APP下载

帕尼培南-倍他米隆的合成研究

2010-01-11王其军徐东成谢建武

浙江化工 2010年1期
关键词:滤饼柱层析烧瓶

王其军 徐东成,2 谢建武,2

(1.浙江师范大学化学与生命科学学院,浙江 金华 321004;2.浙江师范大学物理化学研究所,浙江省固体表面反应化学重点实验室,浙江 金华 321004)

帕尼培南-倍他米隆[1]以抗菌谱广、抗菌活性强、毒性及耐药性低等特点引起了广泛的关注,已成为治疗院内严重感染、多重耐药菌感染、混合感染的有效抗菌药物,在世界抗生素市场中己占有重要地位。帕尼培南-倍他米隆属碳青霉烯[2]类抗生素药物,一直被认为是日本潜在的"巨型炸弹"的新药,帕尼培南的年销售额约为0.75亿美元,占青霉素类药物的2.3%[3],是一种很具有市场开发前景的新一代碳青霉烯类抗生素。由于帕尼培南-倍他米隆的开发难度较大,目前国内尚无厂家研制开发帕尼培南-倍他米隆原料及制剂的报道,只有上海三共制药有限公司进口分装帕尼培南-倍他米隆注射剂,商品名"克倍宁",价格昂贵,0.25g/支规格的粉针剂单价为135元;0.5g/支的约为202~220元,按每次0.5g,每日两次用量计算,单日单药费约为400元,不能为多数患者接受。因此,迫切需要对帕尼培南-倍他米隆进行合成研究,开发该品原料及制剂产品,以替代进口,降低药价,为广大患者服务;开发出符合工业化生产需要的合成路线和工艺,填补国内空白;为今后国内进行碳青霉烯类药物的开发和研究打下坚实的基础。

经文献[4]调研,我们设计了帕尼培南-倍他米隆的合成路线如图1所示:

图1 帕尼培南-倍他米隆的合成路线

1 实验

1.1 试剂与仪器

本文所描述的实验若是对空气和水敏感的反应均在Schlenk装置中进行,若是对空气和水不敏感的反应在常规的装置中进行。试剂若无特别说明,均为市售CP或AR级,不经特别处理,直接使用。有机反应用薄层硅胶板(TLC)、GC与LC/MS跟踪监测。产物纯化时使用GF254硅胶(青岛海洋化工,200~300目)或者HP-20AG型号大孔树脂(上海摩速科学器材有限公司)层析分离,洗脱剂为石油醚/乙酸乙酯、二氯甲烷/甲醇或者丙酮/水按不同比例的混合溶剂。熔点由WRS-1B数字熔点仪测定;红外光谱在Nicolet 560型-FT红外光谱测定仪上测定,固体样品采用溴化钾压片法,液体样品采用液膜法;核磁共振在Bruker AV-400(400MHz)核磁共振仪上测定,氘代氯仿、氘代二甲亚砜或氘代水作为溶剂,四甲基硅烷为内标;气相由6820(G1176A)测定;液相由Shimadzu LC-10Advp测定;质谱用Waters ZQ-2000质谱仪测定;元素分析在Vari-ELIII型元素分析仪上完成。

1.2 实验步骤

1.2.1 4的合成

250mL圆底烧瓶中加入乙酰乙酸甲酯(5.8g,50mmol)、对硝基苄醇(7.65g,50mmol)和B(OH)3[5](0.31g,5mmol),然后加入无水甲苯(100mL),加热回流5h。GC检测反应完毕,减压除去溶剂,粗产品经硅胶柱层析纯化得淡黄色固体9.95g,产率为84%,m.p:42~44℃。

1.2.2 5的合成

100mL的圆底烧瓶中加入化合物4(2.37g,10mmol)和乙腈(40mL),冰浴冷却下加入Et3N(3.03g,30mmol)。然后再滴加对十二烷基苯磺酰叠氮[6](3.51g,10mmol),约30min加完。移去冰浴,室温搅拌2h。TLC跟踪反应完毕后,过滤,滤液中加入乙醚(60mL)和水(60mL),分液,水层再用乙醚(60mL)萃取,合并有机相,依次用NaOH溶液(60mL,1mol/L)和水(60mL)洗涤,无水NaSO4干燥,浓缩得到淡黄色固体2.50g,产率:95%,m.p:127~129℃。

1.2.3 6的合成

N2保护下,将化合物5(2.63g,10mmol)、无水三乙胺(2mL,15mmol)和无水CH2C12(20mL)加入到50mL三颈瓶中,当体系温度降至2℃左右后,滴加叔丁基二甲基硅基三氟甲磺酸酯(TBDMSOTf)(2.75mL,12mmol),30min内滴加完毕。反应液在加入过程中立即变为橙黄色澄清溶液,继续保持体系在2℃下反应3h。TLC跟踪反应完毕后,体系中加入CH2C12(50mL)稀释,依次用水(20mL×3)和饱和NaCl水溶液(20mL×3)洗涤,无水Na2SO4干燥,浓缩得黄色固体3.76g,收率:99.8%,m.p:91~94℃。

1.2.4 7的合成

N2保护下,250mL圆底烧瓶中加入干燥的二氯甲烷(100mL)和无水ZnCl2[7](0.68g,5mmol),再加入化合物17(2.87g,10mmol)和化合物6(7.54g,20mmol),加热回流6h。TLC跟踪反应完毕后,体系中加入乙酸乙酯(100mL),依次用饱和NaHCO3溶液(100mL)和饱和NaCl溶液(100mL)洗涤,无水NaSO4干燥,浓缩除去溶剂得黄色油状粗产物,柱层析纯化得淡黄色固体3.68g,产率:75%,m.p:107~109℃。

1.2.5 8的合成

50mL圆底烧瓶中加入化合物7(4.90g,10mmol)和甲醇(18mL),然后逐滴加入盐酸(10mL,1mol/L),滴加完毕后室温搅拌18h。TLC跟踪反应完毕后,将反应体系冷冻后抽滤,滤饼依次用冷的甲醇水溶液(v/v:9/1,30mL)和冷的乙醚(30mL)洗涤,晾干得白色固体3.57g,产率:95%,产物分解温度:156.5℃。

1.2.6 9的合成

50mL两颈瓶中加入化合物8(1g,2.6mmol)和Rh2(OAc)4[8](0.01g),抽真空充N2保护,换气三次,N2保护下再注入干燥的乙酸乙酯(15mL),加热回流5h,反应液呈墨绿色。TLC跟踪反应完毕后,待反应体系冷却至室温,过滤,滤饼用乙酸乙酯(10mL×3)洗涤,减压浓缩除去溶剂得粗产物,粗产物经柱层析纯化,再用乙酸乙酯重结晶得淡黄色固体0.79g,产率:85%,m.p:115~117℃。

1.2.7 10的合成

500mL的圆底烧瓶中加入K2CO3(27.5g,200mmol)、(3R)-3-羟基吡咯烷盐酸盐(12.35g,100mmol)和H2O(80mL),冷却至2℃左右,然后逐滴加入含氯甲酸对硝基苄酯(21.55g,100mmol)的甲苯溶液(25mL),5℃下搅拌2h,TLC跟踪反应完毕后,待反应体系冷却至室温,过滤,滤饼用水洗涤后得粗产物,乙醇重结晶得到白色固体25.2g,产率:94.7%,m.p:109~111℃。

1.2.8 11的合成

室温下,250mL三颈圆底烧瓶中将化合物10(13.3g,50mmol)溶入甲苯(20mL),然后同时逐滴加入三乙胺(8.4mL,60mmol)和MsCl(4.26mL,55mmol),两者滴加速度尽量保持一致,滴加完毕后,室温搅拌20min。TLC跟踪反应完毕后,加水(30mL),过滤,滤饼晒干即得产物白色固体15.4g,产率:89.5%,m.p:103~105℃。

1.2.9 12的合成

500mL圆底烧瓶中,加入化合物11(6.56g,20mmol)、硫代乙酸钾(2.28g,20mmol)和溶剂DMF(200mL),在80℃下搅拌反应3.75h。TLC跟踪反应完毕后,加入乙酸乙酯(400mL)和冰水(120mL),1mol/L的盐酸调节体系pH=4,分液,有机层依次用水(200mL)和饱和NaCl(200mL)洗涤,无水NaSO4干燥,浓缩,柱层析纯化得黄色固体5.18g,产率:80%,m.p:68~71℃。

1.2.10 13的合成

250mL圆底烧瓶中加入化合物12(6.48g,20mmol)和干燥的二氯甲烷(100mL),冷却至-35℃,逐滴加入含甲醇钠质量分数为28%的甲醇钠甲醇溶液(4.63g,24mmol),-35℃搅拌反应30min。TLC跟踪反应完毕后,冰水(100mL)淬灭反应,稀盐酸调节反应液至中性,二氯甲烷(100mL×3)萃取,合并有机相,饱和NaCl溶液(150mL)洗涤,无水NaSO4干燥,浓缩,柱层析纯化得淡黄色固体5.61g,产率:94%,m.p:57~59℃。

1.2.11 14的合成

N2保护下,250mL圆底烧瓶加入化合物9(3.48g,10mmol)和无水乙腈(100mL),冷却至0℃,依次逐滴加入二异丙基乙胺(1.55g,12mmol)和二苯氧基磷酰氯(3.22g,1.2mmol),20min内滴加完毕,0℃搅拌反应30min,TLC跟踪反应进程(石油醚:乙酸乙酯=2:3,Rf=0.7)。反应完毕后,再依次逐滴加入二异丙基乙胺(1.55g,12mmol)和无水乙腈(20mL)溶解的化合物13(3.58g,1.2mmol)。0℃下继续反应1h,TLC跟踪反应进程(二氯甲烷:甲醇=20:1,Rf=0.4)。反应完毕后,大量淡黄色固体出现,冰醋酸调节体系pH=7,过滤,滤饼用冰水(100mL×3)洗涤,晾干即得产物;滤液中加入冰水,搅拌,淡黄色固体出现,抽滤,洗涤,晾干共得到淡黄色固体4.9g,产率:80%,m.p:143~146℃。

1.2.12 15的合成

将化合物14(3.0g,4.9mmol)、四氢呋喃(80mL)、磷酸盐缓冲溶液(pH=7.0,60mL)和10%钯碳(1.5g)加入到高压反应釜中,在H2(4~5atm)条件下,40℃搅拌反应2h。LC/MS检测反应完毕后,用硅藻土将钯碳滤去,并用四氢呋喃(15mL)与水(10mL)的混合液洗涤滤饼。40℃下滤液浓缩除去四氢呋喃,乙酸乙酯(60mL×3)提取,水层先用大孔树脂(HP-20AG型号)柱层析纯化,冻干,得浅黄色粉末,再用水重结晶得到产物0.95g,产率:65%,分解温度:265℃。

1.2.13 1的合成

50mL圆底烧瓶中加入化合物15(0.6g,2mmol)和磷酸盐缓冲溶液(pH=7.0,20mL),冷却至0℃,缓慢滴加氢氧化钠溶液(1mol/L)调节溶液的pH=8.5,然后将乙亚胺酸乙酯盐酸盐[9](1.2g,10mmol)分三次加入。每次加完后,需用氢氧化钠溶液(1mol/L)调节溶液pH=8.5,加毕后,0℃反应10min,5%盐酸淬灭反应。反应液先用大孔树脂(HP-20AG型号)柱层析提纯,冻干,得浅黄色粉末,再用水重结晶得到白色固体0.54g,产率:80%,m.p:193~195℃。

1.2.14 16的合成

50mL的圆底烧瓶中加入β-胺基丙酸(1g,10mmol)、氢氧化钠(0.44g,11mmol)、碳酸氢钠(2.9g,35mmol)和水(15mL),冷却至2~5℃,逐滴加入苯甲酰氯(2.5mL,20mmol),滴加完毕后,5℃反应2h。用碳酸氢钠水溶液和茚三酮跟踪反应进程(体系不显色时代表反应完全)。反应完毕后,用盐酸酸化直至大量白色固体出现,过滤,滤饼用热的苯(10mL×3)洗涤,晾干即得白色固体1.64g,产率:85%,m.p:132~133℃。

2.1产品的表征

4:m.p.:42~44℃;nmax(KBr)/cm-1:3422,3115,2945,1748,1719,1605;1H NMR(400MHz,CDCl3):δ2.30(s,3H),3.60(s,2H),5.29(s,2H),7.55(d,J=8.0Hz,2H),8.22(d,J=8.0Hz,2H);13C NMR(100MHz,CDCl3):δ30.3,49.8,65.4,123.7,128.4,142.6,147.8,166.6,200.1;MS(ESI)found:[M+H]+=238;Anal.Calcd.for C11H11NO5,C,55.70;H,4.67;N,5.90;Found C,55.72;H,4.65;N,5.93.

5:m.p.:127~129℃;nmax(KBr)/cm-1:3656,3402,3084,2943,2149,1711,1662;1H NMR(400MHz,CDCl3):δ2.49(s,3H),5.37(s,2H),7.55(d,J=8.0Hz,2H),8.26(d,J=8.0Hz,2H);13C NMR(100MHz,CDCl3):δ28.3,45.4,65.4,124.0,128.7,142.2,147.9,161.0,189.6;MS(ESI)found:[M+H]+=264;Anal.Calcd.for C11H9N3O5,C,50.20;H,3.45;N,15.96;Found C,50.22;H,3.42;N,15.93.

6:m.p.:91~94℃;nmax(KBr)/cm-1:3390,3079,2931,2858,2111,1700,1605,1524;1H NMR(400MHz,CDCl3):δ0.23(s,6H),0.92(s,9H),4.28(d,J=2.5Hz,1H),4.98(d,J=2.5Hz,1H),5.33(s,2H),7.52(d,J=8.0Hz,2H),8.23(d,J=8.0Hz,2H);13C NMR(100MHz,CDCl3):δ1.2,1.9,22.9,30.5,69.6,95.4,128.7,133.1,145.1,147.9,146.3,163.5;MS(ESI)found:[M+H]+= 378;Anal.Calcd.for C17H25N3O5Si,C,53.81;H,6.64;N,11.07;Found C,53.75;H,6.67;N,11.10.

7:m.p.:107~109℃;nmax(KBr)/cm-1:3101,2929,2854,2138,1763,1712,1664;1H NMR(400MHz,CDCl3):δ0.03(s,6H),0.82(s,9H),1.17(d,J=6.0Hz,3H),2.82~2.84(m,1H),2.94~3.01(m,1H),3.34(dd,J=2.8,17.6Hz,1H),3.98(d,J=9.6Hz,1H),4.14~4.17(m,1H),5.34(s,2H),6.26(s,1H),7.52(d,J=8.0Hz,2H),8.21(d,J=8.0Hz,2H);13C NMR(100MHz,CDCl3):δ-5.0,-4.3,17.9,22.5,25.7,45.4,46.3,63.9,65.4,65.6,123.9,128.7,142.1,148,160.7,168.1,190.14;MS(ESI)found:[M+H]+=491;Anal.Calcd.for C23H31N3O7Si,C,56.42;H,6.38;N,8.58;Found C,56.32;H,6.40;N,8.51.

8:decomposed:156.5℃;nmax(KBr)/cm-1:3396,2971,2900,2141,1736,1711,1662,1606;1H NMR(400MHz,CDCl3):δ1.31(d,J=6.4Hz,3H),1.83(s,1H),2.91(d,J=4.8Hz,2H),3.16~3.23(m,1H),3.29~3.35(m,1H),3.99~4.02(m,1H),4.18~4.21(m,1H),5.37(s,2H),6.27(s,1H),7.55(d,J=8.0Hz,2H),8.26(d,J=8.0Hz,2H);13C NMR(100MHz,CDCl3):δ22.3,40.2,45.6,45.6,63.7,64.4,65.6,124.1,129.1,143.8,147.7,161.1,168.2,190.3.MS(ESI)found:[M+H]+=377;Anal.Calcd.for C17H17N3O7,C,54.40;H,4.57;N,11.20;FoundC,54.35;H,4.60;N,11.16.

9:m.p.:115-117℃;nmax(KBr)/cm-1:3470,3077,2970,2916,1749,1605,1521;1H NMR(400MHz,CDCl3):δ1.40(d,J=4.0Hz,3H),2.45~2.52(m,1H),2.91~2.98(m,1H),3.19~3.22(m,1H),4.14~4.18(m,1H),4.32~4.35(m,1H),4.77(s,1H),5.25~5.36(m,2H),7.54(d,J=8.0Hz,2H),8.24(d,J=8.0Hz,2H);13C NMR(100MHz,CDCl3):δ22.1,41.3 51.9,64.0,65.8,66.3,68.3,123.9,128.4,141.9,164.8,172.4,206.7;MS(ESI)found:[M+H]+=349;Anal.Calcd.for C16H16N2O7,C,55.17;H,4.63;N,8.04;Found C,55.21;H,4.58;N,8.05.

10:m.p.:109~111℃;nmax(KBr)/cm-1:3374,3081,2984,2911,1673,1607,1536;1H NMR(400MHz,CDCl3):δ1.96~2.00(m,2H),2.29~2.39(m,1H),3.45~3.61(m,4H),4.50(s,1H),5.22(s,2H),7.52(d,J=8.0Hz,2H),8.20(d,J=8.0Hz,2H);13C NMR(100MHz,CDCl3):δ33.1,44.3,54.8,65.4,71,123.8,128.0,144.3,147.5,154.9;MS(ESI)found:[M+H]+=267;Anal.Calcd.for C12H14N2O5,C,54.13;H,5.10;N,10.52;Found C,54.18;H,5.13;N,10.45.

11:m.p.:109~111℃;nmax(KBr)/cm-1:3394,3083,2946,1938,1718,1606,1522;1H NMR(400MHz,CDCl3):δ2.17~2.20(m,2H),3.05(s,3H),3.55~3.82(m,4H),5.22(s,2H),5.29(s,1H),7.52(d,J=8.0Hz,2H),8.20(d,J=8.0Hz,2H);13C NMR(100MHz,CDCl3):δ32.6,38.7,44.0,52.5,65.6,79.6,123.8,128.2,143.9,147.6,154.8;MS(ESI)found:[M+H]+=345;Anal.Calcd.for C13H16N2O7S,C,45.34;H,4.18;N,8.14;Found C,45.36;H,4.13;N,8.16.

12:m.p.:68~71℃;nmax(KBr)/cm-1:3406,3089,3048,2878,1714,1681,1604;1H NMR(400MHz,CDCl3):δ1.85~2.01(m,1H),2.29~2.36(m,3H),3.35~3.38(m,1H),3.52~3.56(m,2H),3.84~3.89(m,1H),4.00~4.02(m,1H),5.25(s,2H),7.52(d,J=8.0Hz,2H),8.22(d,J=8.0Hz,2H);13C NMR(100MHz,CDCl3):δ-0.7,25.9,55.8,56.4,67.6,96.8,111.8,112.3,115.9,128.2,150.6,153.8;MS(ESI)found:[M+H]+=328;Anal.Calcd.for C12H14N2O5S,C,51.84;H,4.97;N,8.64;Found C,51.80;H,4.99;N,8.62.

13:m.p.:57~59℃;nmax(KBr)/cm-1:3393,3109,2885,2585,1715,1604,1517;1H NMR(400MHz,CDCl3):δ1.73~1.75(m,1H),1.88~1.91(m,1H),3.32~3.36(m,1H),3.47~3.51(m,2H),3.66~3.68(m,1H),3.79~3.84(m,1H),5.23(s,2H),7.53(d,J=8.0Hz,2H),8.22(d,J=8.0Hz,2H);13CNMR(100MHz,CDCl3):δ35.8,45.9,55.3,65.4,127.4,128.3,132.3,144.2,147.6,154.0;MS(ESI)found:[M+H]+=283;Anal.Calcd.for C12H14N2O4S,C,51.05;H,5.00;N,9.92;Found C,51.08;H,4.96;N,10.00.

14:m.p.:143~146℃;nmax(KBr)/cm-1:3548,3076,2963,1774,1701,1605,1546;1H NMR(400MHz,CDCl3):δ1.35(d,J=6.0Hz,3H),1.91~2.08(m,1H),2.03(d,J=12.0Hz,1H),2.28~2.43(m,1H),3.17~3.22(m,3H),3.42~3.52(m,2H),3.63~3.75(m,2H),3.85~3.89(m,1H),4.24~4.28(m,2H),5.21~5.24(m,3H),5.49(d,J=12.0Hz,1H),7.50(d,J=8.0Hz,2H),7.64(d,J=8.0Hz,2H),8.19~8.22(m,4H);13C NMR(100MHz,CDCl3):δ11.9,17.2,18.5,21.9,32.3,40.9,42.4,45.2,53.0,65.5,67.1,120.4,124.3,128.1,129.1,143.0,143.9,146.5,147.6,153.8,154.1,160.6,175.8;MS(ESI)found:[M+H]+=613;Anal.Calcd.for C28H28N4O10S,C,54.90;H,4.61;N,9.15;Found C,54.85;H,4.59;N,9.22.

15:decomposed:265℃.;nmax(KBr)/cm-1:3407,2969,2772,2458,1767,1615,1394;1H NMR(400 MHz,D2O):δ1.10(d,J=8.0Hz,3H),1.87~1.89(m,1H),2.29~2.34(m,1H),3.04(d,J=8.0Hz,2H),3.15~3.25(m,4H),3.32~3.34(m,1H),3.82~3.86(m,1H),4.01~4.07(m,2H);13C NMR(100MHz,D2O):δ20.1,30.9,39.6,41.0,44.6,51.5,52.4,64.8,65.1,131.4,136.7,167.9,179.5;MS(ESI)found:[M+H]+=299;Anal.Calcd.for C13H18N2O4S,C,52.33;H,6.08;N,9.39;Found C,52.35;H,6.05;N,9.37.

1:m.p.:193~195℃;nmax(KBr)/cm-1:3403,2973,2785,1765,1603,1517;1H NMR(400MHz,D2O):δδ1.06(d,J=8.0Hz,3H),1.88~1.91(m,1H),2.05(d,J=8.0Hz,3H),2.23~2.30(m,1H),3.00~3.03(m,2H),3.19~3.22(m,1H),3.36~3.88(m,5H),3.99~4.03(m,2H);13C NMR(100MHz,D2O):δ18.0,20.1,31.3,39.4,41.8,46.8,48.5,52.6,54.0,55.9,61.7,65.1,163.0,167.9,179.5;MS(ESI)found:[M+H]+=340;Anal.Calcd.for C15H21N3O4S,C,53.08;H,6.24;N,12.38;Found C,53.10;H,6.20;N,12.35.

16:m.p.:132~133℃;nmax(KBr)/cm-1:3341,3283,3065,2927,1707,1645,1605;1H NMR(400MHz,CDCl3):δ2.72(t,J=8.0Hz,1H),3.73(q,J=6.0,12.0Hz,2H),6.95(s,1H),7.41(t,J=7.6Hz,2H),7.49(t,J=6.8Hz,1H),7.75(d,J=7.2Hz,2H);13C NMR(100MHz,CDCl3):δ33.8,35.3,127.0,128.6,131.8,134.0,168.0,177.1;MS(ESI)found:[M+H]+=194;Anal.Calcd.for C10H11NO3,C,62.17;H,5.74;N,7.25;Found C,62.21;H,5.71;N,7.27.

2.1 结论

从乙酰乙酸甲酯、对硝基苄醇以及单环β-内酰胺出发,经过酯交换、重氮化等六步反应,以48.2%的总收率完成了帕尼培南双环母核的构建;以(3R)-3-羟基吡咯烷盐酸盐为起始原料,经过酰胺化、磺酰化、乙酰硫基亲核取代反应和皂化四步反应,以63.7%的总收率完成了对帕尼培南侧链的构建;再将母核和侧链进行缩合对接,再经过氢解脱保护和亚胺化完成了对帕尼培南的构建,整条路线共十三步,总收率达到13.4%。同时以85%的收率完成了对倍他米隆的合成。本文为帕尼培南-倍他米隆的合成提供了一种高效、高收率、环境友好且生产成本低的合成方法,对今后国内进行碳青霉烯类药物的开发和研究具有实际指导意义。

[1](a)John D,Buynak,M Narayana R,et al.Useful chemistry of 3-(l-methylethylidene)-4-acetoxy-2-azetidinone:a formal synthesis of(+)-asparenomycin C[J].J.Org.Chem.,1985,50:4245-4252;(b)Tesuo M,Yulio S,Toshihiko H,et al.Systhesis and in vitro activity of new carbapenem RS-533[J].The Journal of Antibiotics,1983,36(8):1034-1039;(c)Yutaka N,Tadafumi K,Tetsuya Y,et al.Practical large-scale synthesis of the 2-aminomethylpyrrolidin-4-ylthio-containing side chain of the novel carbapenem antibiotic doripenem[J].Organic Process Research&Development,2003,7:649-654;(d)Huw M L,Davies J H,Craig,T.Synthesis and chemistry of donor/acceptor-substituted cyclopropenes[J].J.Org.Chem.,1995,60:7529-7534.

[2]Kazuhiko K,Masahiko S,Tooru K,et al.2-Substituted 2,3-dihydro-4H-1,3-benzoxazin-4-ones:a novel auxiliary for stereoselective synthesis of 1β-methylcarbapenems[J].J.Org.Chem.,1995,60:1096-1097.

[3]许铁男.抗生素帕尼培南/贝他扑隆[J].国外医药:合成药.生化药.制剂分册,1996,17(3):179-181.

[4](a)Tetsuo M,Yukio S,Toshihiko H,et al.Carbapenen compounds,and compositions containing them:US,4552873[P].1985-11-12.(b)Kahan F M,Kropp H.Combination of 2-substituted carbapenens with dipeptidase lnhibitors:EP,161546[P].1985-11-21.(c)Yoshida A,Oda K.Process for preparing carbapenen and penem compoundsand new compounds involved in that process:EP,587436[P].1994-03-16.

[5]Kondaiah G C M,Amarnath R L,Srihari B K,et al.Boric acid:an efficient and environmentally benign catalyst for transesterification of ethyl acetoacetate[J].Tetrahedron Lett.,2008,49:106-109.

[6](a)Ratcliffe W,Salzmann T N,Christensen B G.A novel synthesis of the carbapen-2-em ring system[J].Tetrahedron Lett.,1980,21:31-34;(b)Oida S,Yoshida A,Ohki E.Synthetic approach directed at 1-carbapenems and 1-carbapenams[J].Chem.Pharm.Bull.,1980,28:3494-3500.

[7]Nagao Y,Kumagai T,Nagase Y,et al.β-Lactams.1.highly diastereose-lective alkylation of 4-acetoxyazetidin-2-one useful for 1β-methylcarbape-nem synthesis[J].J.Org.Chem.,1992,57(15):4232-4237.

[8]John D,Buynak M,Narayana R,et al.Useful chemistry of 3-(-methylethylidene)-4-acetoxy-2-azetidinone:a formal synthesis of asparenomycin C[J].J.Org.Chem.,1985,50:4245-4252.

[9]Dox A W.Acetamidine hydrochloride[J].Organic Syntheses,1928,8:1-3.

猜你喜欢

滤饼柱层析烧瓶
水基钻井液滤饼去除方法
等压滤饼过滤过程中五个基本理论问题之探讨
——非均布滤饼的局部比阻与平均比阻的测定与计算方法
泥炭组成成分的GC-MS分析
小蜡叶民间药用物质基础提取模式探索
柱层析用硅胶对羌活中主要成分的影响
厚朴酚中压硅胶柱层析纯化工艺的优化
浓度和粒度对细粒煤滤饼结构影响的研究
Acellular allogeneic nerve grafting combined with bone marrow mesenchymal stem cell transplantation for the repair of long-segment sciatic nerve defects: biomechanics and validation of mathematical models
水重新沸腾实验的改进
神奇的“魔术”实验