APP下载

电气化铁路牵引变电所的主接线与变压器设计

2013-04-29唐明艳

科技创新与应用 2013年8期
关键词:铁路

唐明艳

摘 要:牵引变电所是电气化铁路牵引供电系统的心脏,它的主要任务是将电力系统输送来的三相高压电变化成适合电力机车使用的电能。而电气主接线反映牵引变电所设施的主要电气设备以及这些设备的规格、型号、技术参数以及在电气上是如何连接的,高压侧有几回进线、几台牵引变压器,有几回接触网馈电线。通过电气主接线可以了解牵引变电所等设施的规模大小、设备情况。

关键词:牵引变电所;铁路;牵引变压器

1 牵引变电所主结线的选择

牵引变电气主接线是变电所设计的首要部分,也是构成电力系统的重要环节。主接线的确定与电力系统整体及变电所本身运行的可靠性,灵活性和经济性是密切相关的,而且对电气设备的选择,配电装置布置,继电保护和控制方式的拟定有较大影响。因此必须合理的确定主接线。

电气主结线应满足的基本要求

①首先保证电力牵引负荷,运输用动力,信号负荷安全,可靠供电的需要和电能质量。

②具有必要的运行灵活性,使检修维护安全方便。

③应有较好的经济性,力求减小投资和运行费用。

④应力求接线简捷明了,并有发展和扩建的余地。

1.1 高压侧电气主结线的基本形式

1.1.1 单母线接线

如图1-1所示,单母线接线的的特点是整个的配电装置只有一组母线,每个电源线和引出线都经过开关电器接到同一组母线上。同一回路中串接的隔离开关和断路器,在运行操作时,必须严格遵守以下操作顺序:对馈线送电时必须先和1QS和2QS在投入1QF;如欲停止对其供电必须先断开1QF然后断开1QS和2QS。

单母线结线的特点是:(1)结线简单、设备少、配电装置费用低、经济性好并能满足一定的可靠性。(2)每回路断路器切断负荷电流和故障电流。检修任一回路及其断路器时,仅该回路停电,其他回路不受影响。(3) 检修母线和与母线相连的隔离开关时,将造成全部停电。母线发生故障时,将是全部电源断开,待修复后才能恢复供电。

这种结线方式的缺点是母线故障时、检修设备和母线时要造成停电;适用范围:适用于对可靠性要求不高的10~35kV地区负荷。

1.1.2 单母线分段结线

图1-2为用断路器分段的单母线分段结线图。分段断路器MD正常时闭合,是两段母线并列运行,电源回路和同一负荷的馈电回路应交错连接在不同的分段母线上。

这种结线方式的特点是:

(1)分段母线检修时将造成该段母线上回路停电。

(2)进线上断路器检修时造成该进线停电。

适用范围:广泛应用于10~35kV地区负荷、城市电牵引各种变电所和110kV电源进线回路较少的110kV结线系统。

(3)采用桥形结线

当只有两条电源回路和两台主变压器时,常在电源线间用横向母线将它们连接起来,即构成桥型结线。桥型结线按中间横向桥接母线的位置不同,分为内桥形和外桥形两种,如图1-3所示。前者的连接母线靠近变压器侧,而后者则连接在靠近线路侧。

内桥形结线的线断路器分别连接在两回电源线路上,因而线路退出工作或投入运行都比较方便。桥形母线上的断路器QF在正常状态下合闸运行,1QS和2QS是断开的。当线路1SL发上故障时,1QS和2QS合闸,故障线路的断路器1QF跳闸,其他三个元件(另一线路和两台主变压器)仍可继续工作。内桥结线当任一线路故障或检修时不影响变压器的并列工作。由于线路故障远比变压器故障多,故这种界限在牵引变电所获得了较广泛的应用。当内桥结线的两回电源线路接入系统的环形电网中,并有系统功率穿越桥接母线时,桥断路器(QF)的检修或故障将造成环网断开。为避免这一缺陷,可在线路短路器外侧安装一组跨条,如图中的虚线所示,正常工作时隔离开关将跨条断开,安装两组隔离开关的目的是便于它们轮流停电检修。

图中外桥形结线的特点与内桥刚好相反,当变压器发生故障或运行中需要断开时,只要断开它们前面的断路器1QF或2QF,而不影响线路的正常工作。但线路故障或检修时,将是与该线路连接的变压器短时中断运行,须经转换操作后才能恢复工作。因而外侨形结线适用于电源线路较短、负荷不稳定、变压器需要经常切换(例如两台主变中一台要经常断开或投入)的场合,也可用在有穿越功率通过的与唤醒电网连接的变电所中。

桥型结线能满足牵引变电所的可靠性,具有一定的运行灵活性,使用电器少,建造费用低,在结构上便于发展成单母线或具有旁路母线得到那母线结线。即在初期按桥形结线,将来有可能增加电源线路数时再扩展为其他结线形式。

1.2 牵引负荷侧电气结线特点

牵引负荷是牵引变电所基本的重要负荷,上述电气主结线基本形式多数对牵引负荷侧电气结线也是适用的。但考虑牵引负荷及牵引供电系统的下列特点,有针对性的在电气结线上采取有效措施,以保证供电系统的可靠性和运行灵活性。

1.2.1 由于接触网没有备用,而接触网故障几率比一般架空输电线路更为频繁,因此牵引负荷侧电气结线对接触网馈线断路器的类型与备用方式较一般电力负荷要求更高。

1.2.2 牵引侧电气结线于牵引变压器的类型(单相或三相)和接线方式以及主变压器的备用方式有关,在采用移动式变压器做备用的情况下,与移动变压器接入电路的方式有关。

1.2.3 与馈线数目、电气化铁路年运量、单线或复线,以及变电所附近铁路其他设施如大型枢纽站、电力机车段和地区负荷等的供电要求有关。

对于牵引侧母线本身,由于线路简单,引至馈线配电间隔为单相母线,实践证明很少发生故障,必须检修母线和母线上隔离开关时,可由临近变电所越区供电以代替被检修的母线或母线分段。

为合理解决馈线断路器的备用方式,牵引负荷侧电气结线有下列几种形式:①每路馈线设有备用断路器的单母线结线,如图所示,考虑手车式气体断路器(或真空式)产品接触插头的互换性较差,不设移动备用,工作断路器检修时,即由备用断路器代替,这种方式在馈线数量较少时采用,操作转换较方便,但投资较大。②每两路馈线设一公共备用断路器BQF,通过隔离开关的转换,可使BQF代替任一馈线短路器,并达到按单母线分段运行的作用,如图所示,这种结线的缺点是隔离开关的转换太频繁。③单母线分段带旁路母线的结线,考虑到馈线断路器检修时备用的需要,或者在某些情况下由于电力系统的缘故不允许两回电源线供电的变压器在牵引负荷侧并联运行,母线分段隔离开关经常处于断开位置,故需在每个分段母线上各设一台旁路断路器1BQF、2BQF,分别作为每段母线上连接的馈线断路器的备用。这种结线适用于馈线数目较多的复线,或靠近大型枢纽站向几个方向电气化铁路供电的单线牵引变电所。

牵引变压器的备用方式有移动备用和固定备用两种。前者是整个供电段管辖的几个牵引变电所设置一台或数台可以动的公共备用变压器,供运行中的牵引变压器检修或故障时使用;后者是在每个牵引变电所安装固定的备用变压器,或者牵引变压器台数不变、而增大变压器容量,使在正常情况下一台工作,一台备用(称为固定全备用)。根据技术经济的全面比较,在一般牵引变电所设有或不设专用铁路岔线作为变压器搬运、检修的情况下,对于三相牵引变压器采用固定全备用的方式都是有利和可取的。特殊情况下需作具体比较。对于单相或V形接线的牵引变电所,一般增加一台固定备用变压器,在牵引负荷侧电气结线只需增加一路电源进线及断路器与配电间隔,比较简单。而采用移动备用变压器的情况下,对单相或V-V形接线的单相变电所牵引侧电气结线的构成,将产生较大影响。

2 牵引变电所变压器的选择

2.1 选择原则

2.1.1 为保证供电的可靠性,在变电所中,一般装设两台主变压器。

2.1.2 为满足运行的灵敏性和可靠性,如有重要负荷的变电所,应选择两台三绕组变压器,选用三绕组变压器占地面积小,运行及维护工作量少,价格低于四台双绕组变压器,因此三绕组变压器的选择大大优于四台双绕组变压器。

2.1.3 装有两台主变压器的变电所,其中一台事故后其余主变压器的容量应保证该所全部负荷的70%以上,并保证用户的一级和二级全部负荷的供电。

2.2 牵引变压器的接线方式和台数的确定

考虑到该变电所为三相牵引变电所,与系统联系紧密,且在一次主结线中已考虑采用内桥结线方式,故选用采用三绕组变压器,高压侧为Y形接线,中、低压侧为△连接。由于牵引负荷属于一级负荷,并考虑备用,所以选用两台主变压器,一台自用电变压器。通过本章的学习加深了对牵引变压器的基本知识的理解,对设计和以后的实际工程设计及研究工作奠定了理论基础。

2.3 牵引变压器安装容量的确定和选择

当牵引变压器的计算容量和校核容量确定以后,选择两者中较大者,并按采用的备用方式,牵引变压器的系列产品(额定容量优先系数为R10系列),以及有否地区动力负荷等诸因素,即可确定牵引变压器的安装容量。

例如:单线电气化铁路近期年运量为1700万吨/年,牵引定数G为2100吨/列,γ净取0.705,波动系数K1取1.2,储备系数K2取1.2,非平行列车运行图区间通过能力N非=42对/日。

2.4 变压器备用方式的选择

牵引变压器在检修或发生故障时,都需要有备用变压器投入,以确保电气化铁路的正常运输。在大运量的双线区段,牵引变压器一旦出现故障,应尽快投入备用变压器,显得比单线区段要求更高。备用变压器投入的快供,将影响到恢复正常供电的时间,并且与采用的备用方式有关。备用方式的选择,必须从实际的电气化铁路线路、运量、牵引变电所的规模、选址、供电方式及外部条件(如有无公路)等因素,综合考虑比较后确定。我国的电气化铁路牵引变压器备用方式有以下两种。

2.4.1 移动备用

采用移动变压器作为备用的方式,称为移动备用。采用移动备用方式的电气化区段,每个牵引变电所装设两台牵引变压器,正常时两台并联运行。所内设有铁路专用岔线。备用变压器安放在移动变压器车上,停放于适中位置的牵引变电所内或供电段段部,以便于需要作为备用变压器投入时,缩短运输时间。在供电段所辖的牵引变电所不超过5-8个的情况下,设一台移动变压器,其额定容量应与所辖变电所中的最大牵引变压器额定容量相同。

当牵引变压器需要检修时,可将移动变压器按计划调入牵引变电所。但在牵引变压器发生故障时,移动变压器的调运和投入约需数小时。此间,靠一台牵引变压器供电往往不能保证铁路正常运输。这种影响,在单线区段或运量小的双线区段可很快恢复正常;但在大运量的双线区段须予以重视。可按牵引变压器一台故障停电后由另一台单独运行,允许超载30%,并持续4小时,而能符合计算容量(满足正常运输)的要求进行检算。

采用移动备用方式,除上述影响外,还需要修建铁路专用岔线。这将导致牵引变电所选址困难、场地面积和土方量增加,相应加大投资。不仅如此,移动变压器车辆进厂检修时,修要把备用变压器从车上拆卸吊下来;车辆修好出厂后,又要把备用变压器吊上车安装好。这项工作十分麻烦和困难,非常费时费力费钱。采用移动备用方式的优点是牵引变压器容量较省。因此,移动备用方式可用于沿线无公路区段和单线区段。

2.4.2 固定备用

采用加大牵引变压器容量或增加台数作为备用的方式,称为固定备用。采用固定备用方式的电气化区段,每个牵引变电所装设两台牵引变压器,一台运行,一台备用。每台牵引变压器容量应能承担全所最大负荷,满足铁路正常运输的要求。

采用固定备用方式的优点是:其投入快速方便,可确保铁路正常运输,又可不修建铁路专用岔线,牵引变电所选址方便、灵活,场地面积较小,土方量较少,电气主接线较简单。其缺点是:增加了牵引变压器的安装容量,变电所内设备检修业务要靠公路运输。因此,固定备用方式适用于沿线有公路条件的大运量区段。

在当前进行电气化铁路牵引供电系统的设计中,牵引变压器的备用方式不再考虑移动备用方式。

3 结束语

电气主结线是牵引变电所的主体部分,本设计高压侧采用内桥形结线,牵引负荷侧采用单母线结线的方式。并确定牵引变压器的结线形式:采用三绕组变压器,高压侧为Y形接线,中、低压侧为△连接。由于牵引负荷属于一级负荷,并考虑备用,所以选用两台主变压器,一台自用电变压器

参考文献

[1]贺威俊,高仕斌等.电力牵引供变电技术[M].西南交通大学出版社,2007.

[2]谭秀炳.交流电气化铁道牵引供电系统(第三版).西南交通大学出版社,2006.

[3]马永翔,王世荣.电力系统继电保护.北京大学出版社,2006.

[4]刘介才.工厂供电(第四版).机械工业出版社,2009.

[5]刘介才等.工厂供电简明设计手册[M].北京:机械工业出版社,1993.

[6]刘介才等.工厂供电设计指导[N].北京:机械工业出版社,1998.

[7]牟道槐等.发电厂变电站电气部分[M].重庆大学出版社,1996-4.

[8]丁毓山等.中小型变电所实用设计手册[M].中国水利电力出版,2000.6.

[9]蒲如兰.发电厂(变电所)电气设备部分指导参考资料[N],1996-6.

[10]发电厂及变电站二次部分[M].水利电力出版社,2004-08.

[11]火力发电厂、变电所二次接线设计技术规定[M].水利电力出版社,1998.

[12]Schneider.DC-Substations with Four Winding Rectifier Double-tire Transformers Instead of the Combination of Three Winding Rectifier Transformers with Interphase Transform,SIEMENS Technical Report,Frankfort, April,1995.

猜你喜欢

铁路
沿着中老铁路一路向南
一路欢声一路歌 中老铁路看点多
铁路通信承载网常用接口协议转换应用研究
基于AutoLISP的铁路信号电缆统计软件设计
铁路机动车管理信息系统
《铁路通信设计规范》TB10006-2016解读(二)——承载网
铁路通信线路维护体制改革探索与实践
铁路青年的搞洪时刻
近代铁路土地的征购及其实现——以萍乡铁路为例
无人机在铁路工程建设中的应用与思考