APP下载

羌塘中部晚三叠世岩浆活动的构造背景及成因机制
——以红脊山地区香桃湖花岗岩为例*

2014-03-14张修政董永胜李才邓明荣张乐许王

岩石学报 2014年2期
关键词:包体羌塘锆石

张修政 董永胜 李才 邓明荣 张乐 许王

吉林大学 青藏高原地学研究中心,长春 130061

1 引言

青藏高原特提斯演化及冈瓦纳和欧亚大陆界线的研究一直是地学界关注的热点(李才,1987;潘桂棠等,2004a,b;黄汲清等,1984),李才(1987)提出龙木错-双湖-澜沧江板块缝合带(图1a)是冈瓦纳大陆和欧亚大陆界线的观点,是争论的焦点(李才等,2006b,2007a,b,2008,2009;李才,2008;邓万明等,1996;Kappetal. 2003;Pullenetal. 2008)。近年来,随着构造带内典型蛇绿岩套的不断发现(李才等,2008;翟庆国等,2004;Zhaietal., 2013a)和低温高压变质带研究的逐步深入(鲍佩声等,1999;邓希光等,2000;李才等,2006a;董永胜等,2009;张修政等,2010a,b,c;翟庆国等,2009; Zhaietal., 2011a,b),这一观点逐渐得到了大多数学者的认可。除已经进一步确定了缝合带的存在外,现在学术界同时认识到龙木错-双湖-澜沧江带经历了古特提斯洋的俯冲消减、弧陆或陆陆碰撞以及碰撞后造山带伸展垮塌等一系列完整而复杂的演化历程。目前,已有大量研究主要针对大洋演化和俯冲碰撞阶段,通过蛇绿岩(李才等,2008b;翟庆国等,2004;Zhaietal.,2013a)、放射虫硅质岩(李曰俊等,1997;朱同兴等,2006)、与俯冲相关的埃达克岩(施建荣等,2010;胡培远等,2013)以及高压变质带(Pullenetal., 2008;Zhaietal., 2011a,b)等的一系列研究工作,认识到古特提斯洋盆可能形成于早古生代,在早石炭世洋壳初始俯冲,最终在中晚三叠世主洋盆关闭,实现了陆陆碰撞(李才等,2009;Zhaietal., 2011a,b)。然而,对于主洋盆关闭以后到板内环境最终形成这一段演化历史的研究则相对滞后,很大程度上制约了学术界对缝合带完整构造岩浆演化历史的全面认识。事实上,在这一时期(晚三叠世)区域内集中爆发了大规模岩浆活动,它们很可能是理解缝合带晚期构造演化历史及相关机制的关键。

图1 青藏高原大地构造单元划分简图以及羌塘中部晚三叠世岩浆活动分布图

(a)-青藏高原大地构造单元划分简图(据李才等,2006b),JSSZ-金沙江缝合带; LSSZ-龙木错-双湖-澜沧江缝合带; BNSZ-班公湖-怒江缝合带; YZSZ-印度河-雅鲁藏布江缝合带;(b)-羌塘中部晚叠世岩浆活动分布图(底图据Zhaietal., 2013b;吉林大学地质调查研究院,2006*吉林大学地质调查研究院. 2006. 中华人民共和国区域地质报告1:25万玛依岗日幅修改),晚三叠世岩浆活动测年结果(225~205Ma)据翟庆国等,2007;Wangetal.2008;Fuetal., 2010;Zhaietal., 2013b; 黄小鹏等,2007;胡培远等,2010;(c)-香桃湖岩体实测剖面

Fig.1 Tectonic subdivision of the Tibetan Plateau and simplified geological map of Qiangtang terrane, showing the distributions of Late Triassic magmatic rocks

区域内晚三叠世岩浆活动总体沿缝合带及其两侧分布,以中酸性岩石为主并伴有少量同期基性岩石。其中,北侧(北羌塘南缘)以大量火山熔岩-火山碎屑岩为主,区域上称之为那底岗日组;南侧(南羌塘北缘)为大面积花岗岩,以普遍含有暗色包体为主要特征(图1b)。对于北侧的那底岗日火山岩,虽然已开展了较多研究工作(翟庆国等,2007; Wangetal., 2008;Fuetal., 2010;Zhangetal., 2011;Zhaietal., 2013b),但认识上仍存在较大分歧(李才等,2009;Fuetal., 2010;Zhangetal., 2011;Zhaietal., 2013b);而对于南侧同期花岗岩,目前仅开展少量测年工作(Kappetal., 2003;黄小鹏等,2007;胡培远等,2010),对其岩石组合、源区性质以及暗色包体成因并不清楚,严重制约了学术界从整体上对这一期岩浆活动形成背景及成因机制的认识。鉴于此,本文对红脊山地区晚三叠世香桃湖岩体进行了系统的岩石学、地球化学、以及同位素年代学研究,综合已发表资料并结合区域内大量地质事实,对羌塘中部晚三叠世岩浆活动的形成背景及可能的成因机制进行了探讨,为研究龙木错-双湖缝合带晚期构造岩浆演化提供了新的资料。

2 区域地质概况及样品特征

羌塘位于青藏高原北部,夹持于金沙江缝合带和班公湖-怒江缝合带之间,地处冈瓦纳大陆与欧亚大陆的交汇部位,是研究古特提斯洋俯冲消减和两大陆碰撞造山过程的关键地区(图1a,b)。本文关注缝合带及其南部(南羌塘北缘)地区,区域内大面积出露的地层为晚石炭世-早二叠世展金组,为冈瓦纳陆缘沉积,是一套遭受低级变质作用改造的碎屑岩-碳酸盐岩夹基性火山岩的沉积建造。蛇绿岩主要沿果干加年山、桃形湖与冈玛错一线以及北部的香桃湖-红脊山一线出露,岩石单元比较齐全,时代主要集中在二叠纪、奥陶纪以及寒武纪(李才等,2009)。高压变质带常和蛇绿岩伴生产出,主要岩性为榴辉岩、蓝片岩、石榴石白云母片岩、含硬玉云母石英片岩等。上三叠统望湖岭组(T3w)以角度不整合覆盖在上述各单元之上,被认为是龙木错-双湖缝合带闭合后最早的沉积盖层(李才等,2007b)。

目前区域上已识别出的晚三叠世花岗岩主要分布在香桃湖、戈木日西、蜈蚣山以南以及冈塘错地区。香桃湖花岗岩体位于红脊山以南20km处,呈岩株状产出,总体形态近透镜状,透镜体长轴呈北东南西向,长约15km,总出露面积约45km2。岩体侵入到晚石炭世-早二叠世展金组中,接触关系清晰,在接触带可见大量红柱石角岩。总体岩性为黑云母二长花岗岩,但受后期热液活动(钾化)影响,出现大量二云母花岗岩,局部钾化十分强烈处,甚至出现极少量正长花岗岩。岩体中分布大量的暗色淬冷包体,包体主要成椭球状、饼状,大小不一。

在野外实测剖面基础上,本文系统地采集了香桃湖岩体中的主体岩性样品,包括2件锆石LA-ICP-MS定年样品TL01(二云母二长花岗岩)和TL04(黑云母二长花岗岩),29件地球化学样品,其中10件为未受后期钾化或影响较小样品(TL04H1-TL04H10)、19件为不同程度钾化样品(TL01H1-TL01H20)。

黑云母二长花岗岩 为香桃湖岩体的主体岩性,似斑状结构,块状构造,斑晶主要为微斜长石和条纹长石(约10%~15%),粒径大多在1.5~3cm,基质为中粗粒花岗结构,主要矿物有碱性长石(15%~20%)、斜长石(20%~25%)、石英(20%~25%)、黑云母(8%~12%)等,副矿物主要为榍石、磷灰石以及锆石。受钾质热液蚀变或交代作用影响较小,部分斜长石出现绢云母化,但未出现白云母。

图2 香桃湖花岗岩及其暗色包体的野外和岩相学特征(a)-斜长石的钾长石化作用;(b)-黑云母二长花岗岩中闪长质暗色包体;(c)-岩体中极少辉长质暗色包体;(d)-暗色包体中针柱状磷灰石;(e)-暗色包体中石英捕掳晶;(f)-暗色包体中斜长石斑晶具有黑色细窄的内环带结构.矿物代号:Pl-斜长石;Mc-微斜长石;Qtz-石英;Bt-黑云母;Ap-磷灰石Fig.2 Field and petrographical photos of granites and dioritic mafic microgranular enclaves (MMEs) in Xiangtaohu pluton

二云母二长花岗岩(受后期钾质热液不同程度交代产物) 主要沿香桃湖断裂两侧大面积分布(图1c),似斑状结构,块状构造,斑晶主要为微斜长石和条纹长石(约10%~15%),粒径可达2~3cm,基质为中粗粒花岗结构,主要矿物有碱性长石(20%~25%)、斜长石(15%~20%)、石英(20%~25%)、黑云母(8%~12)、白云母(5%~8%)等,副矿物主要为榍石、磷灰石以及锆石。岩石普遍遭受了后期钾质热液不同程度交代作用的改造,改造较弱者表现为斜长石的绢云母化和暗色化,钾化较强者主要表现为斜长石的钾长石化,即斜长石受钾质热液交代形成大量微斜长石,这类微斜长石常含大量斜长石残留体,残留斜长石常为浑圆状且已绢云母化(图2a)。岩石中的白云母均为次生白云母,半自形-他形,常呈断续的小片分布于黑云母中,与其构成明显的交生状反应关系,为后期钾质热液蚀变交代的产物。

暗色包体 包体不均匀分布于整个岩体中,局部可见包体成群出现。包体形态各异,呈椭球状、水滴状、透镜状等塑变形态(图2b,c);大小不一,其长轴主要在5~20cm,最小不足1cm,最大可达45cm。包体成分变化较大,主体为闪长质,具细粒半自形粒状结构,块状构造。主要矿物有斜长石(60%~70%)、黑云母(20%~25%)、石英(5%~10%)和少量碱性长石(5%),可见十分自形的长板柱状斜长石组成格架、其他矿物充填其间,为典型的岩浆结构,副矿物为磷灰石、榍石、锆石及磁铁矿。

3 分析方法

主量、稀土和微量元素测试由河北省区域地质矿产调查研究所完成。其中全岩主量元素采用XRF分析,稀土和微量元素采用ICP-MS分析。主量元素分析精度优于3%,稀土和微量元素分析精度优于5%。

锆石的挑选在河北省廊坊市区域地质调查院完成。样品靶的制备在中国地质科学院地质研究所进行。锆石的阴极荧光图像分析在北京大学物理学院电镜室的阴极荧光分析系统(FEI公司生产的Quatan 200F型场发射环境扫描电镜+Gatan公司Mono CL3阴极荧光谱仪)上完成,分析方法和条件见相关文献(陈莉等,2005)。

LA-ICP-MS锆石 U-Pb分析在中国地质大学地学实验中心元素地球化学研究室完成,分析仪器为由美国New Wave Research Inc.公司生产的193nm激光剥蚀进样系统(UP 193SS)和美国AGILENT科技有限公司生产的Agilent 7500a型四级杆等离子体质谱仪联合构成的激光等离子体质谱仪(LA-ICP-MS)。本次分析193nm激光器工作频率为10Hz,剥蚀物质载气为高纯度He气,流量为0.7L/min;Angilent等离子质谱仪工作条件:冷却气(Ar)流量1.13L/min;测试点束斑直径为36mm,剥蚀采样时间为45s。元素含量以NIST612为外部标准进行标定,Si为内部标准计算;锆石U-Pb年龄用澳大利亚Glitter4.4数据处理软件计算获得,所用的标准锆石为91500,单个数据点误差均为1σ,加权平均值误差为2σ,平均年龄值选用206Pb/238U年龄。

4 分析结果

4.1 LA-ICP-MS定年结果

图3 香桃湖花岗岩中典型锆石的阴极荧光图像及其206Pb/238U年龄Fig.3 CL images and 206Pb/238U ages of typical zircons of analyzed samples from Xiangtaohu pluton

样品中锆石的U-Pb分析测试结果见表1和表2。锆石自形程度较好,大多呈长柱状,棱角清晰,粒度在80~300μm之间。锆石的内部结构清晰,大多数锆石具有继承性残余核部,岩浆成因的震荡生长环带边部(图3)。大部分继承核具有相对较低的微量元素含量(Th=136×10-6~404×10-6,U=265×10-6~597×10-6),在CL图像上具有较强的发光性(呈白色-灰白色),岩浆成因的边部REE、Th、U等微量元素含量明显高于继承核,在CL图像上发光性弱(呈灰黑色-黑色)。样品TL01锆石LA-ICP-MS 分析结果表明, 锆石边部微量元素含量较高且变化范围较大,U和Th的含量分别为204×10-6~2114×10-6和88×10-6~1748×10-6,Th/U在0.13~1.16,Th/U均大于0.1,且Th和U具有良好的线性关系(图略),为典型的岩浆锆石;样品TL04中锆石岩浆成因的边部具有更高的微量元素含量,尤其是U含量(1006×10-6~4083×10-6),属于高U锆石,Th的含量与样品TL01差别不大(75×10-6~512×10-6),高的U含量导致其具有十分低的Th/U比值(0.05~0.22),16个测点中有10个测点Th/U低于0.1,但清晰的韵律环带仍然表明它们是岩浆成因,和在特提斯喜马拉雅东部二云母花岗岩中的高铀锆石特征一致(Zengetal.,2011)。两个样品的锆石均具有较高的稀土元素总量,且变化范围较大(TL01锆石∑REE=506×10-6~1502×10-6,TL04锆石∑REE=1091×10-6~2866×10-6),稀土元素配分模式极其相似(图4a,b),均表现为轻稀土元素亏损,重稀土强烈富集,具有不同程度的Ce异常(TL01锆石Ce/Ce*=1.38~47.21;TL01锆石Ce/Ce*=0.92~14.56)和明显的负Eu异常(TL01锆石Eu/Eu*=0.35~0.73;TL04锆石Eu/Eu*=0.19~0.32),显示出典型花岗岩锆石的特征(吴元保等,2004)。

样品TL01可能由于遭受了后期钾质热液蚀变作用的影响,部分锆石测点发生明显的Pb丢失,将这类测点予以剔除,其余14个测点均落在谐和线上,其中测点TL01.08、TL01.09、TL01.15、TL01.16以及TL01.19,给出了800~900Ma以及1600Ma的继承锆石核部的年龄信息,其余测点(9个点)构成一组谐和年龄(图4c),其加权平均年龄为210.9±3.9Ma(MSWD=2.8),为二云母花岗岩(TL01)的岩浆结晶年龄;样品TL04受后期钾质热液影响较小,锆石并未发生明显的Pb丢失现象,所有测点均集中分布在谐和线上及其附近(图4d),其加权平均年龄为212.6±1.5Ma(MSWD=0.69),为黑云母花岗岩(TL04)的岩浆结晶年龄。样品TL01和TL04均采自香桃湖岩体中,且在误差范围内具有相同的岩浆年龄,表明香桃湖岩体形成于晚三叠世。

4.2 地球化学特征

4.2.1 主量元素

香桃湖岩体主量元素分析结果见表3。岩体以高SiO2(68.06%~74.05%)、较高K2O含量(3.06%~4.50%)和K2O/Na2O(1.05%~1.63%)以及低的P2O5含量(0.08%~0.14%)为特征,在成分上属于二长花岗岩(图5a)。P2O5含量随SiO2含量的增高而降低(图5b)。在SiO2-K2O图解中,大部分样品落入高钾钙碱性区域,极个别样品属于钙碱性系列(图5c)。样品的铝饱和指数(A/CNK)为1.03~1.09,均属弱过铝质(图5d)。CIPW标准矿物中出现刚玉分子,但含量较低(0.53~1.47)。综合以上特征,香桃湖花岗岩总体为一套弱过铝质高钾钙碱性-钙碱性二长花岗岩。

表1香桃湖二云母二长花岗岩锆石(TL01)LA-ICP-MS U-Pb-Th分析结果

Table 1 LA-ICP-MS U-Pb-Th data for zircons from Xiangtaohu two-mica granite(TL01)

测点号含量(×10-6)Pbrad232Th238UTh/U同位素比值年龄(Ma)207Pb/206Pb207Pb/235U206Pb/238U207Pb/206Pb207Pb/235U206Pb/238U比值1σ比值1σ比值1σ年龄1σ年龄1σ年龄1σTL01⁃0113.64361.73327.951.100.05030.00170.22840.00780.03300.00052075220962093TL01⁃0234.90229.751018.830.230.05050.00100.23460.00480.03370.00042192521442143TL01⁃0623.64123.03683.830.180.05060.00110.24020.00570.03440.00052233021952183TL01⁃0759.26360.041763.950.200.05070.00080.23260.00420.03330.00042262021232113TL01⁃0884.73136.29265.370.510.10640.00154.09700.06630.27930.0036173814165413158818TL01⁃09164.30292.80510.910.570.11260.00164.28580.06760.27600.0036184113169113157118TL01⁃107.3297.95204.050.480.05050.00290.22850.01330.03280.0005217107209112083TL01⁃1269.54437.772114.550.210.05000.00140.22170.00540.03210.00041976620352043TL01⁃1599.34206.58597.820.350.06570.00261.22240.04510.13490.0019797858112181611TL01⁃1649.89270.62279.330.970.07020.00121.36470.02560.14110.0019933198741185111TL01⁃1995.85404.31522.110.770.07230.00111.54310.02640.15490.0020993169481192811TL01⁃2322.6787.80673.560.130.05060.00120.23740.00580.03400.00052243221652163TL01⁃2447.79295.281394.960.210.05060.00090.23540.00460.03380.00042222321542143TL01⁃2574.451747.871500.431.160.05060.00390.22400.01690.03210.0005223176205142043

表2香桃湖黑云母花岗岩锆石(TL04)LA-ICP-MS U-Pb-Th分析结果

Table 2 LA-ICP-MS U-Pb-Th data for zircons from Xiangtaohu biotite granite(TL04)

测点号含量(×10-6)Pbrad232Th238UTh/U同位素比值年龄(Ma)207Pb/206Pb207Pb/235U206Pb/238U207Pb/206Pb207Pb/235U206Pb/238U比值1σ比值1σ比值1σ年龄1σ年龄1σ年龄1σTL04⁃0485.75354.062464.740.140.05160.00180.23880.00770.03360.00052688321762133TL04⁃0582.24215.142408.120.090.05070.00140.23840.00640.03410.00052263721752163TL04⁃0634.20123.861005.750.120.05040.00150.23460.00710.03380.00052144421462143TL04⁃0741.6888.451247.270.070.05040.00150.23340.00700.03360.00052134321362133TL04⁃0891.59181.442796.670.060.05010.00140.22750.00620.03290.00052013820852093TL04⁃09107.07637.302924.770.220.05140.00240.23520.01030.03320.000525910821582103TL04⁃1084.28326.912484.840.130.05080.00200.23310.00910.03330.00052296021372113TL04⁃1174.04138.132200.000.060.05050.00150.23600.00680.03390.00052204121562153TL04⁃1389.09225.362550.940.090.05020.00190.23210.00830.03350.00052069121272123TL04⁃14104.26319.203137.800.100.05030.00190.22900.00860.03300.00052095820972093TL04⁃16128.67350.283854.600.090.05060.00170.23290.00780.03340.00052244921362123TL04⁃1765.33174.061956.080.090.05040.00150.23130.00710.03330.00052144421162113TL04⁃18105.36279.983094.040.090.05050.00150.23650.00700.03390.00052194221662153TL04⁃19110.92267.753159.270.080.05060.00190.23940.00810.03430.00052228721872183TL04⁃21142.35511.504082.930.130.05120.00210.23620.00880.03350.00052489521572123TL04⁃2447.0374.871419.750.050.05010.00160.23150.00750.03350.00052014821162123

表3红脊山地区香桃湖岩体全岩地球化学数据(主量元素:wt%;微量元素:×10-6)

Table 3 Concentrations of major (wt%) and trace elements (×10-6) of analyzed samples from Xiangtaohu pluton

样品号TL01⁃H1TL01⁃H2TL01⁃H3TL01⁃H4TL01⁃H5TL01⁃H6TL01⁃H7TL01⁃H8TL01⁃H9TL01⁃H10SiO270.9771.0970.8668.6770.8370.5871.3071.4671.6071.41Al2O315.0914.9515.0116.2815.4115.2714.9614.9014.8714.90TiO20.260.270.290.260.250.280.280.270.270.27Fe2O30.270.350.250.400.390.390.450.340.410.33FeO1.701.681.961.601.511.751.651.681.651.70CaO2.632.502.702.692.642.612.322.612.502.47MgO0.710.730.830.720.690.800.780.740.740.73K2O3.823.733.644.313.883.943.823.653.743.98Na2O3.293.253.263.533.383.273.303.283.263.17MnO0.050.050.050.050.050.050.050.050.050.05P2O50.090.090.100.090.090.090.110.090.090.09LOI0.981.190.891.220.780.800.840.810.680.77Total99.8699.8699.8599.8399.8999.8499.8699.8699.8699.86K2O/Na2O1.161.151.121.221.151.201.161.111.151.26A/NKC1.051.071.061.061.061.061.091.061.071.06A/NK1.581.591.611.551.581.581.571.591.581.56石英(Q)29.7930.8930.0524.1929.0128.9230.8131.0231.2130.62钙长石(An)12.8712.1913.113.2312.8912.7411.1112.712.1412.02钠长石(Ab)28.1627.8727.8430.2928.8527.9628.1728.0227.7727.07正长石(Or)22.8122.3121.7425.8323.1523.5022.7821.7422.2623.71刚玉(C)0.891.170.961.030.971.011.380.951.061.02Sc4.554.755.775.274.985.355.095.215.015.44V29.3027.1035.5031.1029.7032.7030.1032.7031.8033.30Cr21.2022.1024.5024.1023.3024.2023.2023.7023.4025.00Co3.203.304.103.703.403.803.603.703.503.80Ni4.204.305.104.904.705.004.805.104.505.30Cu6.4010.0011.8014.3014.5013.5011.5012.5012.5014.90Zn45.0042.0148.6043.7044.3045.8048.3045.8044.5051.90Ga17.6217.5920.2120.5119.5519.2418.3019.1618.3119.49Rb158.9149.4171.2189.6177.1169.7174.2170.4164.4185.4Sr388.5392.2445.5465.4436.8433.8395.1406.3393.3420.0Y15.3516.2919.0016.9116.8315.4516.8817.0216.0718.05Zr123.1118.4138.8114.9109.5123.0111.9126.4121.0117.9Nb12.7613.4315.6214.4113.5414.1513.9114.3514.0414.85Cs7.727.628.597.828.717.6310.388.158.028.60Ba585.0631.7639.5750.7566.4780.5609.9587.7589.0630.3La32.9632.6240.6335.9436.6932.3536.8638.0534.5338.48Ce58.8358.4472.4365.2462.1456.8965.3264.9658.5466.82Pr6.476.537.997.236.776.307.137.036.337.32Nd22.5223.3028.0825.4223.5122.3024.9524.8722.2025.68Sm4.044.485.204.724.384.174.664.784.174.90Eu1.010.981.151.171.141.081.001.061.041.10Gd3.644.024.814.284.053.724.254.283.884.50Tb0.520.570.660.590.570.520.580.590.550.62Dy2.913.083.593.223.102.873.173.182.983.36Ho0.520.550.640.570.560.510.560.560.530.59Er1.531.591.851.661.621.511.601.651.541.71Tm0.240.250.290.260.260.240.240.260.250.27Yb1.541.651.921.681.711.541.621.691.611.79Lu0.250.270.300.270.280.250.260.270.260.29Hf5.004.895.254.434.174.634.424.774.644.43Ta1.531.601.661.621.551.451.691.631.561.66Pb35.7035.7037.3042.6038.9038.4033.7036.9035.5038.40Th16.1918.4820.0318.3515.4215.8718.6717.4119.0517.10U2.322.612.942.652.892.142.492.112.142.68TZr(℃)779779789772770780776782780778

续表3

Continued Table 3

样品号TL01⁃H11TL01⁃H12TL01⁃H13TL01⁃H14TL01⁃H15TL01⁃H16TL01⁃H17TL01⁃H18TL01⁃H19TL01⁃H20SiO270.5070.4671.6570.1170.7469.9570.5569.9970.3571.27Al2O315.0615.2114.6415.1614.8515.4315.1815.5515.2614.66TiO20.270.260.260.270.280.370.360.350.370.36Fe2O30.550.480.450.450.640.510.590.780.560.51FeO1.461.511.511.651.501.941.771.581.921.89CaO2.392.242.372.502.442.702.572.742.602.42MgO0.710.700.690.740.750.760.730.750.800.76K2O4.224.503.704.263.794.073.973.953.663.94Na2O3.103.043.143.073.123.153.103.233.223.01MnO0.040.040.040.040.040.050.050.050.060.05P2O50.090.100.090.110.100.110.120.110.110.11LOI1.471.291.311.481.580.810.830.790.940.84Total99.8599.8399.8699.8599.8299.8599.8299.8599.8499.83K2O/Na2O1.361.481.181.381.211.291.281.221.141.31A/NKC1.081.091.091.071.091.061.081.071.091.08A/NK1.561.541.601.571.611.611.611.621.651.59石英(Q)29.9429.3132.7529.0931.6428.3430.1928.7330.2131.68钙长石(An)11.6910.9411.612.1411.8813.1212.3113.2412.5511.63钠长石(Ab)26.6326.1126.9826.4326.8426.9226.4927.5927.5325.74正长石(Or)25.3127.0022.1925.5622.7724.2523.7023.5321.8523.52刚玉(C)1.201.401.291.131.371.091.321.161.471.23Sc5.194.784.614.875.346.646.566.747.056.75V30.2027.7026.5026.3028.2028.9028.9029.1031.3029.10Cr24.3023.1022.9024.0024.1021.5021.8021.3022.7021.60Co3.102.702.803.103.204.004.004.004.203.90Ni4.804.604.404.804.604.504.704.405.004.90Cu17.8013.6014.0012.3016.0010.108.908.0013.6013.50Zn39.1034.3033.8037.1039.1048.5044.9041.0048.2046.90Ga20.7418.9418.6119.0420.4918.7918.4719.5419.6818.38Rb185.9177.9155.3173.2173.5167.8166.7171.8163.4168.3Sr430.1392.9384.2392.7406.6431.8422.1446.6431.7417.2Y18.1114.9915.3714.5715.4418.7818.9419.5522.6319.43Zr118.1115.0118.8115.5120.8153.6150.6140.6162.5154.5Nb15.9714.1113.9714.4316.2314.2214.3314.8515.9514.78Cs6.285.445.616.466.453.923.833.793.804.17Ba738.4853.4650.5768.6603.0674.5677.3525.9614.2597.7La40.2734.5735.1633.5233.4531.2429.9430.7337.6134.31Ce72.8764.0262.6659.5458.6857.2455.6454.8766.3560.88Pr8.036.996.856.786.656.536.216.277.386.82Nd28.1724.5424.0323.7823.4223.5622.4822.7826.4924.57Sm5.234.474.434.404.374.574.464.505.204.74Eu1.161.061.001.041.011.091.101.131.161.06Gd4.584.043.993.883.944.224.064.094.794.36Tb0.640.540.540.520.540.610.600.620.710.64Dy3.402.802.832.762.873.453.463.584.173.61Ho0.600.490.490.480.510.630.640.650.760.65Er1.761.401.461.391.481.831.851.882.211.88Tm0.270.220.230.220.240.280.290.300.350.29Yb1.831.441.521.481.581.851.911.972.321.88Lu0.300.230.250.240.260.290.310.310.380.31Hf4.394.214.454.404.605.475.485.185.975.47Ta1.721.401.511.521.771.561.561.811.961.65Pb31.6029.7025.9028.2027.0030.6031.8032.6032.7030.90Th17.9315.2918.0917.6915.8016.5517.5614.4518.7218.75U3.452.322.091.251.791.771.991.792.392.20TZr(℃)779779780775781798798790806802

续表3

Continued Table 3

样品号TL04⁃H1TL04⁃H2TL04⁃H3TL04⁃H4TL04⁃H5TL04⁃H6TL04⁃H7TL04⁃H8TL04⁃H10SiO269.9974.0569.3971.6569.5168.8372.2868.0670.86Al2O315.0613.2515.8414.7115.4415.8114.1314.6815.33TiO20.360.280.300.260.320.320.260.510.25Fe2O30.660.480.450.480.450.490.461.170.42FeO2.201.802.011.682.132.131.633.041.59CaO2.832.492.952.502.642.892.772.452.87MgO1.110.890.930.830.980.990.841.610.77K2O3.433.063.653.994.223.983.574.393.64Na2O3.272.863.433.063.153.362.932.703.29MnO0.070.060.060.050.070.070.050.100.05P2O50.140.090.090.100.100.100.080.140.13LOI0.780.630.780.570.890.930.871.050.72Total99.9099.9299.8999.8799.8999.8999.8799.8999.92K2O/Na2O1.051.071.061.301.341.181.221.631.11A/NKC1.061.061.061.061.061.051.031.081.05A/NK1.651.651.651.571.581.611.631.601.64石英(Q)29.2738.3426.8131.2626.925.3833.826.7529.93钙长石(An)13.4012.0014.3612.0612.7714.0713.5511.5113.69钠长石(Ab)27.9324.3229.2626.126.9228.7425.0623.0828.08正长石(Or)20.4618.2121.7623.7525.223.7321.2726.2121.69刚玉(C)1.100.881.040.961.060.880.531.341.00Sc8.456.797.576.418.077.826.1410.975.73V41.0034.5038.9035.0041.6038.1033.5052.9030.40Cr29.9026.4027.2025.9028.9027.7026.0032.0025.10Co5.504.404.804.205.305.004.007.303.80Ni10.905.8010.105.7010.205.605.9010.805.30Cu12.5011.1011.6012.2012.308.3010.1012.1011.40Zn75.1042.1052.9039.6051.6048.3049.7065.2036.60Ga19.4216.4919.7417.2920.3419.8716.4218.6217.44Rb186.0151.5189.7170.8226.0205.2152.0218.8152.1Sr334.9296.7366.7340.2354.5348.8339.4260.4352.6Y21.6217.3226.8417.9325.0924.1816.2622.1515.11Zr120.4120.6111.0108.5116.8122.7126.5163.6112.2Nb18.0713.8116.2813.1918.0217.1612.0922.7511.50Cs9.676.6710.026.3511.4910.966.789.995.83Ba298.2210.7421.8580.6446.7437.0533.3411.3421.3La28.6426.5836.8523.5321.4825.0631.9626.2925.60Ce48.8044.8064.9041.5737.7043.8256.5244.6844.50Pr5.284.856.934.654.164.696.054.964.74Nd18.7117.1124.0916.5314.9316.4621.1117.6616.82Sm3.773.364.733.273.253.393.893.753.22Eu0.890.811.000.900.890.880.900.740.88Gd3.653.244.543.163.243.363.583.732.99Tb0.600.500.710.490.580.580.510.620.45Dy3.723.044.393.043.933.792.873.802.60Ho0.710.570.870.580.780.740.520.720.50Er2.071.642.621.722.392.281.532.071.44Tm0.340.260.450.280.420.400.250.330.23Yb2.231.753.021.872.842.701.582.111.49Lu0.370.280.500.300.470.440.260.350.25Hf4.194.124.043.664.174.264.155.483.83Ta2.261.562.561.502.652.691.372.481.26Pb50.530.336.334.638.734.333.030.833.2Th12.8912.9617.7814.3317.9216.3012.7716.3614.39U2.122.032.311.932.332.172.253.131.72TZr(℃)774779767770774774778803769

注:A/CNK=摩尔Al2O3/(CaO+Na2O+K2O),A/NK=摩尔Al2O3/(Na2O+K2O),TZr(℃)为锆石饱和温度(Watson and Harrison,1983)

图4 香桃湖花岗岩锆石稀土元素球粒陨石标准化模式图(a, b)及U-Pb谐和图(c, d)Fig.4 Chondrite-normalized REE patterns (a, b) and U-Pb zircon concordia diagram (c, d) of analyzed samples from Xiangtaohu pluton

4.2.2 微量元素

香桃湖花岗岩体的稀土、微量元素分析结果见表3。29件样品显示近一致的稀土元素特征: LREE相对HREE明显富集,LREE/HREE=8.98~12.16,轻重稀土分馏显著, (La/Yb)N=5.43~17.27,Eu负异常不明显(Eu/Eu*=0.61~0.87),在REE元素球粒陨石标准化图上呈现光滑的右倾曲线,曲线后半段相对平坦,且尾部具有微弱上翘趋势(图6a,c),暗示样品同时存在中稀土元素的亏损(Zhuetal., 2008)。

香桃湖花岗岩具有较高的Sr含量(260.4×10-6~465.4×10-6),相对低的Yb(1.44×10-6~3.02×10-6)和Y含量(14.57×10-6~26.84×10-6)。在原始地幔标准化蛛网图中(图6b,d),所有样品均表现为富集Rb、Ba、Th、U、K和La等大离子亲石元素,相对亏损Nb、Ta、Ti、Zr 等高场强元素;显著富集Pb元素,亏损P元素; Ba相对于Rb和Th较亏损,Sr弱亏损。

几乎一致的主量元素和微量元素特征进一步表明,二云母二长花岗岩(TL01)与黑云母二长花岗岩(TL04)均为同源岩浆结晶的产物,但受不同程度钾质热液蚀变样品(TL01)相对未蚀变样品(TL04)更加富铝和LILE(Rb、Ba、Sr,K等)。

图5 香桃湖花岗岩选择性地球化学散点图(a)-香桃湖花岗岩的 Q′-ANOR 标准矿物图解(Streckeisen and Le Maitre,1979);(b)-SiO2-P2O5图解(Li et al,2007);(c)-A/NK-A/CNK 图解(Maniar and Piccoli,1989);(d)-SiO2-K2O 岩浆系列判别图解(Rickwood, 1989)Fig.5 Selected geochemical plots of analyzed samples from Xiangtaohu pluton

5 讨论

5.1 羌塘中西部地区晚三叠世岩浆活动

本文在羌塘西部香桃湖岩体获得锆石 U-Pb 定年结果表明,香桃湖岩体形成于晚三叠世(210.9~212.6Ma),而非前人认为的晚侏罗世(全岩K-Ar法, 广西壮族自治区地质调查研究院, 2006*广西壮族自治区地质调查研究院. 2006. 中华人民共和国区域地质报告1:25万查多岗日幅)。沿龙木错-双湖缝合带及南羌塘北缘:长梁山(~210Ma;李才未发表资料)、果干加年山(210Ma,胡培远等,2010)、戈木日西部(225Ma,黄小鹏等,2007)、蜈蚣山南部(222Ma, 吉林大学地质调查研究院,2006)以及冈塘错地区(210Ma,Kappetal., 2003),均发现了与香桃湖岩体同期的花岗岩体(225~210Ma),其出露面积超过1400 km2。已有资料表明这一期花岗岩的成因类型十分复杂,西部的长梁山岩体为I型花岗岩(李才未发表资料),源于镁铁质下地壳的部分熔融;果干加年山和冈塘错岩体则具有S型花岗岩特征,可能是上地壳古老物质部分熔融的产物(胡培远等,2010;黄小鹏等,2007);蜈蚣山南部岩体部分样品甚至表现出A型花岗岩特征(吉林大学地质调查研究院,2006)(如富集HFSE,具有高的锆石饱和温度)。但无论哪种成因类型,岩体中普遍含有大量暗色包体,这是羌塘中部晚三叠世花岗岩的一个重要的共同特征。

同时代的火山熔岩-火山碎屑岩主要出露在北羌塘地块的南缘,沿缝合带一线分布,西起拉雄错,向东到那底岗日,延伸超过300km(Zhaietal., 2013b),以中酸性岩石为主,并伴有少量基性岩石,时代为晚三叠世(225~202Ma,翟庆国等,2007;Wangetal., 2008; Fuetal., 2010;Zhangetal., 2011; Zhaietal., 2013b)。

图6 香桃湖岩体的稀土元素球粒陨石标准化和微量元素原始地幔标准化图解(标准化值据Sun and McDonough, 1989)Fig.6 Chondrite-normalized REE and Primitive Mantle-normalized trace element patterns of analyzed samples from Xiangtaohu pluton(normalization values after Sun and McDonough, 1989)

5.2 成因类型

从上文分析可以看出,羌塘中部晚三叠世花岗岩的成因类型十分复杂,因此准确识别香桃湖岩体的成因类型,对进一步研究其源区性质、构造背景以及进行区域对比具有重要意义。香桃湖岩体具有低的10000Ga/Al比值(2.15~2.6)以及低的Zr、Nb、Ge和Y含量(Zr+Nb+Ge+Y=181.2×10-6~267.4×10-6),不同于典型的A型花岗岩(Whalenetal. 1987),在Zr-10000Ga/Al图解上,样品全部位于钙碱性花岗岩区域(图7a);同时,较低的FeOT/MgO比值(2.51~3.16)和全碱含量(K2O+Na2O=5.58%~7.55%),表明其结晶分异程度不高,在FeOT/MgO-(Zr+Nb+Ce+Y)图解上,样品均落入未分异的钙碱性花岗岩区域(图7b)。根据野外产状、矿物组合排除了M型花岗岩可能性,但在进一步的判断中,缺少角闪石、堇青石等区分I型和S型花岗岩的矿物学标志(吴福元等,2007)。近年来,利用磷灰石在I型和S型花岗岩中不同行为,已成为判断两类花岗岩类型的有效手段(Chappell,1999; Li et al,2007)。大量实验岩石学研究表明,磷灰石在准过铝或弱过铝质I型花岗质岩浆中溶解度很低,是优先结晶的矿物,因此I型花岗岩的P2O5总是随着SiO2含量的升高而降低;而磷灰石在强过铝质岩浆中主要呈不饱和状态,因此S型花岗岩的P2O5总是随着SiO2含量的升高而升高或基本不变。本文数据显示,香桃湖岩体为弱过铝质岩石(A/NCK<1.1),P2O5含量很低(0.08%~0.14%),并且SiO2含量与P2O5含量具有明显的负相关性,与I性花岗岩演化趋势一致(图5b),这一趋势同时亦可以得到Y和Rb呈现的正相关性的支持(图7c)(Lietal.,2007;Zhuetal., 2009)。另外,锆石饱和温度计算表明(Watson and Harrison,1983),香桃湖岩体的母岩浆具有较高的温度(767~806℃),和I型花岗岩的特征相符。综上所述,香桃湖岩体属于弱过铝质I型花岗岩,岩浆源于(变质)基性火成岩的部分熔融。

5.3 岩浆混合作用

图7 香桃湖岩体及区域内晚三叠世花岗岩的成因分类和构造环境判别图解(a, b)-香桃湖岩体的Zr-10000Ga/Al和FeOT/MgO-(Zr+Nb+Ce+Y)分类图解(据Whalen et al., 1987),A-A型花岗岩;I-I型花岗岩;S-S型花岗岩;M-M型花岗岩;FG-分异型I、S或M型花岗岩;OGT-未分异的I、S或M型花岗岩;(c)-香桃湖岩体Rb-Y分类图解(Li et al,2007);(d)-羌塘中部晚三叠世花岗岩体的Sr-Yb分类图解(据张旗等,2010);(e, f)-羌塘中部晚三叠世花岗岩体Rb/30-Hf-3Ta(Pearce and Harris,1984)以及Rb-(Y+Nb)图解(Pearce, 1996);其他岩体资料主要来源于kapp et al., 2000,2003;胡培远等, 2010; 黄小鹏,2007Fig.7 Classification diagrams and distinguishing diagrams of tectonic settings for Late Triassic magmatism in central Qiangtang

根据Didieretal. (1991)的研究,花岗岩中的包体可分为3类:捕虏体、残留体和暗色微粒包体。越来越多的研究表明,大部分的暗色微粒包体是岩浆混合作用的直接证据(莫宣学等,2002)。香桃湖花岗岩体中发育大量暗色淬冷包体,通过详细的野外观察和岩相学研究,本文认为其为基性岩浆注入寄主(花岗质)岩浆并遭受不同程度改造后固结的产物,可作为岩浆混合作用的有力证据,其主要证据如下:(1)包体主要呈椭球状、饼状甚至透镜状(图2b),这被普遍认为与液态表面张力有关,表明包体和寄主岩石曾以流体状态共存(周新民等,1992),且这些包体均具有典型的岩浆结构(见前文描述),说明包体既不可能是围岩捕掳体,更不可能是难熔残留体;(2)暗色包体中发育大量针状磷灰石(图2d),实验研究表明,针状磷灰石为岩浆快速冷凝的产物(Wyllieetal., 1962),被认为是高温的基性岩浆注入到相对低温的酸性岩浆房中导致基性岩浆快速冷却的结果(Hibbard,1991);(3)包体内部具暗色矿物镶边的石英捕掳晶(图2e),野外观察表明这些石英捕掳晶有时甚至可以横跨包体与寄主岩石的界限,它们是在寄主花岗质岩浆中结晶的矿物,在岩浆混合时被基性岩浆捕获,熔融作用的吸热效应导致靠近石英边缘的一圈熔体中形成了局部过冷的条件,导致细粒暗色矿物(这里主要是黑云母)围绕石英捕掳晶晶出(付强等,2011);(4)包体中部分斜长石斑晶具有黑色细窄的内环带结构(图2f),它是由大量细小熔体及黑云母等微粒暗色矿物组成的小环带,被认为是岩浆混合作用的重要证据(Kawamoto, 1992; Baxteretal., 2002);(5)岩体中大多包体为闪长质-石英闪长质,但也有少量偏中基性包体,它们是基性岩浆遭受了寄主岩浆不同程度改造的产物。但在野外研究过程中,我们极其幸运的发现了极少量基本未被改造的辉长(辉绿)质包体(图2c),可能代表了幔源岩浆最原始成分,为岩浆底侵和岩浆混合提供了最直接证据。

以上观察暗示了香桃湖花岗岩体的混合成因,但对不同的岩浆端员和相对贡献,还需要积累更多数据(尤其是同位素地球化学数据)后再讨论。

5.4 源区性质

香桃湖花岗岩体整体为高钾钙碱性(少量为钙碱性)I型花岗岩,并具有强烈的Nb、Ti的负异常和Pb的正异常,这些特征与大陆地壳相似(Rudnick and Fountain,1995)。样品的Th/U比值为5.19~9.36,平均为7.55,与下地壳Th/U的平均值(6.00,Rudnick and Gao,2003)相近;Nb/Ta比值8.13~10.06,平均为8.97,略高于下地壳的平均值(8.3, Rudnick and Gao, 2003),与有角闪石和金红石为残留相的壳源花岗岩(9.00, Dostal and Chatterjee,2000)几乎一致,表明香桃湖花岗岩可能为下地壳部分熔融的产物。香桃湖花岗岩具有高的Sr含量,低的Yb和Y含量,在花岗岩的Sr-Yb分类图解(图7d)上,绝大多数样品落入了高Sr低Yb型花岗岩区域,说明岩浆起源于较高的压力(张旗等, 2010)。Sr对于石榴石和辉石是强不相容元素,而HREE和Y对于石榴石是强相容元素,香桃湖花岗岩高Sr低Yb的特征,暗示源区主要残留相可能为石榴石和辉石。在REE球粒陨石标准化图上,香桃湖花岗岩具有平坦的HREE分布特征(Hon≈Ybn),且尾部具有微弱上翘趋势(图6a,c),暗示中稀土元素的亏损,说明角闪石也是重要的残留相(Zhuetal. 2008)。样品均具有弱的负Eu异常,说明源区可能有少量斜长石的残留。综合以上特征,香桃湖花岗岩源区主要残留相为石榴石+辉石+角闪石±斜长石,进一步表明岩浆源于下地壳角闪岩相-榴辉岩相变质基性火成岩的部分熔融,暗示区域内仍可能存在加厚的下地壳。

5.5 大地构造背景

花岗岩的地球化学成分主要取决于源区的性质、熔融的物理化学条件以及岩浆的后期演化,对反应构造环境并不敏感(吴福元等,2007),因此我们在讨论香桃湖岩体构造背景时,更多地结合区域内时空演化格架、同时代岩浆活动、高压变质带等多方面已有研究成果,给予充分的地质制约。研究结果表明,包括香桃湖岩体,分布于南羌塘北缘大面积的晚三叠世花岗岩(225~210Ma)可能形成于后碰撞阶段伸展构造背景,主要证据包括:

首先,区域内高压变质带及相关岩浆活动研究结果表明,在中三叠世(244~230Ma),龙木错-双湖缝合带所代表的特提斯洋盆可能已完全关闭,实现了南北羌塘的陆陆碰撞(Zhaietal., 2011;Zhuetal., 2013);而在晚三叠世,羌塘部分地区已经开始了新一轮的沉积,并以角度不整合覆盖在混杂岩之上(李才等,2007b),暗示了区域内已由陆陆碰撞环境开始向板内环境过渡。缝合带内部及南羌塘北缘晚三叠世花岗岩(225~210Ma)形成于陆陆碰撞晚期到造山带向板内环境过渡初期,从演化时限上符合后碰撞的定义。

其次,分析前人资料(吉林大学地质调查研究院, 2006),我们发现蜈蚣山南部少数晚三叠世花岗岩具有高的Zr、Nb、Ce和Y含量(Zr+Nb+Ce+Y=392×10-6~530×10-6)以及高的锆饱和温度TZr=820~868℃,显示出A型花岗岩的部分特点(Whalenetal.,1987),表明了区域内晚三叠世应处于一个伸展构造背景。然而,香桃湖岩体高Sr低Y的特征和源区属性,暗示区域内可能仍存在加厚的下地壳,说明这一时期虽然处于伸展背景,但并未完全过渡到正常的板内环境

第三,与这一期岩浆活动几乎同时,区域内高压变质岩系发生大规模的折返、侵位及剥露作用(227~203Ma,李才等,2006a;张修政等,2010;Zhaietal., 2011a),进一步证实晚三叠世区域内的伸展构造背景,同时也说明块体之间仍存在复杂的相互运动,不同于典型的板内环境,而与后碰撞阶段特征一致(Liegeois, 1998)。

第四,地球化学特征进一步显示其后碰撞的特征,在Rb/30-Hf-3Ta以及Rb-(Y+Nb)构造环境判别图解上(图7e, f),区域内绝大部分晚三叠世样品落在后碰撞花岗岩范围内。

综上所述,我们认为分布于缝合带及其南侧晚三叠世花岗岩形成于后碰撞阶段伸展构造背景。而对于缝合带及其北侧同时代(220~205Ma)火山岩的构造背景,学术界目前主要有岛弧(李才等,1995,2009;翟庆国等,2007;Zhaietal., 2013)以及板内裂谷环境(Fuetal., 2010)两种主流观点。近期研究表明,这期火山岩中基性岩石的地球化学及同位素特征与典型岛弧玄武岩差别较大,而显示板内玄武岩亲缘性(Fuetal., 2010; Zhangetal., 2011);然而结合本文研究,这一时期区域内并未完全过渡到典型的板内环境,块体间仍具有复杂的相互运动并可能存在加厚的下地壳;同时进一步分析前人数据(Zhaietal., 2013b),部分流纹岩样品具有A2型花岗石的特征。因此,我们认为缝合带及其北侧同时期火山岩可能和南侧晚三叠世花岗岩形成于相同的构造背景,即后碰撞阶段伸展背景。

5.6 成因机制探讨

羌塘中部晚三叠世大规模岩浆活动说明这一时期区域内具有高的岩浆产率和高的熔融异常,意味着必须有异常热量注入。近年来学术界已认识到同碰撞-后碰撞阶段,这种异常热量注入引发的大规模岩浆活动通常和俯冲板片断离(slab break-off)密切相关(Davies and von Blanckenburg, 1995; Coulonetal., 2002; Chungetal., 2005; Xuetal., 2008;van Hunen and Allen, 2011)。综合区域内已有资料和相关地质事实,我们认为羌塘中部晚三叠世后碰撞岩浆事件具有板片断离引发岩浆活动的一系列特定标志,主要包括:

(1)这一期岩浆活动以大量的中酸性岩石伴以少量的基性岩石为特征,同期的基性岩石(220Ma)具有高的Nb/Zr和Zr/Y比值以及正的εNd(t),不同于典型岛弧玄武岩而显示板内玄武岩亲缘性(Fuetal., 2010; Zhangetal., 2011);并且岩浆作用沿龙木错-双湖-澜沧江板块缝合带一线及其两侧大陆边缘呈窄的带状分布,与板块断离引发岩浆活动的岩石类型及分布特征一致(Davies and von Blanckenburg., 1995;Ferrari,2004;Xuetal., 2008)。

(2)羌塘中部晚三叠世不仅存在大规模的后碰撞岩浆活动(225~202Ma),与此同时还伴随着大量深俯冲物质的快速折返和剥露事件(227~203Ma,李才等,2006a;张修政等,2010;Zhaietal., 2011a),这与板片断离的数值模拟结果完全吻合。因为数值模拟表明,板片断离不但能引发大规模岩浆活动,而且还将导致造山带之下具有浮力的大陆地壳物质沿俯冲通道排出并剥露出来(Duretzetal., 2011)。

(3)Zhuetal.(2013)进一步指出,随着板片断离,软流圈物质沿板片窗上涌,不但能导致碰撞造山带上盘发生部分熔融,来源于软流圈或地幔楔物质减压熔融的基性岩浆,也可以沿俯冲通道侵位于碰撞带下盘,并可能导致碰撞带下盘的地壳重熔。这与羌塘中部晚三叠世大规模岩浆活动横跨缝合带分布的特征吻合。另外,基性岩浆底侵造成碰撞带下盘地壳重熔的同时,必然伴随着广泛的岩浆混合作用,这同样得到南羌塘北缘(造山带下盘)晚三叠世花岗岩中普遍存在与岩浆混合作用相关的暗色包体的支持。

综上所述,我们认为龙木错-双湖缝合带所代表的特提斯洋岩石圈向北俯冲以及随后俯冲板片的断离(可能在~220Ma)是羌塘中部晚三叠世后碰撞构造岩浆事件的重要机制。随着板片的断离,形成区域内整体伸展背景,软流圈物质沿板片窗上涌,造成不同源区(包括上升的软流圈地幔、富集的岩石圈地幔和上覆地壳)发生部分熔融,形成了北羌塘(碰撞带上盘)南缘岩浆成分复杂的那底岗日火山岩;同时基性岩浆沿俯冲通道侵位于碰撞带下盘的南羌塘地块,导致不同层次地壳重熔并伴随广泛的岩浆混合作用,形成了南羌塘北缘成因类型多样且普遍含有大量暗色包体的花岗岩。

6 结论

(1)香桃湖岩体形成于晚三叠世,而并非前人认为的晚侏罗世;

(2)香桃湖花岗岩为弱过铝质高钾钙碱性-钙碱性I型花岗岩,岩浆源于下地壳角闪岩相-榴辉岩相变质基性火成岩的部分熔融;

(3)羌塘中部横跨龙木错-双湖-澜沧江板块缝合带分布的大规模晚三叠世岩浆事件形成于后碰撞阶段伸展构造背景,俯冲板块的断离是其可能的成因机制。

致谢参加野外工作的还有刘海洋、黄光宇、魏宝旭、梁振旺同学;锆石样品制备、阴极发光照相、LA-ICP-MS U-Pb定年得到了中国地质大学(北京)地学实验中心苏犁教授和张红雨,李娇硕士等的帮助;朱弟成教授为本文提出建设性修改意见;在此一并表示衷心的感谢。

Bao PS, Xiao XC, Wang J, Li C and Hu K. 1999. The blueschist belt in the Shuanghu region, Central-Northern Tibet and its tectonic implications. Acta Geologica Sinica, 73(4): 302-314 (in Chinese with English abstract)

Barbarin B. 1999. A review of the relationships between granitoid types, their origins and their geodynamic environments. Lithos, 46(3): 605-626

Baxter S and Feely M. 2002. Magma mixing and mingling textures in granitoids: Examples from the Galway Granite, Connemara, Ireland. Mineralogy and Petrology, 76(1): 63-74

Chappell BW. 1999. Aluminium saturation in I- and S-type granites and the characterization of fractionated haplogranites. Lithos, 46(3): 535-551

Chen L, Xu J and Su L. 2005. Characteristics of microspectrofluorimeter at STEM and it geological applications on zircon study. Progress in Natural Science, 15(11): 1403-1408 (in Chinese with English abstract)

Chung SL, Chu MF, Zhang YQ, Xie YW, Lo CH, Lee TY, Lan CY, Li XH, Zhang Q and Wang YZ. 2005. Tibetan tectonic evolution inferred from spatial and temporal variations in post-collisional magmatism. Earth-Science Reviews, 68(3-4): 173-196

Coulon C, Megartsi M, Fourcade S, Maury R, Bellon H, Louni-Hacini A, Cotton J, Coutelle A and Hermitte D. 2002. Post-collisional transition from calc-alkaline toalkaline volcanism during the Neogene in Oranie (Algeria): Magmatic expression of a slab breakoff. Lithos, 62(3-4): 87-110

Davies HJ and von Blanckenburg F. 1995. Slab breakoff: A model of lithosphere detachment and its test in the magmatism and deformation of collisional orogens. Earth and Planetary Science Letters, 129(1-4): 85-102

Deng WM, Yin JX and Guo ZP. 1996. Basic-ultrabasic and volcanic rocks in Chagbu-Shuanghu area of northern Xizang (Tibet), China. Science in China (Series D), 39(4): 359-368

Deng XG, Ding L, Liu XH, An Y, Kapp PA, Murphy MA and Manning CE. 2000. Discovery of blueschists in Gangmar-Taoxing Co area, central Qiangtang, northern Tibet. Scientia Geologica Sinica, 35(2): 227-232 (in Chinese with English abstract)

Didier J and Barbarin B. 1991. Enclaves and Granite Petrology. Amsterdam: Elsevier: 1-625

Dong YS, Li C, Shi JR and Wang SY. 2009. Retrograde metamorphism and tectonic emplacement of high pressure metamorphic belt in central Qiangtang Tibet. Acta Petrologica Sinica, 25(9): 2303-2309 (in Chinese with English abstract)

Dostal J and Chatterjee AK. 2000. Contrasting behaviour of Nb/Ta and Zr/Hf ratios in a peraluminous granitic pluton Nova Scotia, Canada). Chemical Geology, 163(1-4): 207-218

Duretz T, Gerya TV and May DA. 2011. Numerical modelling of spontaneous slab breakoff and subsequent topographic response. Tectonophysics, 502(1-2): 244-256

Ferrari L. 2004. Slab detachment control on mafic volcanic pulse and mantle heterogeneity in central Mexico. Geology, 32(1): 77-80

Fu Q, Ge WS, Wen CS, Cai KQ, Li SF, Zhang ZW and Li XF. 2011. Geochemistry and genesis of Michang granites and their dark microgranular enclaves in Guangxi. Acta Geoscientica Sinica, 32(3): 293-303 (in Chinese with English abstract)

Fu XG, Wang J, Tan FW, Chen M and Chen WB. 2010. The Late Triassic rift-related volcanic rocks from eastern Qiangtang, northern Tibet (China): Age and tectonic implications. Gondwana Research, 17(1): 135-144

Hibbard MJ. 1991. Textural anatomy of twelve magma-mixed granitoid systems. In: Didier J and Barbarin B (eds.). Enclaves and Granite Petrology. Developments in Petrology. Amsterdam: Elsevier: 431-444

Hu PY, Li C, Yang HT, Zhang HB and Yu H. 2010. Characteristic, zircon dating and tectonic significance of Late Triassic granite in the Guoganjianianshan area, central Qiangtang, Qinghai-Tibet Plateau, China. Geological Bulletin of China, 29(12): 1825-1832 (in Chinese with English abstract)

Hu PY, Li C, Xie CM, Wu YW, Wang M and Su L. 2013. Albite granites in Taoxinghu ophiolite in central Qiangtang, Qinghai-Tibet Plateau, China: Evidences of Paleo-Tethys oceanic crust subduction. Acta Petrologica Sinica, 29(12): 4404-4414 (in Chinese with English abstract)

Huang JQ, Chen GM and Chen BW. 1984. Preliminary analysis of the Tethys-Himalayan tectonic domain. Acta Geologica Sinica, 58(1): 1-17 (in Chinese with English abstract)

Huang XP, Li C and Zhai QG. 2007. Geochemistry and tectonic settings of Indosinian granites in the Mayêr Kangri area, central Qiangtang, Tibet, China. Geological Bulletin of China, 26(12): 1646-1653 (in Chinese with English abstract)

Kapp P, Yin A, Manning CE, Harrison TM, Taylor MH and Ding L. 2003. Tectonic evolution of the Early Mesozoic blueschist-bearing Qiangtang metamorphic belt, central Tibet. Tectonics, 22(4): 1043, doi: 10.1029/2002TC001383

Kawamoto T. 1992. Dusty and honey comb plagioclase: Indicators of processes in the Uchino stratified magma chamber, lzu Peninsula, Japan. Journal of Volcanology and Geothermal Research, 49(3-4): 191-208

Li C. 1987. The Longmucuo-Shuanghu-Lanchangjiang plate suture and the north boundary of distribution of Gondwana facies Permian-Carboniferous System in northern Xizang, China. Journal of Changchun University of Earth Science, 17(2): 155-166 (in Chinese with English abstract)

Li C, Zhai QG, Dong YS and Huang XP. 2006a. Discovery of geclogite and its significance from the Qiangtang area, central Tibet. Chinese Science Bulletin, 51(9): 1095-1100

Li C, Huang XP, Zhai QG, Zhu TX, Yu YS, Wang GH and Zeng QG. 2006b. The Longmu Co-Shuanghu-Jitang plate suture and the northern boundary of Gondwanaland in the Qinghai-Tibet Plateau. Earth Science Frontiers, 13(4): 136-147 (in Chinese with English abstract)

Li C, Zhai QG, Dong YS, Zeng QG and Huang XP. 2007a. Longmu Co-Shanghu Plate suture in the Qinghai-Tibet Plateau and records of the evolution of the Paleo-Tethyan ocean in the Qiangtang area, Tibet, China. Geological Bulletin of China, 26(1): 13-21 (in Chinese with English abstract)

Li C, Zhai QG, Chen W, Dong YS and Yu JJ. 2007b. Geochronology evidence of the closure of Longmu Co-Shuanghu suture, Qinghai-Xiznag Plateau: Ar-Ar and zircon SHRIMP geochronology from ophiolite and rhyolite in Guoganjianian. Acta Pertrologica Sinica, 23(5): 911-918 (in Chinese with English abstract)

Li C. 2008. A review for 20 years’study of the Longmu Co-Shuanghu-Lancang River Suture Zone in the Qinghai-Xizang (Tibet) Plateau. Geological Review, 54(1): 105-119 (in Chinese with English abstract)

Li C, Zhai QG, Dong YS, Jiang GW, Xie CM, Wu YW and Wang M. 2008. The ocean crust in northern Gondwana Land: The evidence from Early Paleozoic ophiolite in central Qiangtang, Qinghai-Tibet Plateau. Geological Bulletin of China, 27(10): 1605-1612 (in Chinese with English abstract)

Li C, Zhai GY, Wang LQ, Yin FG and Mao XC. 2009. An important window for understanding the Qinghai-Tibet Plateau: A review on research progress in recent years of Qiangtang area, Tibet, China. Geological Bulletin of China, 28(9): 1169-1177 (in Chinese with English abstract)

Li XH, Li ZX, Li WX, Liu Y, Yuan C, Wei GJ and Qi CS. 2007. U-Pb zircon, geochemical and Sr-Nd-Hf isotopic constraints on age and origin of Jurassic I- and A-type granites from central Guangdong, SE China: A major igneous event in response to foundering of a subducted flat-slab? Lithos, 96(1-2): 186-204

Li YJ, Wu HR, Li HS and Sun DL. 1997. Dscovery of radioarians in the Amugang and Chasang groups and Lugu Formation in northern Tibet and some related geological problems. Geological Review, 43(3): 250-256 (in Chinese with English abstract)

Liegeois LP. 1998. Preface-ome words on the post-collisional magmatism. Lithos, 45: 15-17

Maniar PD and Piccoli PM. 1989. Tectonic discrimination of granitoids. Geological Society of America Bulletin, 101: 635-643

Mo XX, Luo ZH, Xiao QH, Yu XH, Liu CD, Zhao ZD and Zhou S. 2002. Evidence of magma mixing in granitoids plutons and the way of investgation. In: Xiao QH, Deng JF, Ma DQetal. (eds.). The way of investigation on Granitoids. Beijing: Geological Publishing House, 53-57 (in Chinese with English abstract)

Pan GT, Wang LQ and Zhu DC. 2004a. Thoughts on some important scientific problems in regional geological survey of the Qinghai-Tibet Plateau. Geological Bulletin of China, 23(1): 12-19 (in Chinese with English abstract)

Pan GT, Zhu DC, Wang LQ, Liao ZL, Gen QR and Jiang XS. 2004b. Bangong Lake-Nu River suture zone-the northern boundary of Gondwanaland: Evidence from geology and geophysics. Earth Science Frontiers, 11(4): 371-382 (in Chinese with English abstract)

Pearce J. 1996. Sourees and settings of granitic rocks. Episodes, 19(4): 120-125

Pullen A, Kapp P, Cehrels GE, Vervoort JD and Ding L. 2008. Triassic continental subduction in central Tibet and Mediterranean-style closure of the Paleo-Tethys Ocean. Geology, 36(5): 351-354

Rickwood PC. 1989. Boundary lines within petrologic diagrams which use oxides of minor and minor elements. Lithos, 22(4): 247-263

Rudnick RL and Fountain DM. 1995. Nature and composition of the continental crust: A lower crustal perspective. Reviews of Geophysics, 33(3): 267-309

Rudnick RL and Gao S. 2003. Composition of the continental crust. In: Rudnick RL (ed.). The Crust. Treatise in Geochemistry, 3: 1-64

Shi JR, Dong YS and Wang SY. 2009. Dating and tectonic significance of plagiogranite from Guoganjianian Mountain, central Qiangtang, northern Tibet, China. Geological Bulletin of China, 28(9): 1236-1243 (in Chinese with English abstract)

Streckeisen A and Le Maitre RW. 1979. A chemical approximation to the modal QAPF classification of the igneous rocks. Neues Jahrbuch für Mineralogie Abhandlungen, 136: 169-206

Sun SS and McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalt: Implications for mantle composition and processes. In: Saunders AD and Norry MJ (eds.). Magmatism in the Ocean Basins. London Geological Society Special Publication, 42: 313-345

van Hunen J and Allen MB. 2011. Continental collision and slab break-off: A comparison of 3-D numerical models with observations. Earth and Planetary Science Letters, 302(1-2): 27-37

Wang Q, Wyman DA, Xu JF, Wan YS, Li CF, Zi F, Jiang ZQ, Qiu HN, Chu ZY, Zhao ZH and Dong YH. 2008. Triassic Nb-enriched basalts, magnesian andesites, and adakites of the Qiangtang terrane (Central Tibet): Evidence for metasomatism by slab-derived melts in the mantle wedge. Contributions to Mineralogy and Petrology, 155(4): 473-490

Watson EB and Harrison TM. 1983. Zircon saturation revisited: Temperature and composition effects in a variety of crustal magma types. Earth and Planetary Science Letters, 64(2): 295-304

Whalen JB, Currie KL and Chappell BW. 1987. A-type granites: Geochemical characteristics, discrimination and petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407-419

White AJR. 1979. Sources of granite magmas. Geological Society of America Abstract with Programs, 11: 539

Wu YB and Zheng YF. 2004. Genesis of zircon and its constraints on interpretation of U-Pb age. Chinese Science Bulletin, 49(15): 1544-1569

Wu FY, Li XH, Yang JH and Zheng YH. 2007. Discussions on the Petrogenesis of granites. Aeta Petrologica Sinica, 23(6): 1217-1238 (in Chinese with English abstract)

Zhai QG, Li C, Chen LR and Zhang YC. 2004. Geological features of Permian ophiolite in the Jiaomuri area, Qiangtang, Tibet, and its tectonic significance. Geological Bulletin of China, 23(12): 1228-1230 (in Chinese with English abstract)

Zhai QG and Li C. 2007. Zircon SHRIMP dating of volcanic rock from the Nadigangri Formation in Juhuashan, Qiangtang, northern Tibet and its geological significance. Acta Geologica Sinica, 81(6): 795-800 (in Chinese with English abstract)

Zhai QG, Li C, Dong YS, Wang J, Chen W and Zhang Y. 2009. Petrology, mineralogy and40Ar/39Ar chronology for Rongma blueschist from central Qiangtang, northern Tibet. Acta Petrologica Sinica, 25(9): 2281-2288 (in Chinese with English abstract)

Zhai QG, Zhang RY, Jahn BM, Li C, Song SG and Wang J. 2011a. Triassic eclogites from central Qiangtang, northern Tibet, China: Petrology, geochronology and metamorphic P-T path. Lithos, 125(1-2): 173-189

Zhai QG, Jahn BM, Zhang RY, Wang J and Su L. 2011b. Triassic subduction of the Paleo-Tethys in northern Tibet, China: Evidence from the geochemical and isotopic characteristics of eclogites and blueschists of the Qiangtang Block. Journal of Asian Earth Sciences, 42(6): 1356-1370

Zhai QG, Jahn BM, Wang J, Su L, Mo XX, Wang KL, Tang SH and Lee HY. 2013a. The Carboniferous ophiolite in the middle of the Qiangtang terrane, Northern Tibet: SHRIMP U-Pb dating, geochemical and Sr-Nd-Hf isotopic characteristics. Lithos, 168-169: 186-199

Zhai QG, Jahn BM, Su L, Wang J, Mo XX, Lee HY. Wang KL and Tang SH. 2013b. Triassic arc magmatism in the Qiangtang area, northern Tibet: Zircon U-Pb ages, geochemical and Sr-Nd-Hf isotopic characteristics, and tectonic implications. Journal of Asian Earth Sciences, 63: 162-178

Zhang Q, Jin WJ, Li CD and Wang YL. 2010. On the classification of granitic rocks based on whole-rock Sr and Yb concentrations III: Practice. Acta Petrologica Sinica, 26(12): 3431-3455 (in Chinese with English abstract)

Zhang XZ, Dong YS, Shi JR and Wang SY. 2010a. Formation and significance of jadeite garnet mica schist newly discovered in Longmu Co-Shuanghu suture zone, central Qiangtang. Earth Science Frontiers, 17(1): 93-103 (in Chinese with English abstract.

Zhang XZ, Dong YS, Li C, Chen W, Shi JR, Zhang Y and Wang SY. 2010b. Identification of the elcogites in different ages and their tectonic significance in Central Qiangtang, Tibetan Plateau: Constraints from40Ar-39Ar isotope chronology. Geological Bulletin of China, 29(12): 1815-1824(in Chinese with English abstract)

Zhang XZ, Dong YS, Li C, Shi JR and Wang SY. 2010c. Geochemistry and tectonic significance of eclogites in Central Qiangtang, Tibetan Plateau. Geological Bulletin of China, 29(12): 1804-1814 (in Chinese with English abstract)

Zhang KJ, Tang XC, Wang Y and Zhang YX. 2011. Geochronology, geochemistry, and Nd isotopes of Early Mesozoic bimodal volcanism in northern Tibet, western China: Constraints on the exhumation of the central Qiangtang metamorphic belt. Lithos, 121(1-4): 167-175

Zeng LS, Gao LE, Xie KJ and Liu J. 2011. Mid-Eocene high Sr/Y granites in the Northern Himalayan gneiss domes: Melting thickened lower continental crust. Earth and Planetary Science Letters, 303(3-4): 251-266

Zhou XM, Yao YP and Xu XS. 1992. Quenched enclaves in Dajushan granitoid and their genesis, East Zhejiang, China. Acta Petrologica Sinica, 8(3): 234-242 (in Chinese with English abstract)

Zhu TX, Zhang QY, Dong H, Wang YJ, Yu YS and Feng XT. 2006. Discovery of the Late Devonian and Late Permian radiolarian cherts in tectonic mélanges in the Cêdo Caka area, Shuanghu, northern Tibet, China. Geological Bulletin of China, 25(12): 1413-1418 (in Chinese with English abstract)

Zhu DC, Pan GT, Chun SL, Liao ZL, Wang LQ and Li GM. 2008. SHRIMP zircon age and geochemical constraints on the origin of Early Jurassic volcanic rocks from the Yeba Formation, southern Gangdese in South Tibet. International Geology Review, 50(5): 442-471

Zhu DC, Mo XX, Wang LQ, Zhao ZD, Niu YL, Zhou CY and Yang YH. 2009. Petrogenesis of highly fractionated I-type granites in the Zayu area of eastern Gangdese, Tibet: Constraints from zircon U-Pb geochronology, geochemistry and Sr-Nd-Hf isotopes. Science in China (Series D), 52(9): 1223-1239

Zhu DC, Zhao ZD, Niu YL, Dilek Y, Hou ZQ and Mo XX. 2013. The origin and Pre-Cenozoic evolution of the Tibetan Plateau. Gondwana Research, 23(4): 1429-1454

附中文参考文献

鲍佩声, 肖序常, 王军, 李才, 胡克. 1999. 西藏中北部双湖地区蓝片岩带及其构造涵义. 地质学报, 73(4): 302-314

陈莉, 徐军, 苏犁. 2005. 场发射环境扫描电子显微镜上阴极荧光谱仪特点及其在锆石研究中的应用. 自然科学进展, 15(11): 1403-1408

邓万明, 尹集祥, 呙中平. 1996. 羌塘茶布-双湖地区基性超基性岩和火山岩研究. 中国科学(D辑), 26(4): 296-301

邓希光, 丁林, 刘小汉, An Y, Kapp PA, Murphy MA, Manning CE. 2000. 藏北羌塘中部冈玛日—桃形错蓝片岩的发现. 地质科学, 35(2): 227-232

董永胜, 李才, 施建荣, 王生云. 2009. 羌塘中部高压变质带的退变质作用及其构造侵位. 岩石学报, 25(9): 2303-2309

付强, 葛文胜, 温长顺, 蔡克勤, 李世富, 张志伟, 李小飞. 2011. 广西米场花岗岩及其暗色微粒包体的地球化学特征和成因分析. 地球学报, 32(3): 293-303

黄汲清, 陈国铭, 陈炳蔚. 1984. 特提斯-喜马拉雅构造域初步分析. 地质学报, 58(1): 1-17

胡培远, 李才, 杨韩涛, 张海波, 于红. 2010. 青藏高原羌塘中部果干加年山一带晚三叠世花岗岩的特征、锆石定年及其构造意义. 地质通报, 29(12): 1825-1832

胡培远,李才,解超明,吴彦旺,王明,苏犁. 2013. 藏北羌塘中部桃形湖蛇绿岩中钠长花岗岩——古特提斯洋壳消减的证据. 岩石学报, 29(12): 4404-4414

黄小鹏, 李才, 翟庆国. 2007. 西藏羌塘中部玛依岗日地区印支期花岗岩的地球化学特征及其形成环境. 地质通报, 29(12): 1646-1653

李才. 1987. 龙木错-双湖-澜沧江板块缝合带与石炭二叠纪冈瓦纳北界. 长春地质学院学报, 17(2): 155-166

李才, 翟庆国, 董永胜, 黄小鹏. 2006a. 青藏高原羌塘中部发现榴辉岩及其意义. 科学通报, 25(1-2): 70-75

李才, 黄小鹏, 翟庆国, 朱同兴, 于远山, 王根厚, 曾庆高. 2006b. 龙木错-双湖-吉塘板块缝合带与青藏高原冈瓦纳北界. 地学前缘, 13(4): 136-147

李才, 翟庆国, 董永胜, 曾庆高, 黄小鹏. 2007a. 青藏高原龙木错-双湖板块缝合带与羌塘古特提斯洋演化记录. 地质通报, 26(1): 13-21

李才, 翟庆国, 陈文, 董永胜, 于介江. 2007b. 青藏高原龙木错-双湖板块缝合带闭合的年代学证据——来自果干加年山蛇绿岩与流纹岩Ar-Ar和SHRIMP年龄制约. 岩石学报, 23(5): 911-918

李才. 2008. 青藏高原龙木错-双湖-澜沧江板块缝合带研究二十年. 地质论评, 54(1): 105-119

李才, 翟庆国, 董永胜, 蒋光武, 解超明, 吴彦旺, 王明. 2008. 冈瓦纳大陆北缘早期洋壳信息——来自青藏高原羌塘中部早古生代蛇绿岩依据. 地质通报, 27(10): 1605-1612

李才, 翟刚毅, 王立全, 尹福光, 毛晓长. 2009. 认识青藏高原的重要窗口——羌塘地区近年来研究进展评述(代序). 地质通报, 28(9): 1169-1177

李曰俊, 吴浩若, 李红生, 孙东立. 1997. 藏北阿木岗群、查桑群和鲁谷组放射虫的发现及有关问题讨论. 地质论评, 43(3): 250-256

莫宣学, 罗照华, 肖庆辉, 喻学惠, 刘成东, 赵志丹, 周肃. 2002. 花岗岩类岩石中岩浆混合作用的识别与研究方法. 见: 肖庆辉, 邓晋福, 马大铨等主编. 花岗岩研究思维与方法. 北京: 地质出版社: 53-70

潘桂棠, 王立全, 朱第成. 2004a. 青藏高原区域地质调查中几个重大科学问题的思考. 地质通报, 23(1): 12-19

潘桂棠, 朱弟成, 王立全, 廖忠礼, 耿全如, 江新胜. 2004b. 班公湖-怒江缝合带作为冈瓦纳大陆北界的地质地球物理证据. 地学前缘, 11(4): 371-382.

施建荣, 董永胜, 王生云. 2009. 藏北羌塘中部果干加年山斜长花岗岩定年及其构造意义. 地质通报, 28(9): 1236-1243

吴元保, 郑永飞. 2004. 锆石成因矿物学研究及其对U-Pb年龄解释的制约. 科学通报, 49(16): 1589-1604

吴福元, 李献华, 杨进辉, 郑永飞. 2007. 花岗岩成因研究的若干问题. 岩石学报, 23(6): 1217-1238

翟庆国, 李才, 程立人, 张以春. 2004. 西藏羌塘角木日地区二叠纪蛇绿岩的地质特征及意义. 地质通报, 23(12): 1228-1230.

翟庆国, 李才. 2007. 藏北羌塘菊花山那底岗日组火山岩锆石SHRIMP定年及其意义. 地质学报, 81(6): 795-800

翟庆国, 李才, 董永胜, 王军, 陈文, 张彦. 2009. 藏北羌塘中部绒玛地区蓝片岩岩石学、矿物学和40Ar/39Ar年代学. 岩石学报, 25(9): 2281-2288

张旗, 金惟俊, 李承东, 王元龙. 2010. 三论花岗岩按照Sr-Yb的分类: 应用. 岩石学报, 26(12): 3431-3455

张修政, 董永胜, 施建荣, 王生云. 2010a. 羌塘中部龙木错-双湖缝合带中硬玉石榴石二云母片岩的成因及意义. 地学前缘, 17(1): 93-103

张修政, 董永胜, 李才, 陈文, 施建荣, 张彦, 王生云. 2010b. 青藏高原羌塘中部不同时代榴辉岩的识别及其意义——来自榴辉岩及其围岩40Ar-39Ar年代学的证据. 地质通报, 29(12): 1815-1824

张修政, 董永胜, 李才, 施建荣, 王生云. 2010c. 青藏高原羌塘中部榴辉岩地球化学特征及其大地构造意义. 地质通报, 29(12): 1804-1814

朱同兴, 张启跃, 董瀚, 王玉净, 于远山, 冯心涛. 2006. 藏北双湖地区才多茶卡一带构造混杂岩中新发现晚泥盆世和晚二叠世放射虫硅质岩. 地质通报, 25(12): 1413-1418

周新民, 姚玉鹏, 徐夕生. 1992. 浙东大衢山花岗岩中淬冷包体及其成因机制. 岩石学报, 8(3): 234-242

猜你喜欢

包体羌塘锆石
锆石的成因类型及其地质应用
一种新型多功能电弧炉浇铸装置
元素录井在西藏北羌塘盆地侏罗系地层岩性定量识别中的应用
常见的难熔包体矿物学特征分析
俄成功试射“锆石”高超音速巡航导弹
羌塘禁区
浅谈玛瑙中常见包体的特征及成因
西准噶尔乌尔禾早二叠世中基性岩墙群LA-ICP-MS锆石U-Pb测年及构造意义
羌塘盆地角木茶卡地区中二叠统储集层流体包裹体及油气成藏特征
地球深部包体与成矿关系——一个有意义的研究方向