APP下载

水朝阳旋覆花化学成分的研究

2012-02-14常睿洁覃江江成向荣金慧子张卫东

天然产物研究与开发 2012年3期
关键词:第二军医大学方剂学药学院

常睿洁,覃江江,成向荣,金慧子*,张卫东,2*

1上海交通大学药学院,上海200240;2第二军医大学药学院,上海200433

Introduction

Inula helianthus-aquatica,a perennial plant belonging to the Asteraceae family,is widely distributed in Yunnan,Sichuan,Gansu and Guizhou province of China growing at 1200-3000 m above sea level[1].It has been used as a previous folk medicine to treat some cancers in Yunnan[2].So far,only 7 compounds have been reported from this plant[3-5].In order to make further investigations on the aerial parts of I.helianthusaquatica,we isolated and identified twenty-four compounds from an EtOAc extract of the whole plant,including aromaticin(1),8-epi-helenalin(2),bigelovin (3),2,3-dihydroaromaticin(4),carpesiolin(5),ergolide(6),inuchinenolide C(7),6α-acetoxy-isoinuviscolide(8),8-epi-inuviscolide(9),inuchinenolide B (10),tomentosin(11),11α,13-dihydrotomentosin (12),inuchinenolide A(13),4H-tomentosin(14),11β,13-Dihydro-4H-tomentosin(15),11-epi-sundiversifolide(16),sundiversifolide(17),8,9,10-tri-hydroxythymol(18),10-hydroxy-8,9-dioxyisopropylidenethymol(19),8,10-dihydroxy-9-isobutyryloxythymol(20),8-hydroxy-9,10-diisobutyryloxythymol (21), 8-hydroxy-9-isobutyryloxy-10-(2-methylbutanoyl)thymol(22),8,9-epoxy-3,10-diisobutyryloxythymol(23),and 8,9-epoxy-3-isobutyryloxy-10-(2-methylbutanoyl)thymol(24).All the compounds except compounds 1-6 were isolated from this plant for the first time.

Experimental

Instruments

The normal phase silica gel(200-300 mesh,Yantai,China),MCI gel(CHP20P 75-150 μm,Mitsubishi Chemical Co.,Japan),and Sephadex LH-20(GE Healthcare Bio-Sciences AB,Sweden)were used for column chromatography,and precoated silica HSGF254plates were used for TLC(Yantai,China).HPLC and preparative HPLC were performed with SHIMADZU LC 2010AHT,Agilent Technologies 1200 series and SHIMADZU LPD-20A.J.T.Baker Acetonitrile(ACN) was used as HPLC Solvent.Melting points were measured with an RY-2 micromelting point apparatus and are uncorrected.ESI-MS were recorded on Q-TOF micro mass spectrometer.1H and13C NMR spectra were measured on a Bruker DRX-500 spectrometer and Bruker Avance DRX-400 spectrometer.Chemical shift (δ)were given in ppm relative to TMS as internal reference and coupling constants(J)in Hz.

Plant material

The aerial parts of I.helianthus-aquatica were collected from Nujiang river of Yunnan Province,China in August,2007 and identified by Prof.Huang Bao-kang,Department of Pharmacognosy,School of Pharmacy,Second Military Medical University.A voucher specimen (No.200708XHFSCY)has been deposited at School of Pharmacy,Shanghai Jiao Tong University.

Extraction and isolation

The air-dried and powdered aerial parts of I.helianthus-aquatica(1.0 kg)were extracted with 95% EtOH for three times at room temperature.After concentration of the combined extracts under reduced pressure,the residue(86.1 g)was suspended in H2O and then partitioned successively with petroleum ether,EtOAc and n-butanol,yielding 12.1 g,14.3 g and 11.2 g,respectively.The EtOAc fraction was chromatographed on a silica gel column eluting with CH2Cl2-MeOH (100∶1 to 10∶1)to obtain 5 fractions(A1-A5).A1 (1.5 g)was applied to MCI gel column chromatography(MeOH-H2O,9∶1)and purified by Sephadex LH-20(MeOH),yielding compounds 1(5.9 mg),2(4.0 mg),3(4.4 mg),4(8.7 mg).A2(4.1 g)was then subjected to silica gel column again and eluted with CH2Cl2-MeOH from 50∶1 to 10∶1 to give 5 sub-fractions,the sub-fraction 2,3 were separated by preparative HPLC(RP18,210 nm,50%ACN)to give compounds 5(14.5 mg,tR=19.2 min),6(4.0 mg,tR= 22.4 min),7(5.5 mg,tR=25.0 min),8(2.9 mg,tR=27.5 min),9(2.7 mg,tR=30.2 min),10(15.1 mg,tR=35.9 min),11(17.8 mg,tR=41.3 min),12(9.5 mg,tR=47.5 min),13(7.6 mg,tR=48.8 min)and 14(10.8 mg,tR=55.2 min).Compound 15(7.7 mg,tR=22.5 min),16(5.8 mg,tR=27.2 min)and 17(3.4 mg,tR=30.3 min)were obtained after the purifications of A3(1.3 g)by preparative HPLC(RP18,210 nm,50%ACN).A4(1.7 g)was chromatographed on MCI gel(MeOH-H2O,9∶1)and Sephadex LH-20(MeOH),and purified by preparative HPLC(RP18,210 nm,40%ACN)to yield compounds 19(2.8 mg,tR=30.2 min),22(5.1 mg,tR=34.5 min)23(3.6 mg,tR=48.0 min)and 24(6.0 mg,tR=50.5 min).A5(2.0 g)was also subjected to MCI gel(MeOH-H2O,9∶1),SephadexLH-20 (MeOH)chromatography,and purified by preparative HPLC(RP18,210 nm,35%ACN)to give compounds 18(30.8 mg,tR=32.8 min),20(12.3 mg,tR=36.0 min)and 21(8.5 mg,tR=40.4 min).

Structure identification

Aromaticin(1)white amorphous power;C15H18O3; ESI-MS(positive)m/z 269[M+Na]+;ESI-MS (negative)m/z 245[M-H]-;1H NMR(CDCl3,500 MHz)δ:2.76(1H,brd,H-1),7.64(1H,dd,J= 6.0,1.5 Hz,H-2),6.13(1H,dd,J=6.0,3.0 Hz,H-3),2.49(1H,dd,J=14.5,4.5 Hz,H-6a),1.64 (1H,dd,J=14.5,11.0 Hz,H-6b),2.90(1H,m,H-7),4.50(1H,ddd,J=12.0,10.0,3.0 Hz,H-8), 2.53(1H,ddd,J=13.0,3.5,3.5 Hz,H-9a),1.45 (1H,q,J=12.0 Hz,H-9b),2.14(1H,m,H-10),6.18(1H,d,J=3.5 Hz,H-13a),5.52(1H,d,J= 3.0 Hz,H-13b),1.26(3H,d,J=6.5 Hz,H3-14),1.19(3H,s,H3-15);13C NMR(CDCl3,125 MHz)δ: 54.1(C-1),161.5(C-2),130.2(C-3),213.6(C-4),55.1(C-5),32.0(C-6),46.4(C-7),79.5(C-8),44.1(C-9),27.1(C-10),140.3(C-11),169.5 (C-12),120.0(C-13),19.8(C-14),27.9(C-15) .The NMR and MS data were in accordance with those reported in the literature[6],and identified 1 as aromaticin.

8-Epi-helenalin(2) white amorphous powder;C15H18O4;ESI-MS(positive)m/z 285[M+Na]+;ESIMS(negative)m/z 261[M-H]-;1H NMR(CDCl3,500 MHz)δ:3.00(1H,brd,J=10.8 Hz,H-1),7.76 (1H,dd,J=6.0,1.5 Hz,H-2),6.14(1H,dd,J= 6.0,3.0 Hz,H-3),4.15(1H,d,J=8.3 Hz,H-6),2.92(1H,m,H-7),4.53(1H,ddd,J=11.5,11.5,3.0 Hz,H-8),2.52(1H,ddd,J=13.0,3.5,3.5 Hz,H-9a),1.51(1H,q,J=12.0 Hz,H-9b),2.05(1H,m,H-10),6.23(1H,d,J=3.5 Hz,H-13a),6.01 (1H,d,J=3.2 Hz,H-13b),1.28(3H,d,J=6.6 Hz,H3-14),1.18(3H,s,H3-15);13C NMR(CDCl3,125 MHz)δ:51.1(C-1),164.6(C-2),130.8(C-3),213.5(C-4),58.2(C-5),74.0(C-6),53.8 (C-7),75.9(C-8),44.1(C-9),27.1(C-10),138.7(C-11),169.3(C-12),121.6(C-13),19.8 (C-14),23.7(C-15).The NMR and MS data were in accordance with those reported in the literature[7],and identified 2 as 8-epi-helenalin.

Bigelovin(3)white amorphous powder;C17H20O5; ESI-MS(positive)m/z 327[M+Na]+;ESI-MS (negative)m/z 303[M-H]-;1H NMR(CDCl3,500 MHz)δ:3.03(1H,brd,J=11.0 Hz,H-1),7.71 (1H,d,J=6.0 Hz,H-2),6.11(1H,dd,J=6.0,2.5 Hz,H-3),5.60(1H,d,J=7.5 Hz,H-6),3.08(1H,m,H-7),4.61(1H,ddd,J=12.5,12.5,3.0 Hz,H-8),2.57(1H,ddd,J=13.0,3.5,3.5 Hz,H-9a),1.55(1H,q,J=12.5 Hz,H-9b),2.06(1H,m,H-10),6.22(1H,d,J=3.5 Hz,H-13a),5.92(1H,d,J=3.0 Hz,H-13b),1.29(3H,d,J=6.5 Hz,H3-14),1.21(3H,s,H3-15),1.96(3H,s,H3-2');13C NMR(CDCl3,125 MHz)δ:52.2(C-1),162.5(C-2),130.8(C-3),209.1(C-4),56.2(C-5),73.1 (C-6),53.9(C-7),76.1(C-8),44.4(C-9),27.2 (C-10),137.2(C-11),168.9(C-12),122.0(C-13),19.7(C-14),22.6(C-15),169.5(C-1'),21.1 (C-2').The NMR and MS data were in accordance with those reported in the literature[8],and identified 3 as bigelovin.

2,3-Dihydroaromaticin(4)white amorphous powder;C15H20O3;ESI-MS(positive)m/z 271[M+ Na]+;ESI-MS(negative)m/z 247[M-H]-;1H NMR(CDCl3,400 MHz)δ:1.92(1H,m,H-1),2.10 (1H,m,H-2a),1.61(1H,m,H-2b),2.50(1H,m,H-3a),1.51(1H,m,H-3b),2.47(1H,m,H-6a),2.18(1H,m,H-6b),2.80(1H,m,H-7),4.28(1H,ddd,J=12.0,9.2,2.9 Hz,H-8),2.43(1H,m,H-9a),1.42(1H,m,H-9b),1.95(1H,m,H-10),6.18 (1H,d,J=3.5 Hz,H-13a),5.50(1H,d,J=3.2 Hz,H-13b),1.09(3H,d,J=5.8 Hz,H3-14),1.03 (3H,s,H3-15);13C NMR(CDCl3,100 MHz)δ:48.7 (C-1),24.1(C-2),34.5(C-3),222.5(C-4),50.0 (C-5),35.2(C-6),44.7(C-7),80.8(C-8),44.1 (C-9),29.6(C-10),140.3(C-11),169.8(C-12),120.0(C-13),20.0(C-14),22.0(C-15).The NMR and MS data were in accordance with those reported in the literature[9],and identified 4 as 2,3-dihydroaromaticin.

Carpesiolin(5) white amorphous powder;C15H20O4;ESI-MS(positive)m/z 287[M+Na]+;ESI-MS (negative)m/z 263[M-H]-;1H NMR(CDCl3,400 MHz)δ:2.27(1H,m,H-1),2.17(1H,m,H-2a),1.46(1H,m,H-2b),2.43(1H,m,H-3a),2.14 (1H,m,H-3b),4.02(1H,d,J=8.7 Hz,H-6),3.04 (1H,brs,6-OH),2.89(1H,m,H-7),4.39(1H,ddd,J=12.0,10.0,2.8 Hz,H-8),20.48(1H,m,H-9a),1.50(1H,m,H-9b),1.84(1H,m,H-10),6.21 (1H,d,J=3.5 Hz,H-13a),5.99(1H,d,J=3.2 Hz,H-13b),1.10(3H,d,J=6.5 Hz,H3-14),1.03 (3H,s,H3-15);13C NMR(CDCl3,100 MHz)δ:45.1 (C-1),24.5(C-2),37.6(C-3),223.8(C-4),57.7 (C-5),75.3(C-6),52.0(C-7),76.0(C-8),44.1 (C-9),30.1(C-10),138.9(C-11),169.6(C-12),121.8(C-13),20.0(C-14),19.0(C-15).The NMR and MS data were in accordance with those reported in the literature[10],and identified 5 as Carpesiolin.

Ergolide(6) white amorphous powder;C17H22O5; ESI-MS(positive)m/z 329[M+Na]+;ESI-MS (negative)m/z 305[M-H]-;1H NMR(CDCl3,400 MHz)δ:2.30(1H,ddd,J=11.5,11.5,6.0 Hz,H-1),2.19(1H,m,H-2a),1.45(1H,m,H-2b),2.42 (1H,m,H-3a),2.13(1H,m,H-3b),5.50(1H,d,J =7.5 Hz,H-6),3.03(1H,m,H-7),4.49(1H,ddd,J=13.0,11.0,2.5 Hz,H-8),2.51(1H,ddd,J= 13.0,3.0,3.0 Hz,H-9a),1.51(1H,q,J=12.0 Hz,H-9b),1.86(1H,m,H-10),6.20(1H,d,J=3.5 Hz,H-13a),5.85(1H,d,J=3.5 Hz,H-13b),1.12 (3H,d,J=6.5 Hz,H3-14),1.08(3H,s,H3-15),1.97(3H,s,H3-2');13C NMR(CDCl3,100 MHz)δ: 46.7(C-1),24.4(C-2),37.9(C-3),218.4(C-4),56.0(C-5),74.7(C-6),52.6(C-7),76.2(C-8),44.3(C-9),30.0(C-10),137.3(C-11),169.1 (C-12),122.0(C-13),19.9(C-14),18.4(C-15),169.3(C-1'),21.1(C-2').The NMR and MS data were in accordance with those reported in the literature[3],and identified 6 as ergolide.

Inuchinenolide C(7)white amorphous powder;C19H26O7;ESI-MS(positive)m/z 389[M+Na]+;ESIMS(negative)m/z 365[M-H]-;1H NMR(CDCl3,400 MHz)δ:2.10(1H,dd,J=11.4,6.3 Hz,H-1),4.94(1H,brt,J=7.8 Hz,H-2),2.31(1H,ddd,J= 14.9,9.7,9.7 Hz,H-3a),1.95(1H,m,H-3b),5.61 (1H,dd,J=10.7,8.8 Hz,H-4),3.53(1H,d,J= 8.3 Hz,H-6),2.79(1H,m,H-7),4.46(1H,ddd,J =12.3,10.3,2.8 Hz,H-8),2.40(1H,ddd,J= 13.2,4.8,3.0 Hz,H-9a),1.41(1H,q,J=12.3 Hz,H-9b),1.93(1H,m,H-10),6.20(1H,d,J=3.5 Hz,H-13a),5.98(1H,d,J=3.1 Hz,H-13b),0.99 (3H,d,J=6.4 Hz,H3-14),0.92(3H,s,H3-15),2.04(3H,s,2-OAc),2.14(3H,s,4-OAc);13C NMR (CDCl3,100 MHz)δ:49.8(C-1),74.8(C-2),35.0 (C-3),75.9(C-4),52.0(C-5),74.3(C-6),53.7 (C-7),75.8(C-8),44.0(C-9),30.1(C-10),139.3(C-11),169.7(C-12),121.4(C-13),20.6 (C-14),17.1(C-15),170.5(2-OCOCH3),21.2 (2-OCOCH3),172.9(4-OCOCH3),21.2(4-OCOCH3);The NMR and MS data were in accordance with those reported in the literature[11],and identified 7 as inuchinenolide.

6α-Acetoxy-isoinuviscolide(8) white amorphous powder;C17H22O5;ESI-MS(positive)m/z 329[M+ Na]+;ESI-MS(negative)m/z 305[M-H]-;13C NMR(CDCl3,100 MHz)δ:51.4(C-1),28.1(C-2),40.3(C-3),80.3(C-4),54.9(C-5),74.9(C-6),44.7(C-7),80.5(C-8),124.8(C-9),135.1 (C-10),139.8(C-11),170.2(C-12),118.6(C-13),23.2(C-14),23.7(C-15),169.6(6-OCOCH3),21.1(6-OCOCH3).The NMR and MS data were in accordance with those reported in the literature[12],and identified 8 as 6α-Acetoxy-isoinuviscolide.

8-epi-inuviscolide(9)white amorphous powder;C15H20O3;ESI-MS(positive)m/z 271[M+Na]+;ESIMS(negative)m/z 247[M-H]-;1H NMR(CD3OD,400 MHz)δ:6.18(1H,d,J=2.4 Hz,H-13a),5.74 (1H,d,J=2.0 Hz,H-13b),4.99(1H,brs,H-14a),4.91(1H,brs,H-14b),4.85(1H,ddd,J=10.6,7.4,5.3 Hz,H-8),3.12(1H,m,H-7),1.27(3H,s,H3-15);13C NMR(CD3OD,100 MHz)δ:49.8(C-1),29.1(C-2),39.3(C-3),83.7(C-4),57.1(C-5),35.9(C-6),44.4(C-7),82.6(C-8),32.2(C-9),146.4(C-10),143.7(C-11),173.0(C-12),123.8(C-13),116.3(C-14),25.4(C-15).The NMR and MS data were in accordance with those reported in the literature[13],and identified 9 as 8-epiinuviscolide.

Inuchinenolide B(10) white amorphous powder; C17H22O5;ESI-MS(positive)m/z 307[M+H]+; ESI-MS(negative)m/z 305[M-H]-;1H NMR (CD3OD,400 MHz)δ:5.45(1H,t,J=7.6 Hz,H-2),3.35(1H,m,H-7),4.87(1H,ddd,J=12.0,8.8,3.0 Hz,H-8),6.23(1H,d,J=3.5 Hz,H-13a),5.73(1H,d,J=3.1 Hz,H-13b),1.66(3H,s,H3-14),0.99(3H,s,H3-15),2.02(3H,s,2-OAc);13C NMR(CD3OD,100 MHz)δ:137.8(C-1),73.8(C-2),47.9(C-3),77.8(C-4),53.5(C-5),26.3(C-6),43.5(C-7),81.0(C-8),37.7(C-9),132.8 (C-10),140.7(C-11),172.3(C-12),122.8(C-13),22.0(C-14),22.8(C-15),172.8(2-OCOCH3),21.2(2-OCOCH3).The NMR and MS data were in accordance with those reported in the literature[11],and identified 10 as inuchinenolide B.

Tomentosin(11) white amorphous powder;C15H20O3;ESI-MS(positive)m/z 271[M+Na]+;ESI-MS (negative)m/z 247[M-H]-;1H NMR(CDCl3,400 MHz)δ:2.52(2H,m,H2-2),1.63(2H,m,H2-3),5.44(1H,m,H-5),2.36(2H,m,H2-6),3.32(1H,m,H-7),4.64(1H,m,H-8),2.25(2H,m,H2-9),2.01(1H,m,H-10),6.27(1H,d,J=3.0 Hz,H-13a),5.52(1H,d,J=2.5 Hz,H-13b),1.14(3H,d,J=7.0,H3-14),2.16(3H,s,H3-15);13C NMR (CDCl3,100 MHz)δ:146.4(C-1),30.7(C-2),42.4(C-3),208.4(C-4),122.6(C-5),29.9(C-6),42.4(C-7),79.5(C-8),37.0(C-9),35.7(C-10),139.3(C-11),170.6(C-12),122.5(C-13),21.2(C-14),30.1(C-15).The NMR and MS data were in accordance with those reported in the literature[14],and identified 11 as tomentosin.

11α,13-Dihydrotomentosin(12) colorless oil;C15H22O3;ESI-MS(positive)m/z 273[M+Na]+;ESIMS(negative)m/z 249[M-H]-;1H NMR(CD3OD,400 MHz)δ:2.32(1H,m,H-2a),2.18(1H,m,H-2b),2.60(1H,dd,J=9.2,5.6 Hz,H-3a),2.50 (1H,dd,J=8.9,7.0 Hz,H-3b),5.50(1H,dd,J= 9.3,2.3 Hz,H-5),2.17(1H,m,H-6a),1.89(1H,ddd,J=15.7,9.4,2.8 Hz,H-6b),2.68(1H,m,H-7),4.69(1H,ddd,J=9.5,6.4,6.4 Hz,H-8),2.02 (2H,m,H2-9),2.42(1H,m,H-10),2.90(1H,m,H-11),1.10(3H,d,J=7.5 Hz,H3-13),1.14(3H,d,J=7.1 Hz,H3-14),2.13(3H,s,H3-15);13C NMR (CD3OD,100 MHz)δ:145.9(C-1),32.5(C-2),43.7(C-3),211.7(C-4),124.2(C-5),23.0(C-6),43.8(C-7),82.7(C-8),38.4(C-9),34.2(C-10),40.4(C-11),182.1(C-12),11.3(C-13),21.9(C-14),30.1(C-15).The NMR and MS data were in accordance with those reported in the literature[15],and identified 12 as 11α,13-dihydrotomentosin.

Inuchinenolide A(13)colorless oil;C17H22O5;ESIMS(positive)m/z 329[M+Na]+;ESI-MS(negative)m/z 305[M-H]-;1H NMR(CDCl3,400 MHz) δ:5.60(1H,brs,H-5),5.08(1H,dd,J=10.0,2.0 Hz,H-6),3.42(1H,m,H-7),4.64(1H,m,H-8),6.28(1H,d,J=3.0 Hz,H-13a),5.71(1H,d,J= 3.0 Hz,H-13b),1.15(3H,d,J=6.5 Hz,H3-14),2.16(3H,s,H3-15),1.98(3H,s,6-OAc),;13C NMR(CDCl3,100 MHz)δ:142.5(C-1),30.0(C-2),42.2(C-3),207.0(C-4),125.5(C-5),70.0 (C-6),42.2(C-7),76.7(C-8),36.9(C-9),35.0 (C-10),135.6(C-11),169.5(C-12),124.7(C-13),20.6(C-14),30.0(C-15),168.9(6-OCOCH3),21.0(6-OCOCH3).The NMR and MS data were in accordance with those reported in the literature[11],and identified 13 as inuchinenolide A.

4H-Tomentosin(14) colorless oil;C15H22O3;ESIMS(positive)m/z 273[M+Na]+;ESI-MS(negative)m/z 249[M-H]-;1H NMR(CD3OD,400 MHz)δ:1.96(2H,m,H2-2),1.42(2H,m,H2-3),3.31(1H,m,H-4),5.45(1H,m,H-5),2.36(2H,m,H2-6),3.59(1H,m,H-7),4.65(1H,m,H-8),2.15(2H,m,H2-9),1.88(1H,m,H-10),6.12 (1H,d,J=2.5 Hz,H-13a),5.56(1H,d,J=2.2 Hz,H-13b),1.06(3H,d,J=6.8 Hz,H3-14),1.07 (3H,d,J=7.0 Hz,H3-15);13C NMR(CD3OD,100 MHz)δ:147.5(C-1),34.6(C-2),39.8(C-3),69.0(C-4),121.7(C-5),28.3(C-6),44.1(C-7),82.0(C-8),38.4(C-9),37.0(C-10),141.6 (C-11),173.1(C-12),123.4(C-13),21.8(C-14),23.9(C-15).The NMR and MS data were in accordance with those reported in the literature[14],and identified 14 as 4H-tomentosin.

11β,13-Dihydro-4H-tomentosin(15) colorless oil;C15H24O3;ESI-MS(positive)m/z 275[M+ Na]+;ESI-MS(negative)m/z 251[M-H]-;1H NMR(CDCl3,500 MHz)δ:2.11(1H,m,H-2a),1.98(1H,m,H-2b),1.56(1H,m,H-3a),1.48 (1H,m,H-3b),3.78(1H,m,H-4),5.43(1H,t,J= 6.0 Hz,H-5),2.29(1H,m,H-6a),2.18(1H,m,H-6b),2.41(1H,m,H-7),4.47(1H,m,H-8),1.96 (1H,m,H-9a),1.90(1H,q,J=12.0 Hz,H-9b),2.38(1H,m,H-10),2.25(1H,m,H-11),1.22 (3H,d,J=7.5 Hz,H3-13),1.14(3H,d,J=7.0 Hz,H3-14),1.20(3H,d,J=7.0 Hz,H3-15);13C NMR(CDCl3,125 MHz)δ:145.6(C-1),32.7(C-2),38.1(C-3),67.5(C-4),119.4(C-5),26.3 (C-6),45.1(C-7),79.3(C-8),35.3(C-9),35.0 (C-10),39.2(C-11),179.4(C-12),13.9(C-13),20.6(C-14),23.8(C-15).The NMR and MS data were in accordance with those reported in the literature[16],and identified 15 as 11β,13-dihydro-4H-tomentosin.

11-Epi-sundiversifolide(16) colorless oil;C13H20O3;ESI-MS(positive)m/z 247[M+Na]+;ESI-MS (negative)m/z 223[M-H]-;1H NMR(CDCl3,400 MHz)δ:2.15-2.46(7H,m,H-2,6,7,10,11),3.66 (2H,m,H2-3),5.46(1H,dd,J=8.3,5.9 Hz,H-5),4.50(1H,ddd,J=12.0,8.5,2.8 Hz,H-8),1.97 (1H,m,H-9a),1.87(1H,m,H-9b),1.22(3H,d,J =7.0 Hz,H3-13),1.16(3H,d,J=7.0 Hz,H3-14);13C NMR(CDCl3,100 MHz)δ:142.3(C-1),39.2(C-2),61.1(C-3),121.5(C-5),26.3(C-6),44.9(C-7),79.3(C-8),35.1(C-9),35.2(C-10),39.4(C-11),179.7(C-12),13.8(C-13),20.5(C-14).The NMR and MS data were in accordance with those reported in the literature[17,18],and identified 16 as 11-epi-sundiversifolide.

Sundiversifolide(17) colorless oil;C13H20O3;ESIMS(positive)m/z 247[M+Na]+;ESI-MS(negative)m/z 223[M-H]-;1H NMR(CDCl3,400 MHz) δ:2.40(1H,m,H-2a),2.28(1H,m,H-2b),3.72 (1H,m,H-3a),3.60(1H,m,H-3b),5.54(1H,brd,J=6.9 Hz,H-5),2.19(1H,dd,J=14.5,7.2 Hz,H-6a),1.92(1H,ddd,J=15.8,9.4,2.6 Hz,H-6b),2.72(1H,m,H-7),4.64(1H,ddd,J=10.2,6.2,6.2 Hz,H-8),2.08(2H,m,H2-9),2.45(1H,m,H-10),2.81(1H,m,H-11),1.16(3H,d,J=7.0 Hz,H3-13),1.17(3H,d,J=7.3 Hz,H3-14);13C NMR (CDCl3,100 MHz)δ:142.0(C-1),40.2(C-2),61.0(C-3),124.6(C-5),22.0(C-6),42.3(C-7),80.6(C-8),36.9(C-9),32.6(C-10),39.0 (C-11),179.3(C-12),10.8(C-13),21.5(C-14) .The NMR and MS data were in accordance with those reported in the literature[19],and identified 17 as sundiversifolide.

8,9,10-Trihydroxythymol(18) colorless oil;C10H14O4;ESI-MS(positive)m/z 221[M+Na]+;ESIMS(negative)m/z 197[M-H]-;1H NMR(CD3OD,500 MHz)δ:6.58(1H,d,J=0.8 Hz,H-2),7.16 (1H,d,J=8.0 Hz,H-5),6.62(1H,dd,J=8.0,0.8 Hz,H-6),2.22(3H,s,H3-7),3.85(4H,m,H2-9,H2-10);13C NMR(CD3OD,125 MHz)δ:134.0(C-1),118.2(C-2),157.4(C-3),124.8(C-4),128.9 (C-5),121.5(C-6),21.3(C-7),80.2(C-8),66.9 (C-9,C-10).The NMR and MS data were in accordance with those reported in the literature[20],and identified 18 as 8,9,10-trihydroxythymol.

10-Hydroxy-8,9-dioxyisopropylidenethymol(19) colorless oil;C13H18O4;ESI-MS(positive)m/z 261[M +Na]+;ESI-MS(negative)m/z 237[M-H]-;1H NMR(CD3OD,400 MHz)δ:6.58(1H,brs,H-2),7.31(1H,d,J=7.8 Hz,H-5),6.63(1H,brd,J= 7.8 Hz,H-6),2.23(3H,s,H3-7),4.40(1H,d,J= 9.0 Hz,H-9a),4.16(1H,d,J=9.0 Hz,H-9b),3.73 (1H,d,J=11.5 Hz,H-10a),3.61(1H,d,J=11.5 Hz,H-10b),1.27(3H,s,H3-2'),1.52(3H,s,H3-3');13C NMR(CD3OD,100 MHz)δ:139.8(C-1),117.4(C-2),154.9(C-3),127.6(C-4),128.8(C-5),121.2(C-6),21.4(C-7),86.8(C-8),72.6 (C-9),67.6(C-10),110.9(C-1'),27.5(C-2'),26.2(C-3').The NMR and MS data were in accordance with those reported in the literature[21],and identified 19 as 10-hydroxy-8,9-dioxyisopropylidenethymol.

8,10-Dihydroxy-9-isobutyryloxythymol(20) colorless oil;C14H20O5;ESI-MS(positive)m/z 291[M+ Na]+;ESI-MS(negative)m/z 267[M-H]-;1H NMR(CD3OD,500 MHz)δ:6.60(1H,d,J=1.0 Hz,H-2),7.16(1H,d,J=8.0 Hz,H-5),6.64(1H,dd,J=8.0,1.0 Hz,H-6),2.23(3H,s,H3-7),4.56 (1H,d,J=11.0 Hz,H-9a),4.40(1H,d,J=11.5 Hz,H-9b),3.91(1H,d,J=11.5 Hz,H-10a),3.84 (1H,d,J=11.5 Hz,H-10b),2.49(1H,m,H-2'),1.06(3H,d,J=7.0 Hz,H3-3'),1.03(3H,d,J= 7.0 Hz,H3-4');13C NMR(CD3OD,125 MHz)δ: 139.9(C-1),118.0(C-2),156.6(C-3),123.9(C-4),128.6(C-5),121.1(C-6),21.0(C-7),78.7 (C-8),68.2(C-9),66.6(C-10),178.8(C-1'),35.1(C-2'),19.2(C-3'),19.1(C-4').The NMR and MS data were in accordance with those reported in the literature[21],and identified 20 as 8,10-dihydroxy-9-isobutyryloxythymol.

8-Hydroxy-9,10-diisobutyryloxythymol(21) colorless oil;C18H26O6;ESI-MS(positive)m/z 361[M+ Na]+;ESI-MS(negative)m/z 337[M-H]-;1H NMR (CDCl3,500 MHz)δ:6.69(1H,d,J=1.0 Hz,H-2),6.91(1H,d,J=8.0 Hz,H-5),6.65(1H,dd,J =8.0,1.0 Hz,H-6),4.46(each 2H,dd,J=19.0,11.9 Hz,H2-9,10),2.56(each H,m,H-2',2''),2.27(3H,s,H3-7),1.12(each 3H,d,J=7.0 Hz,H3-3',3'',4',4'');13C NMR(CDCl3,125 MHz)δ: 140.0(C-1),118.5(C-2),156.4(C-3),119.0(C-4),126.5(C-5),120.5(C-6),20.9(C-7),78.5 (C-8),67.2(C-9,10),177.5(C-1',1''),33.9(C-2',2''),18.8(C-3',3'',4',4'').The NMR and MS data were in accordance with those reported in the literature[21],and identified 21 as 8-hydroxy-9,10-diisobutyryloxythymol.

8-Hydroxy-9-isobutyryloxy-10-(2-methylbutanoyl) thymol(22)colorless oil;C19H28O6;ESI-MS(positive)m/z 375[M+Na]+;ESI-MS(negative)m/z 351[M-H]-;1H NMR(CDCl3,500 MHz)δ:6.70 (1H,d,J=1.0 Hz,H-2),6.89(1H,d,J=8.0 Hz,H-5),6.64(1H,dd,J=8.0,1.0 Hz,H-6),2.27 (3H,s,H3-7),4.45(each 2H,m,H2-9,10),2.56 (1H,m,H-2'),2.40(1H,m,H-2''),1.62(1H,m,H-3''a),1.44(1H,m,H-3''b),1.13(each 3H,d,J =7.0 Hz,H3-3',4'),1.10(3H,d,J=7.0 Hz,H3-5''),0.83(3H,m,H3-4'');13C NMR(CDCl3,125 MHz)δ:140.1(C-1),118.7(C-2),156.7(C-3),118.7(C-4),126.5(C-5),120.5(C-6),21.0(C-7),78.9(C-8),67.3(C-9),67.4(C-10),177.5 (C-1'),33.9(C-2'),18.8(C-3',4'),177.2(C-1''),41.0(C-2''),16.5(C-3''),26.6(C-4''),11.43(C-5'').The NMR and MS data were in accordance with those reported in the literature[22],and identified 22 as 8-hydroxy-9-isobutyryloxy-10-(2-methylbutanoyl)thymol.

8,9-Epoxy-3,10-diisobutyryloxythymol(23)colorless oil;C18H24O5;ESI-MS(positive)m/z 343[M+ Na]+;ESI-MS(negative)m/z 319[M-H]-;1H NMR(CDCl3,400 MHz)δ:6.87(1H,brs,H-2),7.35(1H,d,J=7.8 Hz,H-5),7.05(1H,brd,J= 7.8 Hz,H-6),2.35(3H,s,H3-7),3.03(1H,d,J= 5.3 Hz,H-9a),2.79(1H,d,J=5.3 Hz,H-9b),4.57 (1H,d,J=12.2 Hz,H-10a),4.19(1H,d,J=12.2 Hz,H-10b),2.52(1H,m,H-2'),1.09(3H,d,J= 7.6 Hz,H3-3'),1.11(3H,d,J=7.6 Hz,H3-4'),2.85(1H,m,H-2''),1.32(3H,d,J=7.2 Hz,H3-3''),1.32(3H,d,J=7.2 Hz,H3-4'').The NMR and MS data were in accordance with those reported in the literature[23],and identified 23 as 8,9-epoxy-3,10-diisobutyryloxythymol.

8,9-Epoxy-3-isobutyryloxy-10-(2-methylbutanoyl) thymol(24)colorless oil;C19H26O5;ESI-MS(positive)m/z 357[M+Na]+;ESI-MS(negative)m/z 333[M-H]-;1H NMR(CDCl3,400 MHz)δ:6.87 (1H,brs,H-2),7.36(1H,d,J=8.0 Hz,H-5),7.05 (1H,brd,J=7.6 Hz,H-6),2.35(3H,s,H3-7),3.04(1H,d,J=5.2 Hz,H-9a),2.79(1H,d,J= 5.2 Hz,H-9b),4.59(1H,d,J=12.4 Hz,H-10a),4.21(1H,d,J=12.4 Hz,H-10b),2.35(1H,m,H-2'),1.61(1H,m,H-3'a),1.42(1H,m,H-3'b),0.85(3H,t,J=7.2 Hz,H3-4'),1.08(3H,d,J= 7.2 Hz,H3-5'),2.85(1H,m,H-2''),1.33(3H,d,J =7.2 Hz,H3-3''),1.33(3H,d,J=7.2 Hz,H3-4'') .The NMR and MS data were in accordance with those reported in the literature[23],and identified 24 as 8,9-epoxy-3-isobutyryloxy-10-(2-methylbutanoyl)thymol.

1 Flora of China Editorial Committee(中国植物志编委会),Chinese Academy of Sciences(中国科学院).Flora of China (中国植物志),Beijing:Science Press,2005,75:259-260.

2 Zeng GZ,Tan NH,Ji CJ,et al.Apoptosis inducement of bigelovin from Inula helianthus-aquatica on human leukemia U937 cells.Phytother Res,2009,23:885-891.

3 Wang Q,Zhou BN,Zhang RW,et al.Cytotoxicity and NMR spectral assignments of ergolide and bigelovin.Planta Med,1996,62:166-168.

4Zhang RW(张人伟),Lin YY(林咏月),Qi YF(戚育芳),et al.Studies on the anticancer constituents of Inula helianthus-aquatica C.Y.Wu Ex Ling.Nat Pro Res Dev(天然产物研究与开发),1998,10:31-33.

5 Huang HQ(黄火强),Piao XL(朴香兰),Yan MN(闫美娜),et al.Seven sesquiterpene lactones from flower of Inula helianthus-aquatica.Chin J Exp Tradit Med Formul(中国实验方剂学杂志),2011,17:112-115.

6 Romo J,Joseph-Nathan P,Diaz AF.The constituents of Helenium aromaticum(HOOK)Bailey,the structure of aromatin and aromaticin.Tetrahedron,1964,20:79-85.

7 Bohlmann F,Misra LN,Jakupovic J.Pseudoguaianolides and carabrone derivatives from Loxothysanus sinuatus.Phytochemistry,1985,24:1021-1026.

8 Parker BA,Geissman TA.The sesquiterpenoid lactones of Helenium bigelovii Gray.J Org Chem,1962,27:4127-4132.

9 Bohlmann F,Mahanta PK.Zwei neue pseudoguaianolide aus Telekia speciosa.Phytochemistry,1979,18:887-888.

10 Maruyama M,Omura S.Carpesiolin from Carpesium abrotanoides.Phytochemistry,1977,16:782-783.

11 Ito K,Iida T.Seven sesquiterpene lactones from Inula britannica var.Chinensis.Phytochemistry,1981,20:271-273.

12 Rustaiyan A,Zare K,Biniyaz T,et al.A seco-guaianolides and other sesquiterpene lactones from Postia bombycina.Phytochemistry,1989,28:3127-3129.

13 Zdero C,Bohlmann F,King RM,et al.Sesquiterpene lactones from Bedfordia arborescens.Phytochemistry,1987,26:1207-1209.

14 Bohlmann F,Mahanta PK,Jakupovic J,et al.New sesquiterpene lactones from Inula species.Phytochemistry,1978,17: 1165-1172.

15 Jakupovic J,Zdero C,Grenz M,et al.Twenty-one acylphloroglucinol derivatives and further constituents from south African Helichrysum species.Phytochemistry,1989,28:1119-1131.

16 Spring O,Vargas D,Fischer NH.Sesquiterpene lactones and benzofurans in glandular trichomes of three Pappobolus species.Phytochemistry,1991,30:1861-1867.

17 Kuo YH,Lin BY.A new dinorxanthane and chromone from the root of Tithonia diversifolia.Chem Pharm Bull,1999,47: 428-429.

18 Matsuo K,Yokoe H,Shishido K,et al.Synthesis of diversifolide and structure revision.Tetrahedron Lett,2008,49:4279-4281.

19 Shuji O,Kaori TY,Seiji K,et al.A species-selective allelopathic substance from germinating sunflower(Helianthus annuus L.)seeds.Phytochemistry,2001,56:577-581.

20 Monache GD,Monache FD,Becerra J,et al.Thymol derivatives from Eupatorium glechonophyllum.Phytochemistry,1984,23:1947-1950.

21 Liang HX,Bao FK,Dong XP,et al.Antibacterial thymol derivatives isolated from Centipeda minima.Molecules,2007,12:1606-1613.

22 Su BN,Takaishi Y,Yabuuchi T,et al.Sesquiterpenes and monoterpenes from the bark of Inula macrophylla.J Nat Prod,2001,64:466-471.

23 Mossa JS,El-Feraly FS,Muhammad I,et al.Sesquiterpene lactones and thymol esters from Vicoa pentanema.J Nat Prod,1997,60:550-555.

猜你喜欢

第二军医大学方剂学药学院
基于QFD理论的方剂学课堂教学质量评价及反馈
让防治肝癌成为可能
———记第二军医大学免疫学研究所副教授侯晋
如何提高学生方剂学的学习兴趣
滇南羊耳菊乙酸乙酯部位化学成分研究
金铁锁地上部分化学成分研究
基于中药学通用人才培养的《方剂学》教学改革研究
HSCCC-ELSD法分离纯化青葙子中的皂苷
湖北旋覆花化学成分的研究