonectriaceae[M].St. Paul:APS Press,2009.

[39] Van der Merwe N A,Gryzenhout M,Steenkamp E T,et al.Multigene phylogenetic and population differentiation data confirm the existence of a cryptic species w ithin Chrysoporthe cubensis[J].Fungal Biology,2010,114(11): 966–979.

[40] Yuan Z Q,Old K M,M idgley S J,et al.Mycoflora and pathogenicity of fungi present on stored seeds from provenances of Eucalyptus pellita[J].Australasian Plant Pathology,1997,26(3):195–202.

[41] Chalermpongse A.Current potentially dangerous forest tree diseases in Thailand[M].Indonesia:Biotrop Special Publication,1987.

[42] Van Niekerk J M,Groenewald J Z E,Verkley G J M,et al.Systematic reappraisal of Coniella and Pilidiella, w ith specific reference to species occurring on Eucalyptus and Vitis in South A frica[J].M ycological Research,2004, 108(3): 283–303.

[43] Johnson G I.Occurrence of Cylindrocladium crotalariae on peanut (Arachis hypogaea) seed[J].Plant Disease,1985 (69):434–436.

[44] M ichail S H, El-Sayed A B,Salem M A.Fusarium post-emergence damping-off of Eucalyptus and its control measures in Egypt[J].Acta Phytopathologica et Entomological Hungarica,1986,21(1):127–133.

[45] Cordell C E, Anderson R L, Hoffard W H,et al.Forest nursery pests. agriculture handbook No. 680[M]// Anderson R L,M iller T.Seed fungi.Washington,DC.: USDA Forest Service,1989.

[46] Crous P W.Taxonomy and pathology of Cylindrocladium(Calonectria) and allied genera[M].St. Paul:APS Press,2002.

[47] Crous P W.Mycosphaerella spp. and their anamorphs: associated w ith leaf spot diseases of Eucalyptus[M].St Paul:APS Press,1998.

[48] Zhan J,Pettway R E,McDonald B A.The global genetic structure of the wheat pathogen Mycosphaerella graminicola is characterized by high nuclear diversity, low m itochondrial diversity, regular recombination,and gene flow[J].Fungal Genetics and Biology,2003,38(3): 286–297.

[49] Hunter G C,Van Der Merwe N A,Burgess T I,et al.Global movement and population biology of Mycosphaerella nubilosa infecting leaves of cold-tolerant Eucalyptus globulus and E. nitens[J].Plant Pathology,2008,57(2):235–242.

[50] Pérez G,Hunter G C,Slippers B,et al.Teratosphaeria (Mycosphaerella) nubilosa, the causal agent of Mycosphaerella leaf disease (MLD), recently introduced into Uruguay[J].European Journal of Plant Pathology,2009, 125(1):109–118.

[51] Pegg G S,O'Dwyer C,Carnegie A J,et al.Quambalaria species associated w ith plantation and native eucalypts in Australia[J].Plant Pathology,2008,57(4):702–714.

[52] Gottschalk K W.Proceedings 18th U.S. Department of Agriculture interagency research forum on gypsy moth and other invasive species[C]//Haack R A, Petrice T R,How risky is bark that is associated with treated wood packing materials? Maryland: Annapolis,2007.

[53] Desprez-Loustau M L,Robin C,Buée M,et al.The fungal dimension of biological invasions[J].Trends in Ecology & Evolution,2007,22(9):472–480.

[54] Schowalter T D,Filip G M.Beetle–pathogen interactions in conifer forests[M].USA:Academic Press,1993.

[55] Spradbery J P,Kirk A A.Aspects of the ecology of siricidwoodwasps (Hymenoptera: Siricidae) in Europe, North Africa and Turkey with special reference to the biological control of Sirex noctilio F. in Australia[J].Bulletin of Entomological Research,1978,68(3):341–359.

[56] Taylor J S.Sirex noctilio F., a recent introduction in South Africa[J].Entomologist’s Record,1962(74):273–274.

[57] Hurley B P,Slippers B,W ingfield M J.A comparison of control results for the alien invasive woodwasp, Sirex noctilio, in the southern hem isphere[J].Agricultural and Forest Entomology,2007,9(3):159–171.

[58] Zahid M I,Grgurinovic C A,Walsh D J.Quarantine risks associated w ith solid wood packaging materials receiving ISPM 15 treatments[J].Australian Forestry,2008,71(4): 287–293.

[59] Chornesky E A,Bartuska A M,Aplet G H,et al.Science priorities for reducing the threat of invasive species to sustainable forestry[J].BioScience,2005,55(4):335–348.

[60] Leach J G,Orr L W,Christensen C.The interrelationships of bark beetles and blue-staining fungi in felled Norway pine timber[J].Journal of Agricultural Research,1934(49) 315–341.

[61] Wingfield M J,Seifert K A,Webber J A.Ceratocystis and Ophiostoma: Taxonomy, Ecology and Pathogenicity[M]// Kile G A,1993.Plant diseases caused by species of Ceratocystis sensu stricto and Chalara. St. Paul:APS Press,1993.

[62] W ingfield M J,Seifert K A,Webber J A.Ceratocystis and Ophiostoma: Taxonomy, Ecology and Pathogenicity[M]// Malloch D,Blackwell M.Dispersal biology of the Ophiostomatoid fungi. St. Paul:APS Press,1993.

[63] Jacobs K,W ingfield M J.Leptographium species: tree pathogens, insect associates, and agents of blue-stain[M]. St. Paul:APS Press,2001.

[64] Aylor D E.Spread of plant disease on a continental scale: role of aerial dispersal of pathogens[J].Ecology,2003,84 (8):1989–1997.

[65] Brown J K M,Hovmøller M S.Aerial dispersal of pathogens on the global and continental scales and its impact on plant disease[J].Science,2002,297(5581):537–541.

[66] Cooke B M,JonesD G,Kaye B.The Epidemiology of Plant Diseases(2nd edition)[M]//Hau B,De Vallavieille-Pope C. Wind-dispersed diseases.Dordrecht:Springer,2006:387–416.

[67] Nagarajan S,Singh D V.Long-distance dispersion of rust pathogens[J].Annual Review of Phytopathology,1990,28 (1):139–153.

[68] Viljanen-Rollinson S L H,Cromey M G.Pathways of entry and spread of rust pathogens: implications for New Zealand's biosecurity[J].New Zealand Plant Protection, 2002(55):42–48.

[69] Bowden J,Gregory P H,Johnson C G.Possible w ind transport of coffee leaf rust across the Atlantic Ocean[J].Nature,1971(229):500–501.

[70] Coutinho T A,W ingfield M J,Alfenas A C,et al.Eucalyptus rust: a disease w ith the potential for serious international implications[J].Plant Disease,1998,82(7):819–825.

[71] Grgurinovic C A,Walsh D, Macbeth F.Eucalyptus rust caused by Puccinia psidii and the threat it poses to Australia[J].EPPO Bulletin,2006,36(3):486–489.

[72] Ingold C T.Turgor and spore release in ascus and basidium[J].Mycologist,2001,15(1):45.

[73] Read N D,Beckett A.Ascus and ascospore morphogenesis[J].Mycological Research,1996,100(11):1281–1314.

[74] Fischer M,Cox J,Davis D J,et al.New information on the mechanism of forcible ascospore discharge from Ascobolus immersus[J].Fungal Genetics and Biology, 2004,41(7):698–707.

[75] Park R F,Keane P J.Leaf diseases of Eucalyptus associated w ith Mycosphaerella species[J].Transactions of the British Mycological Society,1982,79(1):101–115.

[76] Loo J A.Ecological impacts of non-indigenous invasive fungi as forest pathogens[J].Biological Invasions,2009, 11(1):81–96.

Summary of Forestry Tree Pathogen Pathways

CHEN Shuai-fei
(China Eucalypt Research Centre, Zhanjiang 524022, Guangdong, China)

The first line of defense against the spread of disease is the exclusion of potential damaging pathogens. This can be achieved by controlling the movement of pathogens into disease-free areas from a bio-geographical area(s) in which the pathogen(s) occur. Common pathways by which pathogens move include movement of soil/grow th media, germplasm, wood and wood products, air and/or insects. In this paper, the key pathways for movement of forestry pathogens are summarized.

forestry tree pathogen; pathogen pathway; inspection and quarantine; disease control

避免林木受病原菌的侵染是林木病害防控的一项关键措施[1],这可以通过避免或控制特定病原菌从林木感病区域传播到无相关病原菌区域来实现。林木病原菌的来源有两个途径,一个为病原菌起源于林木所在区域(本土生病原菌),另一个为病原菌从其他区域传播到当前林木所在区域(非本土生病原菌—外来病原菌)。无论本土生病原菌还是外来病原菌,控制它们的传播对于病害的防控都十分必要。严格的检验检疫措施可以有效地避免或阻止病原菌的传播[2-9]。在世界范围内,桉树(Eucalyptus)被广泛种植于非本土生区域,为避免本土生的病原菌传播到其他区域,检验检疫措施对桉树病害的防控尤其重要[1,4]。
随着世界贸易和人员流动的日益频繁,过去几十年内,被传播的植物病原菌日益增多,植物病原菌的传播速度也日益加快[7,10-13]。了解林木病原菌的传播途径不仅有助于指导检验检疫的实施,还能有目的性地控制病原菌在不同地域的传播,这对林木病害的综合防控具有重要意义[14]。

S432.1

A

2014-05-15

广东省林业科技创新专项“桉树重大病虫害控制技术研究与示范”(2010KJCX015-03);国家国际科技合作专项项目“重要林业病

害致病力及多样性研究”(2012DFG31830)

陈帅飞(1982— ),男,博士,副研究员,主要从事森林病害研究.E-mail:cerccsf@126.com

猜你喜欢

桉树木材林木
橘子皮用来开发透明木材
数字说
木材在未来建筑设计中的应用分析
彩虹桉树
桉树茶饮
林木移植的注意事项
试论高大林木的病虫害防治技术
天敌昆虫在林木病虫害防治中的重要作用探讨
铝胁迫下不同桉树无性系叶差异蛋白表达分析
3个桉树品种对桉树枝瘿姬小蜂抗性研究