APP下载

激肽-激肽释放酶系统在心血管疾病发展中的重要作用

2013-03-23杨帆姚玉宇马根山

东南大学学报(医学版) 2013年5期
关键词:激肽原祖细胞左室

杨帆,姚玉宇,马根山

(1.东南大学医学院,江苏 南京 210009;2.东南大学附属中大医院心内科,江苏 南京 210009)

据统计,2010年心脏疾病的死亡率在我国城市及农村人口中分别占据第二、第三位。如何干预疾病的发展和预后显得尤为重要。激肽-激肽释放酶系统(KKS)参与了心血管疾病的诸多环节,并在多种病理生理过程中发挥了重要作用。作者对KKS的作用机制及其在高血压、心力衰竭、左室肥厚、心肌缺血、心肌病、脑卒中等发展中的作用作一综述。

1 KKS

KKS是一个复杂的内源性多酶系统,调控心血管、神经系统、肾脏等的生理功能,与心脏病、脑血管疾病、肾病、炎症反应、肿瘤等疾病的发生有密切关系。KKS包括激肽释放酶原、激肽释放酶、激肽原、激肽和激肽受体等。组织中存在的激肽释放酶原活化后成为激肽释放酶。激肽释放酶分为2种类型:组织激肽释放酶和血浆激肽释放酶,二者在相对分子质量、底物特异性、免疫生物学特性、基因结构以及所释放的激肽类型等方面均存在明显差异。而激肽释放酶可以从高分子量及低分子量的激肽原中释放激肽[1]。组织激肽释放酶(TK)是一种丝氨酸蛋白酶,它可以将低分子量的激肽原加工为具有生物活性的激肽和缓激肽[2]。激肽具有血管活性,它可以触发KKS的瀑布级联反应。激肽在血管内皮与缓激肽受体结合,包括血管壁的平滑肌细胞及活化一氧化氮(NO)、cAMP及环前列素cAMP的信号通路,从而触发瀑布式的生物效应,其效应包括血管舒张、平滑肌收缩舒张,抑制细胞凋亡、细胞炎症、细胞肥大、细胞纤维化以及促进血管生成和神经发生等[3-4]。

血浆中T激肽原被认为是炎症急性期的反应物[5]。在大鼠中,这种激肽原通过T激肽释放酶的酶促反应释放T激肽[6]。多种器官诸如肾脏、心脏及滑液组织中都有激肽释放酶[7-1]。这种激肽释放酶的分子量、理化性质、生物学及免疫作用方面均不同于其他[12]。组织激肽释放酶在细胞内合成其前体并通过氨基末端多肽裂解后成为活化型[13],活化的组织激肽释放酶作用于低分子量激肽原(LMWK)并释放赖氨酰缓激肽(kallidin)[14]。循环中的组织激肽释放酶是非活化型的,被称为前激肽释放酶或 Fletcher因子[15]。其通过活化性的接触因子(Ⅻa)转化为活化型的激肽释放酶[16]。另外,血浆激肽释放酶能够通过正反馈调节将非活化的Ⅻ因子转换成Ⅻa因子。血浆前激肽释放酶和高分子量激肽原(HMWK)结合为复合体[17]。Ⅻa因子和Ⅺ因子与高分子量激肽原(HMWK)成为黏着形式共同循环[18],从而Ⅺ因子被转化为Ⅺa因子参与固有的凝集瀑布反应[19]。免疫学反应中,组织蛋白多糖和肥大细胞肝素钠可能担当了最初接触因子(Hageman factor)活化的起始物表层的角色,这也许提示激肽的形成可能与炎症期凝血酶的形成同时进行。因为非活化的血浆组织激肽释放酶可被凝血剂接触因子激活[12]。

2 KKS在心脑血管疾病发展中的作用

通过转基因方法活体内持续提供激肽释放酶后,组织激肽释放酶-激肽显示其具有保护心血管系统、肾脏、神经系统的作用,在高血压、糖尿病中具有抑制氧化应激的作用[20-21]。而激肽释放酶基因递送及蛋白输注等方法无需控制血压即可改善心脏、肾脏及神经系统功能[22]。此外TK的超表达可以减弱高血压、糖尿病及肾脏病引起的靶器官损害[23]。

2.1 KKS与高血压病

高血压是心血管疾病发展的主要危险因素,可导致冠心病、充血性心力衰竭、外周血管疾病及肾脏病等[24]。有充分证据表明,KKS在高血压的发病机制中所起的作用[25]。缓激肽在血压调控中具有舒张血管、减少外周血管阻力以及肾脏的排钠等作用[26-27]。缓激肽注射入肾动脉即可通过增加肾脏血流起到利尿和尿钠排泄作用[28]。缓激肽的这些作用可促进PG在肾循环中的释放[29],KKS在高血压方面的作用已被Sharma等[30-31]阐明。高血压病患者及大鼠的尿激肽释放酶分泌明显减少,说明高血压时激肽释放酶分泌的减少是由激肽缺陷造成的。在一般高血压和恶性高血压的发病过程中都有激肽原及激肽增强因子的减少[32-34]。可以说KKS在高血压的病理生理过程中至关重要。缓激肽可以作用于血管紧张素转化酶,由于这种与RAS系统的关联,肾脏KKS可以排泄体内多余的钠,肾脏KKS受抑制则可导致钠潴留及高血压的发生[35-36]。因此,肾脏激肽释放酶样物质的活化有助于经肾脏排泄多余的钠,这也许有助于高血压病的治疗。同时Sharma等也已证明,转基因小鼠过量表达肾组织激肽释放酶可导致低血压,且导入组织激肽释放酶的抑制剂——抑肽酶可以纠正过量表达肾组织激肽释放酶的转基因的低血压小鼠的血压[37]。ACEI可作用于自发性高血压大鼠使其血压下降,而抑肽酶可抑制这种作用[38]。人们已计划将组织激肽释放酶基因递送至各种高血压模型如单纯高血压、心源性高血压、肾性及肾血管性高血压等[39]。这项研究表明了激肽释放酶基因治疗心血管疾病及肾脏疾病的前景。ACEI目前被广泛用于高血压病的治疗,而ACEI通过KKS也在降压作用之外发挥着其他心脏保护作用,其降压机制包括抑制激肽分解以及阻断血管紧张素Ⅱ的合成等[40-42]。而ACEI通过KKS,也在降压作用之外发挥着其他心脏保护作用。

2.2 KKS与心肌缺血

尽管已证实,局部和循环中的缓激肽可增加冠脉血流、改善心肌代谢,但激肽的心脏抗缺血方面作用尚未得到重视。众所周知,ACEI具有限制心室扩张、延缓临床症状进展以及降低死亡率的作用。这种获益是由于AngⅡ减少,使负荷降低所致[43]。另外,ACEI可通过防止激肽被酶解来发挥心脏保护作用[44]。此概念衍生出了诸多研究,证明了心脏局部存在KKS[7-8,45]。激肽与内皮的 B2受体结合释放 NO 及PG12,发挥血管舒张作用、抗缺血、抗增殖,并为心肌存储富于能量的磷酸盐和糖原[46]。激肽通过对抗AngⅡ导致的血管收缩来保持心血管系统的内稳态[47]。间接证据同样证实,KKS的抑制可导致心力衰竭。事实上,心衰患者的心脏微血管的激肽及NO生成减少[48]。有实验[49]证实,在狗模型中,通过使用特异性的B2受体抑制剂艾替班特Hoe140来选择性阻断其B2受体,可减少冠脉血流并增加左室末压最终导致充血性心力衰竭的发生。因此通过抑制心脏KKS可促进心衰的发展。另外,在心脏缺血缺氧时激肽持续释放[50-51];在缺血预适应及灌注方面发挥心脏保护作用[52-53];在狗冠脉内输注缓激肽可显著减少严重缺血诱发的心律失常的发生[50]。已进行的大鼠、狗及人的研究证实,激肽在缺血及心梗时释放,提示激肽可能在心梗时发挥心脏保护作用[54-57]。局部激肽释放增多可通过激活信号转导途径产生NO及PGI2来发挥心脏保护效应[58]。一项活体同代孪生野生型及TK基因缺陷型大鼠的实验结果表明,在缺血再灌注损伤、缺血预处理及ACEI预处理情况下,可证明TK在心肌缺血中充当了保护角色。缺血再灌注诱发的梗死面积相似;而缺血预处理情况下野生型大鼠的梗死面积减少了65%,TK基因缺乏型的大鼠减少40%;雷米普利处理也可使野生型大鼠的梗死面积减小29%,而这种作用在TK缺陷型的大鼠中则被完全抑制。若对野生型大鼠再次预处理,构造激肽B2受体缺陷的模型,再次置于大鼠上述条件中,发现其在缺血预处理情况下与野生型大鼠别无二致。而若再抑制B2受体缺陷大鼠的B1受体,则在缺血预处理及雷米普利处理下,心脏保护作用也会被抑制。在B2受体缺陷时,B1受体基因表达水平上调。无论是野生型还是TK缺陷型大鼠,在缺血再灌注损伤、缺血预处理及ACEI预处理情况下,B1、B2受体的mRNA折叠增加。因此,TK及B2受体在心脏保护作用中扮演了核心角色[59]。另一项实验表明,缓激肽可增加冠脉结扎大鼠的存活时间,缓激肽的这种效应与特殊的B2受体拮抗剂预处理的效果相当[60-61]。总之,研究结果支持了KKS是缺血情况下的重要中介的这一假设。但是KKS在分子生物及基因图谱方面的大量研究还有待探索,以寻求心血管病治疗的新思路。既往的研究有确切的证据证明,TK可通过升高循环中的内皮祖细胞(EPCs)数目,提升内皮祖细胞的分化、迁移、小管生成能力,以及通过激肽B2受体依赖的蛋白激酶信号通路(糖原-蛋白激酶合酶3β-激酶途径),来促进心梗后血管新生。因此,通过TK增加循环中内皮祖细胞数量及效能可能是改善缺血组织血管新生的新策略。通过基因递送方法,使重组人血浆激肽释放酶在大鼠心脏表达,可显著改善缺血处理后的心肌收缩力,并可缩小梗死面积。与对照组比较,TK通过增加CD34+Flk-1+内皮祖细胞的数量,促进梗死周围区域毛细血管和小动脉的生长,使死亡率降低、左室功能改善[62]。在心血管病患者中,循环中的血管新生祖细胞(CPCs)的迁移能力下降与血管生成受阻密切相关。既往的研究显示了KKS在血管生成方面的重要作用。我们现在证实激肽B2受体可以在缺血部位招募循环血管新生祖细胞(CPCs)并促进血管新生。在健康个体,B2受体大量表达,使来源于血单核细胞的CD34+、CD133+的循环血管新生祖细胞发育为内皮祖细胞。而B1受体却鲜有表达。在迁移实验中,缓激肽BK在CD34+、CD133+的循环血管新生祖细胞(CPCs)中扮演了重要的化学吸引物的角色。B2受体/肌酸肌醇3-激酶/内皮一氧化氮合酶中介(B2R/phosphoinos-itide 3-kinase/eNOS-mediated)是这种趋化作用的介导物。心血管疾病患者的CPCs显示了低B2受体水平且向缓激肽的迁移能力减弱。缓激肽诱发的迁移显示了一种新颖的调节血管新生祖细胞归巢的机制。心血管病患者祖细胞的缓激肽敏感性降低可能会使缺血情况下的血管新生受阻。因此,心血管病患者中B2受体信号发放的异常可能会导致缺血部位促血管新生祖细胞招募的缺乏,从而血流恢复缓慢[63]。

2.3 KKS与左室肥厚

左室肥厚是高血压病的独立危险因素[9]。缓激肽可抑制主动脉结扎的高血压大鼠模型左室肥厚的进展[64]。缓激肽的这种抗肥厚作用可被B2受体拮抗剂及NO合成酶抑制剂所抵消。因此,缓激肽通过释放NO在主动脉缩窄诱发高血压模型中扮演了防止心脏进展为左室肥厚的角色。就这点而言,缺乏心脏KKS可导致自发性高血压大鼠糖尿病及左室肥厚的发生[8-9,65]。因此,心脏组织激肽释放酶及心脏激肽原的减少可导致心脏缓激肽减少。故而心脏KKS的抑制可导致高血压及心脏左室肥厚者的心肌功能失调。KKS在心衰、心肌缺血及心梗方面的作用及潜力值得期待。有研究表明,血压下降及应用卡托普利逆转左室肥厚可提高肾脏组织激肽释放酶的活性[66]。这可能支持组织激肽释放酶可作为心脏保护中介的这一观点。且激肽对防止心肌缺血有调节功效[67]。Maestri等研究证实,敲除激肽B2受体的大鼠会发生心脏肥厚及微血管缺乏[68]。

2.4 KKS与心脏炎症

激肽调节通过B1和B2两个受体发挥作用。人们越发认识到KKS与心脏疾病的炎症进程息息相关。已有证据证实,B2受体在心肌疾病中发挥抗纤维化、抗凋亡、抗炎的作用。而与此同时,B1受体则促进炎症因子产生,刺激免疫细胞的迁移。因此,B1受体在心梗早期有一定负面作用,免疫系统的强烈反应会促进炎症发展并放大梗死面积。在心肌疾病中B1受体也有着促炎、促纤维化、致心肌功能失调等负面作用。但同时,B1受体也发放信号激活ACEI及AT1拮抗剂来发挥正面效应[69]。

2.5 KKS与脑血管疾病

导入激肽释放酶基因的大鼠在给予高盐饮食后其卒中诱发的死亡率、高血压、大动脉肥厚减少,提示TK具有避免中风发生的作用[70]。另一项动物实验发现,TK具有减小脑梗死范围、抑制细胞凋亡作用[71]。一项关于高血压大鼠的研究中发现,脑皮质梗死后24 h,激肽释放酶可以促进神经细胞的增殖、迁移、分化[72]。

3 小 结

既往的证据表明,KKS在心脑血管系统的多种病理生理进程中如高血压、心力衰竭、左室肥厚、心肌缺血、心肌病、脑卒中等扮演了重要的角色。值得期待的是,我们可以通过上流调节B1或B2受体来改变病理结局。另一方面,在高血压、心力衰竭、缺血及左室肥厚等病理情况下,KKS的活动是相对不足的。这可能是由于遗传相关的KKS异常及缓激肽受体下调所致。故这些疾病可通过使用特殊的缓激肽受体激动剂及激肽释放酶治疗。而我们所熟知的ACEI可通过调节KKS来发挥心脏保护作用。另外,组织激肽释放酶TK可通过提升内皮祖细胞的功能发挥促血管新生作用。这些都为心血管疾病的治疗提供了思路。我们将进一步在临床观察TK水平与患者预后的相关性,了解KKS在心血管系统的重要作用。

[1]MOREAU M E,GARBACKI N,MOLINARO G,et al.The kallikrein-kinin system:current and future pharmacological targets[J].J Pharmacol Sci,2005,99:6-38.

[2]HECQUET C,TAN F,MARCIC B M,et al.Human bradykinin B(2)receptor is activated by kallikrein and other serine proteases[J].Mol Pharmacol,2000,58:828-836.

[3]CHAO J,BLEDSOE G,YIN H,et al.The tissue kallikrein-kinin systemprotects against cardiovascular and renal diseases and ischemicstroke independently of blood pressure reduction[J].Biol Chem,2006,387:665-675.

[4]REGOLI D,RHALEB N E,DRAPEAU G,et al.Kinin receptor subtypes[J].J Cardiovasc Pharmacol,1990,15(Suppl 6):S30-S38.

[5]GREENBAUM L M.T-kinin and T-kininogen-children of new technology[J].Biochem Pharmacol,1984,33:2943-2944.

[6]OKAMOTO H,GREENBAUM L M.Pharmacological properties of T-kinin[J].Biochem Pharmacol,1983,32:2637-2638.

[7]NUSTAD K K,VAAJE K,PIERCE J V.Synthesis of kallikrein by rat kidneyslices[J].Br J Pharmacol,1975,53:229-234.

[8]SHARMA J N,ZEITLIN I J,DEODHAR S D,et al.Detection oftissue kallikrein-like activity in inflamed synovial tissue[J].Arch Int Pharmacody Ther,1983,262:279-286.

[9]NOLLY H L,BROTIS J.Kinin-forming enzyme in rat cardiac tissue[J].Am J Physiol,1981,265:H1209-1214.

[10]SHARMA J N,UMA K.Cardiac kallikrein in hypertensive and diabetic rats with and without diabetes[J].Immunopharmacology,1996,33:341-343.

[11]SHARMA J N,UMA K,YUSOF A P.Left ventricular hypertrophy and itsrelation to the cardiac kinin-forming system in hypertensive and diabetic rats[J].Int J Cardiol,1998,63:229-235.

[12]BHOOLA K D,FIGUEROA C D,WORTH K.Bioregulation of kinin,kallikrein,kininogen and kininases[J].Pharmacol Rev,1992,44:1-80.

[13]TAKADA Y,SKIDGEL R A,ERDOS E G.Purification of human urinary prokallikrein:identification of the site of activation by the metalloproteinasethermolysin[J].Biochem J,1985,232:851-856.

[14]WEISS A S,GALLIN J L,KAPLAN A P.Fletcher factor deficiency:a diminishedrate of Hageman factor activation caused by absence of prekallikrein with abnormalities of coagulation,fibrinolysis,chemotactic activity and kinin generation[J].J Clin Invest,1974,53:622-633.

[15]COCHRANE C G,REVAK S D,WUEPPER D.Activation of Hageman factor in solid and fluid phase.A critical role of kallikrein[J].Exp Med,1973,138:1564-1583.

[16]GRIFFIN J H,COCHRANE C G.Mechanism for the involvement of high molecular weight kininogen in surface-dependent reactions of Hageman factor[J].Proc Natl Acad Sci USA,1976,73:2554-2558.

[17]MANDLE R,COLMAN R W,KAPLAN A.Identification of prekallikrein and HMW-kininogen as a complex in human plasma[J].Proc Natl Acad Sci USA,1976,73:4176-4183.

[18]THAMPSON R E,MANDLE R,KAPLAN A P.Association of factorⅨand high molecular weight kininogen in human plasma[J].J Clin Invest,1977,60:1376-1380.

[19]SILVERBERG M,DIEHL S.The autoactivation of factorⅫ(Hageman factor)induced by low-heparin and dextran sulfate[J].Biochem J,1987,248:715-720.

[20]CHAO J,CHAO L.Kallikrein-kinin in stroke,cardiovascular and renal disease[J].Exp Physiol,2005,90:291-298.

[21]ZHAO C,WANG P,XIAO X,et al.Gene therapy with human tissue kallikrein reduces hypertension and hyperinsulinemia in fructoseinduced hypertensive rats[J].Hypertension,2003,42:1026-1033.

[22]LING L,HOU Q,XING S,et al.Exogenous kallikrein enhances neurogenesis and angiogenesis in the subventricular zone and the peri-infarction region and improves neurological function after focal cortical infarction in hypertensive rats[J].Brain Res,2008,1206:89-97.

[23]YUAN G,DENG J,WANG T,et al.Tissue kallikrein reverses insulin resistance and attenuates nephropathy in diabetic rats by activation of phosphatidylinositol 3-kinase/protein kinase B and adenosine 50-monophosphate-activated protein kinase signaling pathways[J].Endocrinology,2007,148:2016-2026.

[24]SHARMA J N.Interrelationship between the kallikrein-kinin system and hypertension:a review[J].Gen Pharmacol,1988,19:177-187.

[25]SHARMA J N,UMA K K,NOOR A R.Blood pressure regulation by the kallikrein-kinin system[J].Gen Pharmacol,1996,27:55-63.

[26]De FREITAS F M,FARRACO E Z,De AZEVEDO D F.General circulatory alterations induced by intravenous infusion of synthetic bradykinin in man[J].Circulation,1964,29:66-70.

[27]WEBSTER M E,GILMORE J P.Influence of kallidin-10 on renal function[J].Am J Physiol,1964,206:714-718.

[28]McGIFF J C,ITSKOVITZ H D,TERRANGO N A.The action of bradykinin and eledoicin in the canine isolated kidney:relationship to prostaglandins[J].Clin Sci Mol Med,1975,49:125-131.

[29]MARGOLIUS H S,GELLER R,PISANO J J,et al.Altered urinary kallikrein excretion in human hypertension[J].Lancet,1971,2:1063-1065.

[30]MARGOLIUS H S,GELLER R,DEJONG W,et al.Altered urinary kallikrein excretion in rats with hypertension[J].Circ Res,1972,30:358-362.

[31]SHARMA J N,ZEITLIN I J.Altered plasma kininogen in clinical hypertension[J].Lancet,1981,1:125-126.

[32]SHARMA J N.Kinin system and prostaglandins in the intestine[J].Pharmacol Toxicol,1988,63:310-316.

[33]ALMEIDA F A,STELLA R C,VOOS A,et al.Malignant hypertension:a syndrome associated with low plasma kininogen and kinin potentiating factor[J].Hypertension,1981,3:46-50.

[34]JAMES F W,DONALDSON V H.Decrease exercise tolerance and hypertension in serve hereditary deficiency of plasma kininogen[J].Lancet,1981,1:889.

[35]KATORI M,MAJIMA M.Role of the renal kallikrien-kinin system in the development of hypertension[J].Immunopharmacology,1997,36:237-242.

[36]WANG C,CHAO L,CHAO J.Human tissue kallikrein induces hypotension in transgenic mice[J].Hypertension,1994,23:236-243.

[37]SHARMA J N,AMRAH S S,NOOR A R.Suppression of hypotensive responses of captopril and enalapril by kallikrein inhibitors aprotinin in spontaneously hypertensive rats[J].Pharmacology,1995,50:363-369.

[38]CHAO J,CHAO L.Kallikrein gene therapy in hypertension,cardiovascular and renal diseases[J].Gen Ther Mol Biol,1998,1:301-308.

[39]SILBERBAUER K,STANEK B,TEMPLE H.Acute hypotensive effect of captopril in man modified by prostaglandian synthesis inhibition[J].Br J Clin Pharmacol,1982,14:87S-93S.

[40]ANTONACCIO M.Angiotensin converting enzyme(ACE)inhibitors[J].Annu Rev Pharmacol Toxicol,1982,22:57-87.

[41]SHARMA J N,FERANDEZ P G,KIM B K,et al.Systolic blood pressure responses to enalapril maleate(MK 421),an angiotensin converting enzyme inhibitor and hydrochlorothiazide in conscious Dahl salt-sensitive(S)and salt-resistant(R)rats[J].Can J Physiol Pharmacol,1984,62:241-243.

[42]EDERY H,ROSENTHAL T,AMITZUR G,et al.The influence of SQ 20881 on the blood kinin system of renal hypertensive patients[J].Drug Exp Clin Res,1981,Ⅶ:749-756.

[43]LINZ W,WIEMER G,GOHLKE P.Contribution of kinin to the cardiovascular action of converting-enzyme inhibitors[J].Pharmacol Rev,1995,47:25-50.

[44]ZHU P,ZUGGA C E,SIMPER D,et al.Bradykinin improves postischaemic recovery in the rat heart:role of high energy phosphates,nitric oxide and prostacyclin[J].Cardiovasc Res,1995,29:658-663.

[45]SHARAM J N,KESAVARAO U,YUSOF A P.Altered cardiac tissue and plasma kininogen levels in hypertensive and diabetic rats[J].Immunopharmacology,1999,43:129-132.

[46]MADEDDU P,MILIA A F,SALIS M B,et al.Renovascular hypertension in bradykinin B2-receptor knockout mice[J].Hypertension,1998,23:305-509.

[47]KICHUCK M R,SEYEDI N,ZHANG X,et al.Regulation of nitric acid production in human coronary microvessels and the contribution of local kinin formation[J].Circulation,1996,94:44-51.

[48]WHALLEY E T,SOLOMON J A,MODAFFERI D M.CP-0127,a novel potent bradykinin antagonist increases survival in rat and rabbit model of endotoxin shock[J].Agents Actions,1992,38(Suppl):413-420.

[49]KOIDE A,ZEITLIN I J,PARRATT J R.Kinin formation in ischaemic heart and aorta of anaesthetized rats[J].J Physiol(Lond),1993,467:125P.

[50]SCHOLKENS B A.Kinins in the cardiovascular system[J].Immunopharmacology,1996,33:209-217.

[51]LINZ W,WIEMER G,SCHOLKENS B A.Bradykinin prevents left ventricular hypertrophy in rats[J].J Hypertens,1993,11(Suppl 5):S96-97.

[52]VEGH A,SZEKERES L,PARRATT J R.Local intracoronary infusions of bradykinin profoundly reduce the severity of ischaemia-induced arrhythmia in anaesthetized dogs[J].Br J Pharmacol,1991,104:294-295.

[53]WALLS T M,SHEEHY R,HARTMAN J C.Role of bradykinin in myocardial preconditioning[J].J Pharmacol Exp T-her,1994,270:681-689.

[54]RUBIN L E,LEVI R.Protective role of bradykinin in cardiac anaphylaxis[J].Circ Res,1995,79:434-440.

[55]YOSHIDA H,ZHANG J J,CHAO L,et al.Kallikrein gene delivery attenuates myocardial infarction and apoptosis after myocardial ischaemia and perfusion[J].Hypertension,2000,35:25-31.

[56]SHARMA J N,KESAVARAO U.Effect of captopril on urinary kallikrein,blood pressure and myocardial hypertrophy in diabetic spontaneously hypertensive rats[J].Pharmacology,2002,64:196-200.

[57]DELA C R,SUFFREDINI A,PAGE J D,et al.Activation of kallikrein-kinin system after endotoxin administration to normal human volunteers[J].Blood,1993,81:3313-3317.

[58]ABBAS S A,SHARMA J N,YUSOF A P.The effect of bradykinin and its antagonist on survival time after coronary artery occlusion in hypertensive rats[J].Immunopharmacology,1999,44:93-98.

[59]GRIOL-CHARHBILI V,MESSADI-LARIBI E,BASCANDS J L,et al.Role of tissue kallikrein in the cardioprotective effects of ischemic and pharmacological preconditioning in myocardial ischemia[J].FASEB J,2005,19(9):1172-1174.

[60]ABBAS S A,SHARMA J N,YUSOF A P.Effect of bradykinin and its antagonist on survival time after coronary artery occlusion in rats[J].Gen Pharmacol,1999,33:243-247.

[61]ABBAS S A,SHARMA J N,YUSOF A P.The effect of bradykinin and its antagonist on survival time after coronary artery occlusion in hypertensive rats[J].Immunopharmacology,1999,44:93-98.

[62]YUYU Y,ZULONG S,YEFEI L,et al.Tissue kallikrein promotes cardiac neovascularization by enhancing endothelial progenitor cell functional capacity[J].Hum Gene Ther,2012,23:859-870.

[63]NICOLLE K,RAJESH G K,MAURO S.Role of Kinin B2 receptor signaling in the recruitment of circulating progenitor cells with neovascularization potential[J].Circ Res,2008,103(11):1335-1343.

[64]LINZ W W,WIEMER G,SCHOLKENS B A.Contribution of bradykinin to the cardiovascular effects of ramipril[J].J Cardiovasc Pharmacol,1993,22(Suppl 9):S1-8.

[65]SHARMA J N,UMA K,YUSOF A P.Altered cardiac tissue and plasma kininogen levels in hypertensive and diabetic rats[J].Immunopharmacology,1999,34:129-132.

[66]NIES A S,FORSYTH R P,WILLIAMS H E,et al.Contribution of kinins to endotoxin volunteers[J].Blood,1993,81:3313-3317.

[67]MARCONDES S,ANTUNES E.The plasma and tissue kininogen-kallikreinkinin system:role in cardiovascular system[J].Curr Med Chem,2005,3:33-44.

[68]MAESTRI R,MILIA A F,SALIS M B,et al.Cardiac hypertrophy and microvascular deficit in Kinin B2 receptor knockout mice[J].Hypertension,2003,41:1151-1155.

[69]KONSTANTINOS S,DIRK W,HEINZ-PETER S,et al.Kinins in cardiac inflammation and regeneration:insights from ischemic and diabetic cardiomyopathy[J].Neuropeptides,2010,44:119-125.

[70]ZHANG J J,CHAO L,CHAO J.Adenovirus-mediated kallikrein gene delivery reduces aortic thickening and stroke-induced death rate in Dahl salt-sensitive rats[J].Stroke,1999,30:1925-1931;discussion 1931-1932.

[71]XIA C F,YIN H,BORLONGAN C V,et al.Kallikrein gene transfer protects against ischemic stroke by promoting glial cell migration and inhibiting apoptosis[J].Hypertension,2004,43:452-459.

[72]XIA C F,YIN H,YAO Y Y,et al.Kallikrein protects against ischemic stroke by inhibiting apoptosis and inflammation and promoting angiogenesis and neurogenesis[J].Hum Gene T-her,2006,17:206-219.

猜你喜欢

激肽原祖细胞左室
心脏超声配合BNP水平测定在高血压左室肥厚伴心力衰竭诊断中的应用
血浆corin、NEP、BNP与心功能衰竭及左室收缩功能的相关性
胰激肽原酶在男性不育中的临床应用专家共识(2018版)
益肾活血法治疗左室射血分数正常心力衰竭的疗效观察
Wnt3a基因沉默对内皮祖细胞增殖的影响
内皮祖细胞在缺血性脑卒中诊治中的研究进展
胰激肽原酶联合金水宝胶囊对糖尿病肾病患者尿微量白蛋白的影响
莫沙必利联合胰激肽原酶治疗糖尿病神经源性膀胱50例疗效及安全性分析
悬滴和悬浮法相结合培养胰腺祖细胞
微环境在体外大量扩增晚期内皮祖细胞中的作用