APP下载

重茬条件下距原栽植行不同距离对G935自根砧‘宫藤富士’幼树树体生长和果实产量的影响

2023-10-24李民吉李兴亮张强周佳杨雨璋周贝贝张军科魏钦平

中国农业科学 2023年17期
关键词:自根重茬矮化

李民吉,李兴亮,张强,周佳,杨雨璋,周贝贝,张军科,魏钦平

重茬条件下距原栽植行不同距离对G935自根砧‘宫藤富士’幼树树体生长和果实产量的影响

李民吉,李兴亮,张强,周佳,杨雨璋,周贝贝,张军科,魏钦平

北京市农林科学院林业果树研究所/农业农村部华北都市农业重点实验室,北京 100093

【目的】调查研究重茬栽植条件下距原栽植行不同距离种植对G935矮化自根砧‘宫藤富士’苹果幼树树体生长等的影响,评价G935矮化自根砧嫁接‘宫藤富士’的抗重茬能力,为我国老龄低效苹果园重茬更新和栽培模式升级提供理论依据。【方法】2018年春,刨除12年生苹果大树(‘宫藤富士’/SH6/实生砧),不进行土壤杀菌,不添加有机肥、化肥和生物菌肥,直接在距原栽植行不同距离(0、0.5、1、1.5和2 m)栽植G935矮化自根砧‘宫藤富士’苗(2年根1年干),采用细纺锤树形整形修剪,栽植后连续4年调查5个处理下G935矮化自根砧‘宫藤富士’幼树树体生长、叶片功能、早花早果性和果实产量品质的差异。【结果】重茬栽植条件下,距原栽植行不同距离G935矮化自根砧‘宫藤富士’树体生长、叶片功能、早花早果性和果实产量品质没有显著差异。重茬栽植4年内,随着树龄的增长,5个处理‘宫藤富士’树高、干粗和主枝数量逐年增加,重茬栽植第4年,各处理树体平均主枝数量均达到30个以上。栽植第2年开始,各处理树体长枝比例逐年降低,短枝比例逐年升高。重茬栽植第4年,各处理‘宫藤富士’树体新梢生长、叶片叶绿素含量、净光合速率、百叶重(鲜重和干重)均无显著性差异;各处理‘宫藤富士’果实的平均单株产量和果实品质(平均单果重、果形指数、可滴定酸含量、可溶性固形物含量和果实固酸比)均相近,无显著性差异。【结论】重茬栽植条件下,栽植前4年,5个距离原栽植行不同距离种植G935矮化自根砧‘宫藤富士’的幼树树体生长、叶片功能、早花早果性和果实产量、品质等指标均没有显著性差异,各处理树体枝类组成合理,树势中庸且不衰弱,成花早,果实品质优良,G935适宜重茬再植使用,且抗重茬效果不受与原栽植行距离的影响。

重茬栽植;G935砧木;矮化自根砧;‘宫藤富士’苹果;树体生长;果实产量

0 引言

【研究意义】我国是世界最大的苹果生产和消费国,苹果产业在我国乡村振兴、农民增收中发挥着重要作用[1-5]。苹果矮砧栽培模式具有省工省力、早果丰产的优势,是世界苹果产业的发展方向,虽然近年我国苹果矮砧栽培模式发展较快,但整体比例仍然较低,且主要是矮化中间砧或短枝型的矮化栽培模式[5-6]。目前我国40%以上的苹果园树龄老化[7-8],老龄低效果园重茬更新的重茬障碍问题日益凸显,筛选适宜的抗重茬苹果矮化自根砧木,研究其抗重茬特性和配套栽培技术迫在眉睫。【前人研究进展】重茬栽植建园时,新栽植的苹果幼树成活率低、个体差异大、长势弱、不结果或结果晚等现象称为苹果重茬障碍。国内关于苹果重茬障碍做了大量研究,主要集中在如何通过轮作或土壤杀菌等处理方法减少重茬障碍的技术研究,例如栽植前树穴土用防治重茬障碍专用菌肥处理或树盘范围适时种植葱等栽培技术克服重茬障碍[9-11]。应用抗重茬砧木直接建园是解决苹果重茬障碍的更简单更根本的方法,我国先后引进了M系、MM系、P系、O系和B系等苹果矮化砧木,同时育成了一批具有自主知识产权的砧木,但具有抗重茬能力的矮化砧木几乎没有[12-17]。美国农业部和康奈尔大学Geneva试验站育成了一批具有不同抗性的G系砧木,并筛选出G935、G41等具有抗重茬能力的砧木[18-22],我国也初步开展了G系砧木抗重茬等抗逆能力的评价研究[23-24]。【本研究切入点】结合生产中采用错行种植减轻重茬障碍的方法,本研究深入评价重茬栽植条件下距离原栽植行不同距离G935矮化自根砧‘宫藤富士’的抗重茬能力。【拟解决的关键问题】本研究以G935矮化自根砧嫁接‘宫藤富士’为材料,调查研究重茬栽植苹果园5个距离原栽植行不同距离种植对G935矮化自根砧木‘宫藤富士’苹果幼树树体生长、叶片功能、早花早果性和产量及品质的影响,更深入地了解其抗重茬特性和应用技术,为我国苹果园重茬更新建园砧木的选择和应用提供理参考。

1 材料与方法

试验于2018—2021年在北京市海淀区北京市农林科学院林业果树研究所所内苹果试验田内进行。

1.1 试验处理

2018年春季,刨除12年生苹果树(‘宫藤富士’/SH6/实生砧,栽植密度为1 m×4 m),果园土壤类型为壤土(全氮1.07 g∙kg-1,有机质13.9 g∙kg-1,碱解氮65.8 mg∙kg-1,有效磷22.1 mg∙kg-1,有效钾124 mg∙kg-1,pH 8.07),原土壤不做杀菌处理,不施用有机肥、化肥和生物菌肥;在距原栽植行5个不同距离(0、0.5、1、1.5和2 m)(T1—T5)用机械直接开宽、深各20 cm左右的小沟,按照株距1 m种植G935(购自VIVAI F.lli ZANZI di C. Zanzi & C. s.s. Soc. Agr.)矮化自根砧‘宫藤富士’(2年根1年干)树苗,砧木露出地面10—15 cm,每个处理种植4行共200株。采用细纺锤形树形,应用水肥一体化滴灌系统进行常规肥水管理。

1.2 测定指标

自种植后,每个处理在中间2行中选取20株长势具有代表性的树为试验树,连续调查。落叶后用游标卡尺测量品种树干粗度(嫁接口上10 cm处)和砧木树干粗度(嫁接口下5 cm处),并计算砧穗干周比;落叶后,不修剪,调查树体全部不同长度的枝类(<5 cm、5—15 cm、15—30 cm和>30 cm)数量,计算统计树体总枝条数量和不同类型枝占总枝条数量的比例;2020年和2021年春(栽植第3年和第4年),调查5个处理树体成花株数。各处理选取枝条中部叶片,在晴天上午9:00—11:00,用美国PP System公司的CIRAS-2便携式光合仪测定叶片光合速率。叶绿素含量测定参照赵世杰[25]方法,略作修改。分别取各处理生长势一致的叶片,剪去叶脉,混匀后取0.3 g,置于50 mL试管中,加入无水乙醇,室温黑暗浸提48 h,期间多次混匀,每个处理3个重复。用紫外分光光度计测定叶绿素a和叶绿素b含量,计算总叶绿素的含量。2021年,‘宫藤富士’果实成熟后,每株树单独采收果实,全部果实采收后称重,计算平均单株产量;在选取的试验树每株树冠的东南方向中上部随机选取3个果实,每个处理60个果实,测定果实品质。采用百分之一天平测量果实单果重,以平均单果重计算;用游标卡尺测量果实的横径、纵径,统计果形指数;用GY-1型果实硬度计测定果实硬度;用PR-100型数字糖度计测定果实中的可溶性固形物含量;使用0.1 mol·L-1NaOH中和滴定法测定果实中的可滴定酸含量。

1.3 数据处理

应用PASW Statistics 18和Excel 2021等软件进行数据的计算统计和分析。

2 结果

2.1 重茬条件下距原栽植行不同距离G935矮化自根砧‘宫藤富士’树体生长的差异

2.1.1 树体高度、主枝数量和树干粗度的差异 重茬栽植后第1—4年,5个处理‘宫藤富士’树体高度、树干粗度和主枝数量逐年增加(图1),不同处理间树体高度、干粗、主枝数量和砧穗干周比均没有显著差异。

2.1.2 树体枝类组成的差异 重茬栽植第2—4年,5个处理‘宫藤富士’树体的枝类组成间没有显著差异。栽植后4年内,各处理树体长枝比例逐年减少,由70%以上逐渐减少为15%以内;短枝比例逐年增加,由10%左右逐渐增加为65%以上,枝类组成变化动态符合正茬矮砧苹果树的变化规律(图2)。

2.1.3 叶片质量的差异 重茬栽植第4年(2021年),5个处理‘宫藤富士’叶片各项指标没有显著差异(表1)。5个处理‘宫藤富士’树体新梢生长、叶片叶绿素含量、净光合速率、百叶鲜重和百叶干重均无显著性差异。

表1 重茬栽植第4年距离原栽植行不同距离种植G935‘宫藤富士’苹果树体叶片质量的差异

相同小写字母表示差异不显著(>0.05)。下同 The same lowercase letters indicate no significant difference (>0.05). The same as below

多重比较采用新复极差测验,相同小写字母表示差异不显著(P>0.05)。下同

2.2 重茬条件下距原栽植行不同距离G935矮化自根砧‘宫藤富士’早期成花和果实品质的差异

2.2.1 早期成花和坐果的差异 2020年和2021年春调查5个处理G935矮化自根砧‘宫藤富士’成花情况,如表2所示。2020年春,幼树初开花,5个处理之间没有显著性差异,成花株率20%以上;2021年春,各处理成花株率均为100%。2020年0 m处理树体的成花株率略高于其他4个处理,但各处理之间没有显著性差异。

2.2.2 对果实产量和品质的影响 从表3可以看出,重茬栽植第4年(2021年),5个处理‘宫藤富士’苹果果实产量和品质没有显著差异。重茬栽植第4年,5个处理‘宫藤富士’果实的平均单株产量、平均单果重、果形指数、可溶性固形物含量、可滴定酸含量和果实固酸比均无显著差异。

表2 距离原栽植行不同距离种植G935‘宫藤富士’苹果树体成花的差异

图2 重茬条件下距离原栽植行不同距离种植G935‘宫藤富士’苹果树体枝类组成的年变化

表3 重茬栽植第4年距离原栽植行不同距离种植G935‘宫藤富士’苹果果实产量和品质的差异

3 讨论

美国从1968年开始针对其东北部苹果病害培育了一系列抗火疫病、抗颈腐病、抗绵蚜的苹果砧木,目前验证具有较大应用和科研价值的已有14个苹果砧木品种[18-22]。经过前期评价,G935在我国重茬栽植条件下同样具有良好的抗重茬能力[23],可直接应用于我国重茬更新使用,或作为亲本培育新的多抗性苹果砧木。

重茬栽植条件下,距原栽植行不同距离种植的G935矮化自根砧‘宫藤富士’幼树树体生长、叶片功能、早花早果性和果实产量、品质没有显著差异。重茬栽植第4年,各处理树体平均主枝数量均达到30个以上,不同处理间没有显著差异,均能满足矮砧密植丰产的枝量要求[26-29]。重茬栽植第2年开始,各处理树体长枝比例不断减少,短枝比例不断增加,长短枝比例说明各处理树势中庸且不衰弱[30-33]。重茬条件下树体叶片功能是评价抗重茬砧木的重要指标,重茬栽植第4年,各处理‘宫藤富士’树体新梢生长、叶片叶绿素含量、净光合速率、百叶重(鲜重和干重)均无显著性差异,且各处理叶片功能健康。重茬栽植第4年,各处理成花株率均为100%,表现出较好的早花早果特性。

重茬栽植第4年,各处理果实平均单果重220 g左右,可溶性固形物含量16%左右,果实品质优良。目前苹果重茬障碍的产生机理尚不明确[34],关于抗重茬砧木抗重茬机理的研究较少,现有研究认为苹果砧木抗重茬能力可能与其根系活力、激素水平和根际微生物群落组成有关[35-36],G935具有良好的抗重茬能力,后续将以此为材料开展其抗重茬机理的研究工作,为我国自主知识产权的抗重茬砧木选育提供理论支撑。

4 结论

5个距原栽植行不同距离(0、0.5、1、1.5 和2 m)种植的G935矮化自根砧‘宫藤富士’幼树树体生长、叶片功能、早花早果性和果实品质等指标均没有显著性差异,树体枝类组成合理,树势中庸且不衰弱,早花、早果性好,果实品质优良。因此,G935适宜重茬栽植使用,且抗重茬效果不受与原栽植行距离的影响,也可以此为材料,加强后继砧木选育研究。

[1] 韩明玉. 苹果矮砧集约高效栽培模式. 果农之友, 2009(9): 12.

HAN M Y. Intensive and efficient cultivation mode of apple dwarf rootstock. Fruit Growers’ Friend, 2009(9): 12. (in Chinese)

[2] DI VAIO C, CIRILLO C, BUCCHERI M, LIMONGELLI F. Effect of interstock (M.9 and M.27) on vegetative growth and yield of apple trees (cv “Annurca”). Scientia Horticulturae, 2009, 119(3): 270-274.

[3] LICZNAR-MALANCZUK M. Influence of planting and training systems on fruit yield in apple orchard. Journal of Fruit and Ornamental Plant Research, 2004, 12(Suppl.): 97-104.

[4] ROBINSON T L, HOYING S A, REGINATO G H. The tall spindle planting system: Principles and performance. Acta Horticulturae, 2011, 903: 571-579.

[5] 马宝焜, 徐继忠, 孙建设. 关于我国苹果矮砧密植栽培的思考. 果树学报, 2010, 27(1): 105-109.

MA B K, XU J Z, SUN J S. Consideration for high density planting with dwarf rootstocks in apple in China. Journal of Fruit Science, 2010, 27(1): 105-109. (in Chinese)

[6] 李丙智. 中国苹果矮砧栽培现状与栽培技术要求. 落叶果树, 2020, 52(6): 1-3.

LI B Z. Present situation and technical requirements of apple dwarf stock cultivation in China. Deciduous Fruits, 2020, 52(6): 1-3. (in Chinese)

[7] 赵建戟. 壮根肥土是渭北大龄苹果园的当务之急. 西北园艺, 2009(6): 4-5.

ZHAO J J. Strengthening roots and fertilizing soil is the top priority of the older apple orchard in Weibei. Northwest Horticulture, 2009(6): 4-5. (in Chinese)

[8] 宁安中. 衰老期苹果园更新技术. 北方果树, 2012(4): 34-35.

NING A Z. Regeneration technology of apple orchard in aging period. Northern Fruits, 2012(4): 34-35. (in Chinese)

[9] 李晶, 王新语, 张焕春, 张学勇, 刘美英, 李淑平, 姜中武. 脱毒红将军苹果品种在重茬果园的栽培表现与果实品质分析. 安徽农业科学, 2018, 46(13): 59-60, 82.

LI J, WANG X Y, ZHANG H C, ZHANG X Y, LIU M Y, LI S P, JIANG Z W. Cultivation performance and fruit quality of virus-free red general apple variety in replanted orchard. Journal of Anhui Agricultural Sciences, 2018, 46(13): 59-60, 82. (in Chinese)

[10] 毛志泉, 沈向. 苹果重茬(连作)障碍防控技术. 烟台果树, 2016(4): 26-27.

MAO Z Q, SHEN X. Prevention and control technology of apple continuous cropping obstacle. Yantai Fruits, 2016(4): 26-27. (in Chinese)

[11] 黄翠香, 毛志泉, 韩甜甜, 张文会, 夏燕飞, 王荣, 沈向. 有机营养活化发酵液处理重茬土壤对苹果幼树生长的影响. 中国农学通报, 2013, 29(1): 178-182.

HUANG C X, MAO Z Q, HAN T T, ZHANG W H, XIA Y F, WANG R, SHEN X. The effect of the cropping soil disposed with the fermentation fluid of organic materials on the growth of young apple trees. Chinese Agricultural Science Bulletin, 2013, 29(1): 178-182. (in Chinese)

[12] PAWLICKI N, WELANDER M. Adventitious shoot regeneration from leaf segments ofcultured shoots of the apple rootstock Jork 9. Journal of Horticultural Science, 1994, 69(4): 687-696.

[13] RABI F, RAB A, RAHMAN K U, MUNIR M, BOSTAN N. Response of apple cultivars to graft take success on apple rootstock. Journal of Biology, Agriculture and Healthcare, 2014, 4(3): 78-84.

[14] AUTIO W R, BARRITT B H, CLINE J A, CRASSWELLER R M, EMBREE C G, FERREE D C, GARCIA M E, GREENE G M, HOOVER E E, JOHNSON R S, KOSOLA K, MASABNI J, PARKER M L, PERRY R L, REIGHARD G L, ROBINSON T L, SEELEY S D, WARMUND M. Early performance of ‘Fuji’ and ‘mcintosh’ apple trees on several dwarf rootstocks in the 1999 nc-140 rootstock trial. Acta Horticulturae, 2007, 732: 119-126.

[15] JACKSON JOHN E. World-wide development of high density planting in research and practice. Acta Horticulturae, 1989, 243: 17-28.

[16] CZYNCZYK A C, OMIECINSKA B. Effect of new rootstocks of Polish, Russian and czechoslovakian breeds and two depth of planting of trees with interstems on growth and cropping of 3 apple cultivars. Acta Horticulturae, 1989, 243: 71-78.

[17] ZAGAJA S W. Performance of two apple cultivars on pseries dwarf rootstocks. Acta Horticulturae, 1981, 114: 162-169.

[18] ISUTSA D K, MERWIN I A.germplasm varies in resistance or tolerance to apple replant disease in a mixture of New York orchard soils. HortScience, 2000, 35(2): 262-268.

[19] LEINFELDER M M, MERWIN I A. Rootstock selection, preplant soil treatments, and tree planting positions as factors in managing apple replant disease. HortScience, 2006, 41(2): 394-401.

[20] ZHU Y M, SHAO J, ZHOU Z, DAVIS R E. Comparative transcriptome analysis reveals a preformed defense system in apple root of a resistant genotype of G.935 in the absence of pathogen. International Journal of Plant Genomics, 2017, 2017: 1-14.

[21] FAZIO G, ALDWINCKLE H S, ROBINSON T L, CUMMINS J. (315) Geneva® 935: a new fire blight resistant, semidwarfing apple rootstock. HortScience, 2005, 40(4): 1027.

[22] FAZIO G, ALDWINCKLE H, ROBINSON T, CUMMINS J. (314) Geneva® 41: A new fire blight resistant, dwarf apple rootstock. HortScience, 2005, 40(4): 1027.

[23] 李民吉, 张强, 李兴亮, 周贝贝, 杨雨璋, 张军科, 周佳, 魏钦平. 4种矮化砧木对再植苹果幼树生长、产量和品质的影响. 中国农业科学, 2020, 53(11): 2264-2271. doi: 10.3864/j.issn.0578-1752.2020. 11.012.

LI M J, ZHANG Q, LI X L, ZHOU B B, YANG Y Z, ZHANG J K, ZHOU J, WEI Q P. Effects of 4 dwarfing rootstocks on growth, yield and fruit quality of ‘Fuji’ sapling in apple replant orchard. Scientia Agricultura Sinica, 2020, 53(11): 2264-2271. doi: 10.3864/j.issn. 0578-1752.2020.11.012. (in Chinese)

[24] 张春禹. 不同苹果矮化自根砧的抗重茬和抗旱性比较研究[D]. 杨凌: 西北农林科技大学, 2017.

ZHANG C Y. Comparative study on the resistance to continuous cropping and drought of different dwarf apple rootstocks [D]. Yangling: Northwest A & F University, 2017. (in Chinese)

[25] 赵世杰. 植物生理学实验指导. 北京: 中国农业科学技术出版社, 2002.

ZHAO S J. Techniques of Plant Physiological Experiment. Beijing: China Agricultural Science and Technology Press, 2002. (in Chinese)

[26] 何平, 李林光, 王海波, 常源升. 5个矮化中间砧对‘沂水红’’宫藤富士’苹果生长、结果和叶片矿质元素积累的影响. 中国农业科学, 2018, 51(4): 750-757. doi: 10.3864/j.issn.0578-1752.2018.04.014.

HE P, LI L G, WANG H B, CHANG Y S. Effects of five dwarfing interstocks on shoot growth, fruiting and accumulation of mineral elements in leaves of Yishui red fuji apple. Scientia Agricultura Sinica, 2018, 51(4): 750-757. doi: 10.3864/j.issn.0578-1752.2018.04.014. (in Chinese)

[27] 高登涛, 郭景南, 魏志峰, 范庆锦, 杨朝选. 中部地区两类矮砧密植苹果园生产效率及光照质量评价. 中国农业科学, 2012, 45(5): 909-916. doi: 10.3864/j.issn.0578-1752.2012.05.011.

GAO D T, GUO J N, WEI Z F, FAN Q J, YANG C X. Evaluation of productivity and light quality in two high density dwarf rootstock apple orchards in central China. Scientia Agricultura Sinica, 2012, 45(5): 909-916. doi: 10.3864/j.issn.0578-1752.2012.05.011. (in Chinese)

[28] 董建波. 苹果矮砧密植园个体与群体参数研究[D]. 保定: 河北农业大学, 2010.

DONG J B. Study on individual and population parameters of apple dwarf rootstock close planting garden [D]. Baoding: Hebei Agricultural University, 2010. (in Chinese)

[29] 张强, 魏钦平, 尚志华, 刘松忠, 王小伟. 北京地区矮砧苹果园优质丰产树体结构和光照状况分析. 果树学报, 2013, 30(4): 586-590.

ZHANG Q, WEI Q P, SHANG Z H, LIU S Z, WANG X W. Analysis of tree structure and relative light intensity in apple orchard with dwarf interstock for good qualities and high yield in Beijing region. Journal of Fruit Science, 2013, 30(4): 586-590. (in Chinese)

[30] 李民吉, 张强, 李兴亮, 周贝贝, 孙健, 张军科, 魏钦平. 五个SH系矮化中间砧对‘‘宫藤富士’’苹果树体生长、产量和品质的影响. 中国农业科学, 2016, 49(22): 4419-4428. doi: 10.3864/j.issn.0578- 1752.2016.22.014.

LI M J, ZHANG Q, LI X L, ZHOU B B, SUN J, ZHANG J K, WEI Q P. Effect of five different dwarfing interstocks of SH on growth, yield and quality in ‘Fuji’ apple trees. Scientia Agricultura Sinica, 2016, 49(22): 4419-4428. doi: 10.3864/j.issn.0578-1752.2016.22.014. (in Chinese)

[31] 张强, 魏钦平, 刘松忠, 王小伟, 尚志华, 路瑾瑾. SH6矮化中间砧‘宫藤富士’苹果幼树至结果初期树冠结构、产量和品质的形成. 中国农业科学, 2013, 46(9): 1874-1880. doi: 10.3864/j.issn.0578- 1752.2013.09.015.

ZHANG Q, WEI Q P, LIU S Z, WANG X W, SHANG Z H, LU J J. Formation of canopy structure, yield and fruit quality of ‘Fuji’ apple with SH6 dwarf interstock from juvenility to fruiting early stage. Scientia Agricultura Sinica, 2013, 46(9): 1874-1880. doi: 10.3864/j. issn.0578-1752.2013.09.015. (in Chinese)

[32] 李民吉, 张强, 李兴亮, 周贝贝, 杨雨璋, 周佳, 张军科, 魏钦平. SH6矮化中间砧‘宫藤富士’苹果不同树形对树体生长和果实产量、品质的影响. 中国农业科学, 2017, 50(19): 3789-3796. doi: 10.3864/j.issn.0578-1752.2017.19.015.

LI M J, ZHANG Q, LI X L, ZHOU B B, YANG Y Z, ZHOU J, ZHANG J K, WEI Q P. Effect of three different tree shapes on growth, yield and fruit quality of ‘Fuji’ apple trees on dwarfing interstocks. Scientia Agricultura Sinica, 2017, 50(19): 3789-3796. doi: 10.3864/ j.issn.0578-1752.2017.19.015. (in Chinese)

[33] 李敏敏, 安贵阳, 张雯, 郭燕, 赵政阳, 杨建锋. 不同冬剪强度对乔化‘宫藤富士’苹果成花、枝条组成和结果的影响. 西北农业学报, 2011, 20(5): 126-129.

LI M M, AN G Y, ZHANG W, GUO Y, ZHAO Z Y, YANG J F. Effect of winter pruning on flowering, shoot-type composing and fruiting on Fiji apple trees. Acta Agriculturae Boreali-Occidentalis Sinica, 2011, 20(5): 126-129. (in Chinese)

[34] 尹承苗, 王玫, 王嘉艳, 陈学森, 沈向, 张民, 毛志泉. 苹果连作障碍研究进展. 园艺学报, 2017, 44(11): 2215-2230.

YIN C M, WANG M, WANG J Y, CHEN X S, SHEN X, ZHANG M, MAO Z Q. The research advance on apple replant disease. Acta Horticulturae Sinica, 2017, 44(11): 2215-2230. (in Chinese)

[35] FAZIO G, ALDWINCKLE H S, VOLK G M, RICHARDS C M, JANISIEWICZ W J, FORSLINE P L. Progress in evaluatingfor disease resistance and horticultural traits. Acta Horticulturae, 2009, 814: 59-66.

[36] 尹承苗, 相立, 孙传香, 沈向, 陈学森, 周慧, 毛志泉. 不同苹果砧木对连作土壤微生物及酶活性的影响. 园艺学报, 2016, 43(12): 2423-2430.

YIN C M, XIANG L, SUN C X, SHEN X, CHEN X S, ZHOU H, MAO Z Q. Effects of different apple rootstocks on the soil microbial quantity and enzyme activity of apple replanted orchard soil. Acta Horticulturae Sinica, 2016, 43(12): 2423-2430. (in Chinese)

Effects of Different Distances from Original Planting Row on Tree Growth and Fruit Yield of Young Trees of G935 Dwarf Rootstock Miyato Fuji Under Continuous Cropping

LI MinJi, LI XingLiang, ZHANG Qiang, ZHOU Jia, YANG YuZhang, ZHOU BeiBei, ZHANG JunKe, WEI QinPing

Beijing Academy of Forestry and Pomology Sciences/Key Laboratory of Urban Agriculture (North China),Ministry of Agriculture and Rural Affairs, Beijing 100093

【Objective】 The effects of five different planting distances from the original planting line on the growth of young apple trees of G935 dwarf self-heeling rootstock Miyato Fuji were investigated and studied for four consecutive years, and the resistance to repeated cropping of G935 dwarf self-heeling rootstock grafted Miyato Fuji was evaluated, so as to provide a theoretical basis for the renewal of old and inefficient apple orchards and the upgrading of cultivation models in China. 【Method】 In the spring of 2018, the 12-year-old apple tree (Miyato Fuji/SH6/seedling stock) was planted, without soil sterilization, adding organic fertilizer, chemical fertilizer and biological microbial fertilizer, and the G935 dwarf self-rooting stock Miyato Fuji seedlings (2-year root and 1-year dry) were directly planted at different distances (0, 0.5, 1, 1.5 and 2 m) from the original planting line, and the fine spinning hammer tree shape was used for pruning. The differences in tree growth, leaf function, early flowering and early fruiting, and fruit yield and quality of young trees of G935 dwarf self-rooting rootstock Miyato Fuji were investigated under 5 treatments for 4 consecutive years after planting. 【Result】Under the condition of replanting, there was no significant difference in the growth, leaf function, early flowering and early fruiting, and fruit yield and quality of G935 dwarf self-rooting rootstock Miyato Fuji at different distances from the original planting line. Within 4 years after replanting, with the growth of tree age, the height, trunk diameter and number of main branches of Fuji trees under five treatments increased year by year. In the fourth year after replanting, the average number of main branches in each treatment reached more than 30. From the second year of planting, the proportion of long branches under each treatment decreased year by year, and the proportion of short branches increased year by year. In the fourth year of continuous cropping, there was no significant difference in the growth of new shoots, chlorophyll content of leaves, net photosynthetic rate and one hundred leaves weight (fresh weight and dry weight) of Fuji trees under different treatments; the average yield per plant and fruit quality (average fruit weight, fruit shape index, titratable acid content, soluble solid content, and fruit solid-acid ratio) of Fuji fruit under all treatments were similar, without significant difference. 【Conclusion】 Under the condition of replanting in continuous cropping, there was no significant difference in the growth, leaf function, early flowering and early fruiting, fruit yield and quality of the young trees planted with G935 dwarf self-rooting rootstock Miyato Fuji at different distances from the original planting line four years before planting. The branch composition of the trees in each treatment was reasonable, the tree vigor was moderate and not weak, the flowering was early, and the fruit quality was good. G935 was suitable for replanting in continuous cropping, and the effect of resistance to repeated cropping was not affected by the distance from the original planting line.

continuous cropping cultivation; G935 rootstock; dwarfing rootstock; Miyato Fuji apple; tree growth; fruit yield

10.3864/j.issn.0578-1752.2023.17.014

2023-01-13;

2023-03-09

国家现代苹果产业技术体系(CARS-27)、北京市农林科学院科技创新能力建设专项(KJCX20230203)

李民吉,E-mail:changlelmj@163.com。通信作者魏钦平,E-mail:qpwei@sina.com

(责任编辑 赵伶俐)

猜你喜欢

自根重茬矮化
老桃园更新再植不怕重茬病 砧木新品种“中桃抗砧1号”对重茬病有免疫力
苹果重茬栽培现状与解决方法探究
冀西北苹果矮化密植栽培技术
矮化自根砧苹果树的主要优缺点
矮化中间砧苹果幼树抽条调查
矮化盆栽菊花的方法
【第三部】
矮化自根砧苹果树的主要优缺点
嫁接番茄在烟台地区越冬栽培效果评价
矮化自根砧
——突破苹果栽培制度