APP下载

华北克拉通东部古太平洋板块俯冲与回撤作用:来自辽西兴城地区晚中生代花岗质岩石的记录与启示*

2020-09-14崔芳华徐学纯郑常青姚文贵施璐

岩石学报 2020年8期
关键词:克拉通兴城辽西

崔芳华 徐学纯 郑常青 姚文贵 施璐

1. 山东理工大学资源与环境工程学院,淄博 2550002. 吉林大学地球科学学院,长春 1300613. 自然资源部东北亚矿产资源评价重点实验室,长春 1300614. 中国地质调查局沈阳地质调查中心,沈阳 110034

华北克拉通位于中国东部(图1),有着近40亿年演化历史(Zhaietal., 2005; 吴福元等, 2005),与其他古老稳定克拉通不同的是华北克拉通中生代期间岩石圈物理化学性质明显改变(Zhengetal., 2007),岩石圈发生减薄,大陆地壳遭受了强烈的改造与增生作用而重新活化,导致了大规模的岩浆-构造-成矿活动(Davisetal., 2001; Meng, 2003; Yangetal., 2005)。前人对华北克拉通东部中生代伸展盆地和变质核杂岩等构造空间展布特征、岩浆岩时空迁移规律进行了详细研究和综合解析,并结合区域地球物理资料,认为华北克拉通岩石圈减薄与克拉通破坏的发生机制与过程受到古太平洋板块俯冲作用的驱动与控制(Xu, 2001; Zhangetal., 2009; Li and Hilst, 2010; Zhuetal., 2012a; Niu, 2018; 吴福元等, 2014; Dongetal., 2015; 朱日祥等, 2015; 郑永飞等, 2018; Wuetal., 2019),因此华北克拉通东部中生代大规模的岩浆活动、构造变形、成矿作用与古太平洋板块向欧亚板块的俯冲作用密切相关(Koppersetal., 2001; Lietal., 2007, 2013; Sunetal., 2007; Wangetal., 2013; Chenetal., 2014; Niuetal., 2015)。华北克拉通岩石圈减薄与克拉通破坏作用在晚中生代达到峰期,并导致同时代大规模岩浆活动的发生。目前对于华北克拉通东部晚中生代岩浆岩的成因仍存在不同认识:地幔柱成因(Pirajnoetal., 2009; Safonova, 2009)、加厚或拆沉下地壳的部分熔融(Zhangetal., 2010; Maetal., 2013, 2014; Wangetal., 2018)、含水俯冲板片脱水导致地壳熔融(Lietal., 2017, 2018)等。

图1 华北克拉通大地构造简图(据赵国春, 2009修改)及研究区位置

花岗质岩石是大陆复杂动力学过程的产物,主要起源于中-下地壳及壳幔过渡带地壳岩石的部分熔融(Brownetal., 1995; Thompson, 2001),花岗质岩浆形成过程中可能遭受壳幔岩浆混合、幔源岩浆同化混染等作用且在地球化学特征上留有相应印记,对花岗质岩石地球化学特征、岩石成因和地球动力学背景的综合研究有助于深入了解深部壳幔相互作用以及岩浆起源与演化过程中可能的深部事件(Pitcher, 1997)。辽西兴城地区位于华北克拉通东部,区内晚中生代花岗质岩浆岩发育,岩石类型多样,是研究古太平洋板块俯冲和华北克拉通破坏的理想区域。本文对辽西兴城地区出露的晚中生代花岗质岩石进行岩相学、锆石U-Pb年代学、岩石地球化学、锆石Hf同位素组成等方面的综合研究,厘清辽西兴城地区晚中生代花岗质岩石的形成时代与时空分布规律,明确晚中生代花岗质岩石的成因与构造背景,探讨反演晚中生代期间古太平洋板块对华北克拉通东部俯冲与回撤作用时间与过程。

1 区域地质背景

以北票-平泉-赤城-尚义断裂为界可将华北克拉通北部分为内蒙古隆起和燕山褶皱带两部分。南部燕山褶皱带以沉积盖层发生复杂的冲断与褶皱为主要特点,褶皱带西部出露有太古代TTG杂岩和少量表壳岩系而东南部太古代绥中花岗岩发育(吴福元等, 2006),均为古老结晶基底;中-新元古代期间经历了强烈大陆裂谷作用,形成了巨大古老隆起(山海关隆起)和裂陷槽(燕山裂陷槽)东西向相间展布的构造格局,同时地台边缘裂陷槽和裂陷盆地内发育富含微体化石、厚度可达万米的地台型海相碎屑沉积盖层;古生代期间处于长期稳定沉积阶段,构造岩浆活动微弱,沉积盆地广泛形成,稳定沉积建造发育;中生代期间经历了西伯利亚克拉通、扬子克拉通、古太平洋等周围板块的俯冲/碰撞等构造作用,导致岩浆-构造活动和成矿作用的大规模爆发(Davisetal., 2001; Yangetal., 2003, 2005; Meng, 2003),岩浆活动频发、火山-碎屑沉积地层广泛分布且多金属矿床发育;同时强烈的区域性隆升、沉降、拉张与走滑等构造作用,造成古老结晶基底和前中生代沉积盖层的广泛剥露,导致大量北东-北北东向断裂构造、变质核杂岩、韧性剪切带的出现及中小型断陷盆地与基底隆起的相间产出,形成以强烈褶皱与冲断为特点的燕山褶皱带;中生代末期-新生代进入裂谷发育阶段,出现板内非造山碱性花岗岩,同时经历了区域隆升和风化剥蚀,局部发育大陆裂谷拗陷盆地与第四系沉积物及现代海岸带沉积。

本文研究区——辽西兴城地区位于华北克拉通北缘东段燕山褶皱带东南部,中生代期间区内印支期-燕山期构造岩浆活动强烈,在早期形成的EW向构造格架基础上叠加了晚中生代NE向和NNE向褶皱和断裂构造,并出现一系列陆相火山沉积岩系发育的中小型断陷盆地(图2),形成了广泛分布三叠系红垃子组、侏罗系海房沟组、髫髻山组、土城子组、白垩系义县组等中生界火山-碎屑沉积地层。研究区内出露的大面积中生代侵入岩以花岗质岩石为主,现有同位素测年数据显示其大多形成于侏罗纪、少量形成于晚三叠世和早白垩世(吴福元等, 2006; 代军治, 2008; 赵玉妹, 2012; 李健等, 2014; Liangetal., 2015),晚三叠世花岗质岩石仅出露于研究区中部的松树卯和西北部的白马石等地(图3),出露面积很少;研究区内侏罗纪花岗质岩石大量出露且呈NE或NEE向展布,其中早-中侏罗世呈NE向分布于宽邦-药王庙-杨家杖子-兰家沟-虹螺山一带,而晚侏罗世花岗质岩石则呈NEE向分布于研究区略偏东部的碱厂、英昌口等地(图3);早白垩世花岗质岩石零星分布于研究区东偏南部的红崖子、唐王洞、笊篱头子等地(图3)。

图2 辽西兴城地区构造纲要图

图3 辽西兴城地区地质简图

2 样品岩相学特征

辽西兴城地区晚中生代花岗质岩石采样位置见图4,详细的岩相学和矿物组合特征见图5、图6和表1。

图4 辽西兴城地区晚中生代花岗质岩体地质简图及采样位置

图5 辽西兴城地区晚侏罗世花岗质岩石野外露头及显微照片

图6 辽西兴城地区早白垩世花岗质岩石野外露头及显微照片

图7 辽西兴城地区晚中生代花岗质岩石部分锆石阴极发光(CL)图像

英昌口岩体呈北东向展布于辽西兴城地区中偏东部,为不规则岩株状,局部与太古代结晶基底和元古界沉积地层呈侵入接触关系或侵入到早-中侏罗世岩体中,局部被下白垩统义县组火山-沉积地层或第四系沉积物覆盖(图4a)。主要岩石类型为二长花岗岩和石英闪长岩;二长花岗岩呈中细粒花岗结构、块状构造,矿物组合为石英+斜长石+碱性长石+少量角闪石、黑云母;石英闪长岩呈细粒结晶结构、块状构造,矿物组合为石英+斜长石+少量碱性长石、黑云母、辉石,其中石英闪长岩中见有少量细粒暗色包体团块,直径在3~20cm(图5c)。

红崖子岩体位于研究区中略偏东南部,呈岩株状产出,侵入到太古代结晶基底和大红峪组沉积地层中(图4b),局部被第四系沉积物覆盖。主要岩石类型为二长花岗岩,岩石呈细粒花岗结构、块状构造,由石英、斜长石、碱性长石和少量黑云母、角闪石等矿物组成。

笊篱头子岩体位于研究区东部,呈岩株状产出,局部侵入到太古代结晶基底中(图4c),局部被第四系沉积物覆盖。主要岩石类型为花岗斑岩,岩石具有斑状结构、块状构造,斑晶为石英和斜长石,基质呈显微晶质结构且成分同斑晶。

唐王洞岩体位于研究区东南部的觉华岛,呈岩株状产出,局部侵入到太古代结晶基底中(图4d),局部被第四系沉积物覆盖。主要岩石类型为石英正长岩,岩石具有中细粒结晶结构、块状构造,矿物组合为石英+斜长石+碱性长石+少量角闪石、黑云母,岩石中见有较多直径在1~20cm不等的细粒暗色包体(图6c)。

3 测试方法

3.1 LA-ICP-MS锆石U-Pb同位素测试分析

本文样品粉碎、锆石挑选与制靶和阴极发光(CL)图像采集工作在河北省廊坊区域地质调查所实验室完成,在吉林大学地球科学学院深部探测野外试验与示范基地实验室采集锆石透反射光图像。STTW.1、STTW.2、STTW.16等3件样品在天津地质矿产所同位素实验室进行锆石U-Pb同位素测试分析,所用仪器为Neptune型质谱仪和UP193-FXArF准分子激光器,激光剥蚀束斑直径、剥蚀深度、频率分别为35μm、20~40μm和8~10Hz,U-Pb同位素分馏校正采用TEMORA和GJ-1外部年龄标准并以NISTSRM610玻璃标样做外标计算Pb、U、Th含量。普通铅校正采用208Pb(Andersen, 2002),数据处理和软件绘制程序为ICPMSDataCal和Isoplot(Ludwig, 2003);STWH1017和STWH1077等2件样品在吉林大学测试科学实验中心完成锆石U-Pb同位素测试分析,所用仪器为7500A型质谱仪和德国193-ArF准分子激光器,激光剥蚀束斑直径和频率分别为32μm、7Hz,U-Pb同位素分馏校正采用91500和GJ-1外部年龄标准并以NIST610玻璃标样做外标计算Pb、U、Th含量,同样采用208Pb进行普通铅校正,应用Glitter和Isoplot程序处理数据并绘制图件。

表1 辽西兴城地区晚中生代花岗质岩石岩相学特征与矿物组合

3.2 全岩主、微量元素测试分析

STTW.1、STTW.2、STTW.16等3件样品在自然资源部哈尔滨矿产资源监督检测中心完成岩石地球化学测试分析,利用电感耦合等离子体发射光谱仪(ICP-OES)并依据DZG20.01—2011方法进行主量元素测试,利用电感耦合等离子体质谱仪(ICP-MS)并依据GB/T17417.1—2010方法完成微量元素测试分析;STWH1017、STWH1077、WH1019、WH1021等4件样品在天津地质矿产研究所实验测试中心进行岩石地球化学测试分析,分别利用X射线荧光光谱仪(XRF)、X SeriesⅡ离子体质谱仪等完成主量、稀土、微量元素的测试分析,检测依据为GHJZ 003—2009、GHJZ 002—2009和GB/T 14506—2010。

3.3 锆石Hf同位素测试分析

在天津地质矿产研究所实验测试中心完成5件样品的锆石原位Hf同位素测试工作,所用仪器为Neptune型质谱仪和UP193-FXArF准分子激光器,激光器能量密度、剥蚀束斑直径和频率分别为10~11J/cm2、50μm、8~10Hz,Hf同位素测试分析的具体方法流程、标样及校正等详见耿建珍等(2011),Hf同位素相关计算方法、公式、参数等参照吴福元等(2007)。

表2 辽西兴城地区晚中生代花岗质岩石LA-ICP-MS锆石U-Pb定年测试结果

续表2Continued Table 2测点号含量(×10-6)ThUTh/U同位素比值年龄(Ma)206Pb238U1σ207Pb235U1σ207Pb206Pb1σ206Pb238U1σ207Pb235U1σ207Pb206Pb1σ161361930.710.02420.00020.16480.00570.04940.001715411555168801747610.760.02460.00060.18410.02280.05430.006515741722138426918901040.870.02430.00050.19240.01640.05740.0051155317915507195191071340.800.02430.00030.16700.00840.04980.002515521578186118201702090.820.02390.00020.16450.00610.04990.001815211556190842146560.810.02390.00050.16840.01780.05120.005715231581725025622851230.690.02460.00030.16420.00830.04840.0024157215481191182359850.700.02460.00050.19480.02030.05740.0067157318119507258245723721.540.02430.00020.16670.00590.04970.00181552157618085STWH1017二长花岗岩13323011.110.02160.00060.14430.01540.04860.005313841371412823823272581.270.02180.00040.14730.00930.04910.00321393140815214732131791.190.02200.00050.14840.01350.04900.004614031411214820644182941.420.02170.00040.14840.00650.04960.00231392141617710452982561.160.02180.00060.14660.01600.04890.005513941391414424362432460.990.02200.00040.14980.00810.04950.00281403142717112771832340.780.02170.00050.14720.01200.04930.004113831401116218582282320.990.02190.00040.14680.00710.04870.00251402139613211692092330.900.02220.00040.14780.00910.04840.003114131408119144102982811.060.02180.00040.14860.00620.04940.002213921416169100111752040.860.02180.00040.14950.00870.04960.003013931428178135125213761.390.02170.00040.14590.00560.04870.00201392138513394132332201.060.02190.00040.14700.00880.04880.003013931398137139141811960.930.02170.00040.14610.00900.04880.003113931398137142151611700.950.02190.00050.14740.01040.04870.0035140314091341631666940.710.02350.00050.15870.01310.04900.0041150315012145187173172901.090.02210.00040.14660.00650.04820.002314121396108107181361261.080.02170.00060.14490.01770.04850.0061138413716124270191842120.870.02180.00040.14620.00880.04860.003013931398129140201972000.990.02340.00040.15870.00870.04910.002814931508153127214573171.440.02190.00050.14780.01080.04910.0037139314010150168222632371.110.02180.00040.14790.00860.04930.003013931408160136STWH1077花岗斑岩13722771.340.02010.00040.13430.00850.04850.00321283128812514822724510.600.02040.00040.13620.00530.04850.0020130213051229532994680.640.02030.00040.13660.00490.04870.0019130213041358841542480.620.02040.00040.13610.00580.04850.00221302130512410358835001.770.02030.00040.13630.00510.04860.0019130213051319162753180.860.02370.00040.15990.00660.04910.0021151315161509872272870.790.02030.00040.13520.00620.04840.00231292129612110982163530.610.02050.00040.13570.00570.04810.00211312129510310191732780.620.02050.00040.13680.00780.04840.00291313130711813510721490.480.02020.00040.13570.00900.04870.003412931298134154

续表2Continued Table 2测点号含量(×10-6)ThUTh/U同位素比值年龄(Ma)206Pb238U1σ207Pb235U1σ207Pb206Pb1σ206Pb238U1σ207Pb235U1σ207Pb206Pb1σ112602401.080.02370.00040.16110.00760.04920.002515131527159112122003010.660.02010.00040.13340.00650.04830.002512821276112117131552650.590.02040.00040.13470.00630.04790.00241302128693114142353070.760.02040.00040.13640.00520.04860.00201302130512693152123190.660.02050.00050.13610.01000.04830.003713131309112169161833060.600.02030.00040.13770.00900.04920.003313031318158151172483500.710.02030.00040.13710.00560.04890.00211302130514298182443780.650.02050.00040.13780.00450.04880.00171312131413681192563720.690.02020.00030.13610.00410.04880.00161292130414076201892950.640.02040.00040.13700.00560.04870.00211302130513498212092960.700.02200.00040.14870.00850.04900.002914031417149133223334010.830.02040.00030.13690.00440.04880.00171302130413780231622350.690.02300.00040.15500.00810.04900.002714631467146123242233230.690.02040.00040.13690.00510.04860.00191302130512891252193100.710.02040.00040.13670.00540.04850.00201302130512696262594030.640.02020.00040.13670.00510.04900.0019129213051469127571070.540.01980.00040.13310.01080.04860.0041127312710129185282543190.800.02070.00050.13920.01000.04880.003613231329139166STTW.16石英正长岩11773050.580.01930.00020.12730.00140.04800.00051231122113425259936710.160.01940.00020.12680.01520.04740.005912411211511829331061710.620.01970.00010.13190.00980.04850.00361261126912517341623050.530.01950.00020.12870.01070.04780.004012511231013819551282150.590.01950.00030.12750.01220.04730.00491252122121154796901280.700.01980.00010.13150.00630.04820.00231261125610811472664980.530.01990.00010.14170.01250.05170.004612711351215920681052970.350.02010.00010.13480.00150.04860.0005128112811282591321700.780.01990.00010.13320.00820.04860.003012711278129145101552710.570.01920.00020.12770.01220.04830.004812211221211544611751300.580.01950.00020.12780.01210.04760.0076124112212128376121031470.700.01950.00020.12310.00680.04580.00251241118611412913601170.510.01950.00030.13810.01270.05120.004712521311212463814741230.600.01990.00020.13300.01100.04850.004612711271112145815761610.470.01940.00040.13150.01200.04910.004712421251115274016961630.590.01960.00010.13040.00150.04830.0005125112412002617951650.570.01960.00030.13000.01270.04810.004712521241210453918801370.580.01980.00020.13290.00930.04860.00341271127912816519264140.060.02010.00030.14570.01360.05260.004912821381322351720701300.540.01950.00020.13050.01350.04850.0100124212513126484211222460.500.01960.00030.13630.01840.05050.0075125213018923542260990.600.01950.00030.13070.01840.04850.007512521251812560123601120.540.01990.00030.13240.01850.04830.0059127212618115619241051230.850.02010.00020.13120.01510.04720.00591292125146129825561020.550.01940.00020.14220.00200.05320.00071241135213232

表3 辽西兴城地区晚中生代花岗质岩石主量元素(wt%)、微量元素(×10-6)测试分析结果

续表3

图8 辽西兴城地区晚中生代花岗质岩石锆石U-Pb年龄谐和图及加权平均年龄

图9 辽西兴城地区晚中生代花岗质岩石TAS图解 (a, 据Irvine and Baragar, 1971) 和SiO2-K2O图解 (b, 据Peccerillo and Taylor, 1976)

图10 辽西兴城地区晚中生代花岗质岩石球粒陨石标准化稀土元素配分图(a,标准化值据Boynton, 1984)和原始地幔标准化微量元素蛛网图(b,标准化值据Sun and Mcdonough, 1989)

4 测试分析结果

4.1 同位素年代学

本文对分别采自英昌口岩体(STTW.1、STTW.2)、红崖子岩体(STWH1017)、笊篱头子岩体(STWH1077)和唐王洞岩体(STTW.16)的5件花岗质岩石样品进行LA-ICP-MS锆石U-Pb同位素定年,测试分析结果详见表2,部分锆石阴极发光(CL)图像见图7。5件花岗质岩石样品中的锆石均呈自形-半自形,部分颗粒边部略有熔蚀,阴极发光(CL)图像显示内部结构清晰且岩浆振荡环带发育(图7),并具有较高的Th/U比值(大多介于0.32~1.77,表2),暗示均为岩浆成因锆石。

样品STTW.1(二长花岗岩)25个测试分析点的206Pb/238U表面年龄介于163~152Ma,在206Pb/238U-207Pb/235U谐和图中大多落于谐和线上或附近(图8a),剔除3个偏离点之后的206Pb/238U加权平均年龄为156±1Ma(MSWD=1.50,n=22)。样品STTW.2(石英闪长岩)24个测试分析点的206Pb/238U表面年龄介于160~151Ma,在206Pb/238U-207Pb/235U谐和图中全部落于谐和线上或附近(图8b),206Pb/238U加权平均年龄为156±1Ma(MSWD=1.15,n=24)。样品STWH1017(二长花岗岩)的测试分析点在206Pb/238U-207Pb/235U谐和图中落于谐和线上或附近(图8c),2颗捕获锆石的206Pb/238U表面年龄分别为149Ma和150Ma,其余20个测试分析点的206Pb/238U表面年龄介于141~138Ma,其206Pb/238U加权平均年龄为139±1Ma(MSWD=0.10,n=20)。样品STWH1077(石英正长岩)的测试分析点在206Pb/238U-207Pb/235U谐和图中落于谐和线上或附近(图8d),4颗早期捕获锆石的206Pb/238U年龄介于151~140Ma,其余24个测试分析点的206Pb/238U表面年龄介于132~127Ma,其206Pb/238U加权平均年龄为130±1Ma(MSWD=0.17,n=24)。样品STTW.16(石英正长岩)中25个测试分析点的206Pb/238U表面年龄介于129~122Ma,在206Pb/238U-207Pb/235U谐和图中均落于谐和线上或附近(图8e),206Pb/238U加权平均年龄为125±1Ma(MSWD=1.30,n=25)(图8f)。

4.2 岩石地球化学

本文对辽西兴城地区晚中生代花岗质岩石7件样品进行了主量、微量测试分析,结果详见表3。

4.2.1 主量元素

岩相学研究表明辽西地区晚中生代花岗质岩石主要为二长花岗岩、石英闪长岩、花岗斑岩和石英正长岩,而在TAS分类图解(图9a)中样品落在石英二长岩、花岗闪长岩和花岗岩过渡区域,样品大多落入亚碱性区域而只有STTW.16(125Ma)落入碱性区域,岩相学和岩石化学成分分类结果基本一致。辽西兴城地区晚中生代花岗质岩石SiO2含量介于60.56%~69.14%, FeOT含量介于2.67%~5.11%,CaO含量介于0.76%~3.84%;MgO含量介于1.11%~2.14%,Mg#=37.24~47.37;Al2O3含量介于15.43%~17.76%之间,A/NK=1.27~1.64且A/CNK=0.94~1.14,显示准铝-过铝特征;全碱含量(Na2O+K2O)介于7.43%~8.88%,SiO2-K2O图解(图9b)中大多落入高钾钙碱性系列范围内,仅唐王洞石英正长岩(STTW.16)1件样品落入钾玄岩系列;里特曼指数(σ)介于2.51~4.15,碱度率(AR)介于2.11~3.43,TAS图解(图9a)中大多数样品落入亚碱性区域,仅唐王洞石英正长岩(STTW.16)1件样品落入碱性区域;岩石样品总体具有较高的分异指数(DI=69.78~87.88)。

4.2.2 微量元素

辽西兴城地区晚侏罗世-早白垩世花岗质岩石稀土元素总量大多中等略偏高(∑REE=91.44×10-6~180.2×10-6),仅1件早白垩世样品STTW.16(125Ma)稀土总量高达266.8×10-6。稀土元素配分模式整体右倾(图10a),具明显的轻重稀土分馏特征(∑LREE/∑HREE=11.89~16.82,(La/Yb)N=16.21~26.75),轻稀土较为富集而重稀土较为亏损。晚侏罗世花岗质岩石δEu介于0.85~0.96,显示具有弱的负铕异常;早白垩世花岗质岩石δEu介于1.04~1.27,显示具有弱的正铕异常。原始地幔标准化微量元素蛛网图中呈现多峰谷M型模式(图10b),相对富集Ba、K、Pb、Sr、Nd等大离子亲石元素(LILE)而相对亏损高场强元素(HFSE)Nb、Ta、La、Ce、Ti等和P元素,不同样品中元素富集或亏损程度存在微弱差别,其中早白垩世样品STTW.16(125Ma)元素富集或亏损程度明显高于其他样品。

表4 辽西兴城地区晚中生代花岗质岩石锆石Hf同位素测试分析结果

续表4Continued Table 4测点号年龄(Ma)176Yb/177Hf176Lu/177Hf176Hf/177Hf2σεHf(t)2σtDM1 (Ma)tDM2 (Ma)fLu/HfSTWH1017二长花岗岩11390.0342560.0009440.2820570.000016-22.330.5516802605-0.9740.0267810.0007840.2820600.000017-22.210.6016682597-0.9850.0340880.0009420.2820270.000019-23.370.6617202670-0.9770.0532380.0013480.2819950.000017-24.560.6217852744-0.9680.0474210.0011930.2820270.000018-23.420.6217332673-0.96100.0361340.0009030.2819830.000020-24.920.7017792767-0.97110.0314870.0010940.2820060.000018-24.150.6417572719-0.97120.0435300.0013240.2820290.000019-23.360.6817362669-0.96130.0357930.0009840.2820140.000019-23.860.6817412701-0.97140.0370720.0011290.2820110.000020-23.980.6917522708-0.97150.0293760.0011790.2820050.000020-24.200.7017632722-0.96160.0181050.0006230.2820780.000020-21.330.6916362550-0.98170.0333590.0010620.2820670.000018-22.000.6216712584-0.97180.0213620.0007160.2820970.000016-20.880.5716142514-0.98190.0317750.0010560.2820130.000015-23.880.5417452702-0.97200.0305850.0009400.2820120.000016-23.910.5617412704-0.97210.0505940.0014430.2820520.000019-22.560.6617092619-0.96220.0370580.0010570.2820430.000021-22.830.7517042636-0.97STWH1077花岗斑岩21300.0177520.0005150.2828340.0000175.010.59585866-0.9830.0244040.0006620.2828180.0000154.420.55610904-0.9840.0214170.0005730.2825590.000021-4.720.769691487-0.9850.0250780.0006430.2828460.0000195.420.66570840-0.9860.0258960.0007040.2828250.0000164.650.57601889-0.9870.0257160.0007190.2828070.0000174.030.59626929-0.98120.0189020.0005840.2828480.0000185.480.64567836-0.98130.0122750.0004160.2827950.0000153.640.53637954-0.99140.0182770.0005950.2828460.0000195.430.66569839-0.98150.0252250.0006930.2828410.0000205.220.69578852-0.98160.0212920.0005790.2828690.0000206.220.70537789-0.98170.0275060.0006880.2828270.0000234.730.81598884-0.98200.0241440.0006160.2828410.0000225.230.76577852-0.98220.0283120.0007670.2828310.0000204.880.70593874-0.98240.0270330.0006120.2828350.0000225.040.78584864-0.98250.0238590.0005390.2828470.0000245.450.85567838-0.98260.0300060.0005700.2828460.0000255.420.88569839-0.98STTW.16石英正长岩11250.0316180.0007890.2822820.000021-14.640.7513612111-0.9820.0388890.0009640.2822510.000022-15.750.7914102181-0.9730.0355630.0008920.2822760.000024-14.870.8413732125-0.9740.0325930.0009210.2822930.000020-14.280.7213512088-0.97

续表4Continued Table 4测点号年龄(Ma)176Yb/177Hf176Lu/177Hf176Hf/177Hf2σεHf(t)2σtDM1 (Ma)tDM2 (Ma)fLu/Hf51250.0363900.0009220.2822070.000021-17.300.7414702278-0.9760.0377030.0009390.2822700.000030-15.101.0613842140-0.9770.0407080.0009830.2822980.000025-14.090.8713462077-0.9780.0287240.0007900.2822810.000022-14.670.7713622113-0.9890.0464510.0012650.2823210.000021-13.310.7413242027-0.96110.0305730.0007770.2822630.000019-15.320.6713872154-0.98140.0371270.0009990.2823160.000021-13.460.7513212036-0.97150.0347180.0009770.2822730.000024-14.990.8613812133-0.97160.0416310.0011260.2823170.000021-13.440.7413242035-0.97170.0263180.0007550.2822990.000023-14.050.8213372074-0.98180.0279330.0008300.2822360.000024-16.290.8514272215-0.97200.0404990.0012870.2822530.000031-15.721.1014202179-0.96210.0480200.0013220.2822840.000030-14.631.0613782110-0.96220.0364580.0011100.2823700.000028-11.560.9912491917-0.97230.0284530.0008070.2823220.000027-13.240.9513072023-0.98240.0396380.0009940.2823360.000025-12.750.8712931992-0.97

图11 燕山褶皱带(据Zhang et al., 2014)和辽西兴城地区中生代岩浆岩年龄直方图

图12 辽西兴城地区中生代花岗质岩石时空分布图

4.3 Hf同位素组成

本文对5件锆石U-Pb同位素定年样品(STTW.1、STTW.2、STWH1017、STWH1077、STTW.16)进行了锆石原位Hf同位素测试分析,测试结果详见表4。样品STTW.1(t=156Ma)中20颗岩浆成因锆石176Hf/177Hf比值为0.281978~0.282096,以其结晶年龄(156Ma)计算得到的εHf(t)值为-24.73~-20.57,二阶段模式年龄(tDM2)介于2507~2767Ma。样品STTW.2中20颗岩浆成因锆石176Hf/177Hf比值为0.282036~0.282150,εHf(t)=-22.70~-18.66(t=156Ma),tDM2=2387~2641Ma。样品STWH1017(t=139Ma)中1颗捕获岩浆锆石(t=149Ma)的176Hf/177Hf比值为0.282078、εHf(t)=-21.33、tDM2=2550Ma;其余17颗代表岩石结晶时代的岩浆成因锆石176Hf/177Hf比值为0.281983~0.282097,εHf(t)=-24.92~-20.88(t=139Ma),tDM2=2514~2767Ma。样品STWH1077(130Ma)中17颗岩浆成因锆石176Hf/177Hf比值为0.282559~0.282869,εHf(t)值只有1个为-4.72,其余介于+3.64~+6.22(130Ma),单阶段模式年龄tDM1=537~969Ma。样品STTW.16(t=125Ma)中20颗岩浆成因锆石176Hf/177Hf比值为0.282207~0.282370,εHf(t)=-17.30~-11.56,tDM2=1917~2278Ma。

表5 燕山褶皱带晚中生代花岗质岩石部分成岩年龄汇总

5 讨论

5.1 花岗质岩石形成时代与时空分布

本文对5件辽西兴城晚中生代花岗质岩石进行锆石U-Pb同位素测试分析,样品中的锆石晶形均为自形-半自形,阴极发光图像(图7)显示锆石内部结构清晰、岩浆振荡环带发育,结合Th/U比值大多介于0.32~1.77(表2),表明其为岩浆成因锆石,经原位U-Pb同位素测试分析得到的即为花岗质岩石结晶年龄。锆石U-Pb同位素年代学测试分析结果(表2、图8)显示英昌口二长花岗岩和石英闪长岩形成于156Ma、红崖子二长花岗岩形成于139Ma、笊篱头子花岗斑岩形成于130Ma、唐王洞石英正长岩形成于125Ma,表明辽西兴城地区晚中生代花岗质岩石形成时代为晚侏罗世(~156Ma)和早白垩世(139~125Ma),上述年代学结果与燕山褶皱带晚中生代花岗质岩石区域定年结果基本一致(表5、图11)。辽西兴城地区晚中生代花岗质岩石时空分布规律显示自西北向东南岩石形成时代越来越年轻(图12):英昌口岩体(156Ma)+红崖子岩体(139Ma)→笊篱头子岩体(130Ma)→唐王洞岩体(125Ma),与燕山-辽西地区晚中生代岩浆活动自西向东变年轻的趋势相吻合(Wuetal., 2005)。

5.2 花岗质岩石成因

辽西兴城地区形成于156~139Ma的英昌口-红崖子花岗质岩石具有较高的二氧化硅含量和全碱含量,岩石A/CNK<1.1且A/NK>1.0,属于准铝-弱过铝质岩石,在花岗岩成因类型判别图解中样品全部落入I型花岗岩区域(图13)。稀土元素总量中等略高,相对富集K、Pb等大离子亲石元素而相对亏损Nb、Ta、Ti等高场强元素(图10),暗示岩浆地壳来源特征。岩浆成因锆石具有负的εHf(t)值(-24.92~-18.66)和古老Hf同位素二阶段模式年龄(tDM2=2514~2767Ma),Hf同位素相关图解中落入2.5~3.0Ga地壳演化线之间和下地壳、上地壳演化线之间(图14),表明岩石初始岩浆起源于古老中上地壳的部分熔融。岩石具有较高的分异指数(DI=69.78~80.12)、较富硅含量、Nb、Ta、P、Ti等元素相对亏损等特征表明在岩石形成过程中经历了一定程度的分离结晶作用。形成于130Ma的笊篱头子花岗斑岩岩浆成因锆石中仅有1个测试分析点εHf(t)值为负值(-4.72),其余均为正值(εHf(t)=+3.64~+6.22),同时具有新元古代Hf同位素单阶段模式年龄(tDM1=537~969Ma),在Hf同位素相关图解中落入球粒陨石演化线以上(图14),虽然岩石同样具有较高全碱含量、A/CNK<1.1、A/NK>1.0、准铝质-弱过铝质等岩石地球化学特征并在花岗岩成因类型判别图解中国落入I型区域(图13),但正εHf(t)值和新元古代单阶段模式年龄表明其初始岩浆可能起源于新元古代新生陆壳的部分熔融,结合岩石中存在少量细粒暗色包体(图6a),岩浆形成过程中可能混有少量幔源物质组分。形成于125Ma的唐王洞石英正长岩岩石地球化学特征与研究区形成于156~130Ma的花岗质岩石地球化学特征存在大离子亲石元素(Ba、K、Pb、Sr、Nd)富集程度和高场强元素(Nb、Ta、La、Ce、Ti)亏损程度不同(图10)且在TAS图解和花岗岩成因类型判别图解中落入碱性和A型花岗岩区域(图14);岩浆成因锆石具有负的εHf(t)值(-17.30~-11.56)和较为古老的Hf同位素二阶段模式年龄(tDM2=1917~2278Ma),在Hf同位素相关图解中落入1.8~2.5Ga地壳演化线之间和下地壳、上地壳演化线之间(图14),较为亏损的εHf(t)值、较为古老的二阶段模式年龄和岩石中大量的暗色包体(图6c)表明其初始岩浆起源于较为古老的中下地壳并有幔源物质的加入,在岩浆演化和成因过程中同样经历了矿物的分离结晶作用。因此辽西地区晚中生代期间(156~125Ma)花岗质岩浆由高钾钙碱性系列、I型向钾玄岩系列、A型演化(图9b、图13),其初始岩浆依次起源于太古代古老地壳→新元古代新生地壳→古元古代古老地壳的部分熔融,且130~125Ma岩浆形成过程中不断混入幔源物质组分且混入比例呈现增长趋势,表明华北克拉通东部晚中生代期间经历了复杂的岩浆演化历程和壳幔相互作用。

图13 辽西兴城地区晚中生代花岗质岩石成因类型判别图解(底图据Whalen et al., 1987)

图14 辽西兴城地区中生代花岗质岩石锆石Hf同位素特征(a、b,据Yang et al., 2006;c、d,据吴福元等, 2007)

区域研究资料显示古太平洋板块对华北克拉通东部的俯冲作用最晚开始于早侏罗世(Wuetal., 2011; Yuetal., 2012; Xuetal., 2013; Zhou and Wilde, 2013; Guoetal., 2015; Wilde, 2015),地震台探测和地震成像相关研究显示晚中生代期间古太平洋俯冲板片与上覆岩石圈地幔、周围软流圈地幔等发生相互作用导致岩石圈及地幔各向状态异性(Zhuetal., 2012b),而辽西兴城地区晚中生代花岗质岩浆起源于古老或新生地壳的部分熔融,表明晚中生代期间古太平洋俯冲板片、软流圈、岩石圈地幔、古老/新生地壳之间发生了相互作用,此种相互作用的发生首要因素为俯冲大洋板片脱水产生流体(吴福元等, 2014)。Xiaetal. (2013)计算得到的鲁中费县玄武岩(~120Ma)岩浆源区含水量>1000×10-6,远高于MORB岩浆源区(50×10-6~200×10-6)和南非克拉通(~120×10-6);Gengetal. (2019)对辽西义县-四合屯的早白垩世玄武岩进行岩石地球化学、橄榄石等矿物化学和Sr-Nd-Pb同位素地球化学等综合研究,认为华北克拉通东部早白垩世存在~25km的太古代岩石圈地幔残留体,且华北克拉通早白垩世伸展减薄期间岩石圈地幔发生广泛再水化作用,其原因可能与约200~125Ma期间古太平洋持续俯冲并导致含水地幔过渡带上涌脱水有关,因此晚中生代期间古太平洋强烈俯冲作用造成俯冲板片持续发生脱水作用并交代岩石圈地幔并形成幔源岩浆,幔源岩浆不断底侵作用于古老/新生地壳使其发生部分熔融,为包括辽西兴城地区在内的华北克拉通东部晚中生代花岗质岩石提供岩浆来源。此外在华北克拉通东部广泛发育<140Ma的I型-A型花岗岩及伴生碱性岩,其岩浆源区多元且复杂(古老/新生地壳、幔源物质混入)(孙金凤和杨进辉, 2009, 2013),结合本文辽西兴城地区130~125Ma花岗质岩石不均一的Hf同位素组成和岩石中大量细粒暗色包体的出现,表明华北克拉通东部早白垩世花岗质岩浆的形成可能存在壳源岩浆与幔源岩浆不同程度的混合作用。

5.3 华北克拉通东部晚中生代古太平洋板块俯冲与回撤

已有的区域研究表明古太平洋板块晚侏罗世俯冲作用造成包括科洛、新开岭、医巫闾山在内的华北克拉通东部中下地壳尺度构造变形并形成了广泛分布于燕山-辽西、胶东半岛、辽东半岛等地区的同时代岩浆岩(李刚, 2013; 孙金凤和杨进辉, 2013):马强(2013)认为在古太平洋板块晚侏罗世对华北东部快速斜向俯冲构造背景下形成了辽西凌源蓝旗组火山岩(166~153Ma);医巫闾山地区形成于156~153Ma的上侏罗统髫髻山组属于高钾钙碱性火山岩(李伍平,2012),该地区发育同时期铁镁质-花岗质双峰式岩浆岩岩脉和伸展变形核杂岩,部分学者认为上述岩浆岩和变形构造的形成与晚侏罗世古太平洋板块的俯冲作用有关(李刚, 2013);辽西东南地区发育晚侏罗世NE-NNE向构造形迹和ENE向花岗质糜棱岩带的形成是古太平洋板块俯冲作用的结果(赵玉妹, 2012; Liangetal., 2015),因此华北克拉通东部晚侏罗世整体处于古太平洋俯冲作用构造背景下。华北东部侏罗纪花岗质岩石沿近平行于古太平洋俯冲带方向分布(Wuetal., 2005),而辽西兴城地区晚侏罗世花岗质岩石呈现相一致的NE向展布方向(图12),同时晚侏罗世-早白垩世早期(156~139Ma)花岗质岩石具有与活动大陆边缘花岗岩相类似的岩石组合和岩石地球化学特征:主要岩石类型为二长花岗岩和石英闪长岩、岩石成因类型为I型、具有准铝质-过铝质和高钾钙碱性特点;在相关构造判别图解中样品分别落入岛弧花岗岩区域和活动大陆边缘区域(图15);同时岩石亏损Nb、Ta、Ti等高场强元素暗示可能与俯冲有关(Kelemenetal., 1990; Stolzetal., 1996),因此辽西兴城地区156~139Ma岩浆侵位活动发生在与俯冲密切有关的活动大陆边缘构造背景。结合区域研究资料表明辽西地区所在的华北克拉通东部156~139Ma处于古太平洋板块俯冲作用下的活动陆缘构造背景下。

图15 辽西兴城地区晚中生代花岗质岩石(Y+Nb)-Rb判别图解(a,据Pearce et al., 1984)和Ta-Th判别图解(b,据Schandl and Gorton, 2002)

大量年代学结果显示华北克拉通东部早白垩世构造-岩浆活动强烈:燕山-辽西地区早白垩世侵入岩(140~110Ma)和火山岩(135~122Ma)广泛出露(吴福元等, 2006; Yangetal., 2008)、胶东地区发育130~110Ma的岩浆岩(胡芳芳等, 2007; Liuetal., 2009; Zhao and Zheng, 2009; Zhangetal., 2010)、鲁西济南一带高镁闪长岩(~130Ma)和方城-费县玄武质岩浆活动(123~119Ma)(Guoetal., 2001; Zhangetal., 2002; Xuetal., 2004; 杨承海, 2007)、辽东半岛古道岭、饮马湾山岩体和A型花岗岩岩体(130~120Ma)、辽南-吉南地区早白垩世双峰式(花岗质-镁铁质)岩浆活动(Yangetal., 2007a, b; 裴福萍, 2008; 孙金凤和杨进辉, 2009),上述岩浆活动形成了华北克拉通东部广泛分的早白垩世A型-I型花岗岩、伴生碱性岩-火山岩、双峰式酸性-基性侵入岩(裴福萍, 2008; 孙金凤和杨进辉, 2013);同时广泛分布同时期韧性剪切带和变质核杂岩:辽西台里左旋走滑韧性剪切带、辽西医巫闾山-大城子变质核杂岩、辽南变质核杂岩、云蒙山-承德变质核杂岩等(Davisetal., 2001; 姬广义等, 2004; Liuetal., 2005; Yangetal., 2008; Wangetal., 2012; Linetal., 2013; 李刚, 2013; Liangetal., 2015),均表明早白垩世期间(140~110Ma)华北克拉通东部发生了强烈区域伸展作用。本文早白垩世中期花岗质岩石组合为花岗斑岩和石英正长岩,岩石具有高钾钙碱性、准铝-过铝质、高场强元素Nb、Ta、Ti等相对亏损等岩石地球化学特征和复杂的岩浆源区性质,同时在相关构造判别图解中落入岛弧花岗岩区域和活动大陆边缘区域(图15),均表明辽西兴城地区130~125Ma花岗质岩浆活动构造背景可能为与俯冲有关的活动大陆边缘,本文碱性A型花岗岩(STTW.16、125Ma)结合区域同时期发育的A型-I型花岗岩带、碱性岩带、双峰式岩浆岩带和代表伸展作用的韧性剪切带、变质核杂岩、拉张断陷盆地等均呈现与古太平洋俯冲带一致的NNE或NE展布方向(Meng, 2003; Lietal., 2012),表明辽西地区所在的华北克拉通东部早白垩世中期处于与古太平洋板块俯冲作用有关的强烈区域伸展构造背景下。

图16 辽西兴城地区晚中生代花岗质岩石εHf(t)值与年龄协变图

图17 埃达克质岩石判别图解(底图据Martin, 1999)

图18 华北克拉通东部所在的东亚陆缘中生代岩浆作用时空迁移规律(据Niu, 2018; 郑建平和戴宏坤, 2018; 朱日祥和徐义刚, 2019)

众学者通过对东北亚陆缘、华北东部、华南等不同地区晚中生代岩浆岩由内陆向沿海呈现的时空迁移规律研究,认为中国东部晚中生代构造体制的重大转变及其引发的构造-岩浆-成矿活动主要归因于古太平洋俯冲板块的回撤作用(Zhangetal., 2003; Mercieretal., 2007; Zhuetal., 2012a; 刘磊, 2015; Guetal., 2017; 李三忠等, 2017; 唐杰等, 2018; 郑建平和戴宏坤, 2018; 郑永飞等, 2018; 朱日祥和徐义刚, 2019),但回撤作用的起始时间仍存在~145Ma(郑永飞等, 2018; 朱日祥和徐义刚, 2019)、~135Ma(Zhangetal., 2003; Mercieretal., 2007; Zhuetal., 2012a; Guetal., 2017)、~100Ma等不同认识,同时判断回撤作用发生的主要依据是岩浆岩时空分布和迁移规律而缺乏来自岩石成因方面的证据(郑建平和戴宏坤, 2018)。前文述及华北克拉通东部晚侏罗世-早白垩世早期处于古太平洋板块俯冲作用下的活动大陆边缘构造背景,而早白垩世中期构造环境转变为强烈的区域伸展。形成于160~139Ma的冀北-辽西-辽东花岗质岩石大多为I型花岗岩且具有类似的岩石地球化学特征,而形成于130~120Ma的花岗质岩石更为富集大离子亲石元素、更亏损高场强元素(图10)同时更多落入A型花岗岩区域(图13),据此可以将晚中生代古太平洋俯冲活动陆缘构造背景向区域伸展构造背景的转换时间具体限定在139~130Ma,这与华北克拉通东部代表区域伸展作用的大规模A型花岗质、碱性、双峰式岩浆活动和拉张断陷盆地、韧性剪切带、变质核杂岩等构造活动发生于130Ma之后(130~110Ma)相吻合(Liuetal., 2005; 吴福元等, 2006; 胡芳芳等, 2007; 裴福萍, 2008; Yangetal., 2008; 孙金凤和杨进辉, 2009, 2013; Liuetal., 2009; Zhao and Zheng, 2009; Zhangetal., 2010; Linetal., 2013)。

图19 华北克拉通东部晚中生代古太平洋俯冲与回撤作用模式图

区域研究资料显示中国东部晚中生代期间构造体制的重大转变及相应构造-岩浆活动的发生与古太平洋俯冲板块回撤作用密切相关:唐杰等(2018)在总结广泛分布于东北亚陆缘的白垩纪岩浆岩形成时代和时空分布规律基础上发现晚白垩世-古近纪岩浆岩由内陆向沿海发生迁移且向东分布范围明显缩小,认为古太平洋俯冲板块于晚白垩世开始逐渐回撤;郑建平和戴宏坤(2018)认为华北东部晚中生代岩石圈地幔增生置换、陆内浅部地壳褶皱-逆冲-断陷-成盆的动力来源为古太平洋板块的俯冲与后撤,并根据岩浆活动时空分布规律与迁移趋势推断俯冲板块的回撤导致岩浆活动于140Ma之后向东南方向迁移;部分学者认为古太平洋板块俯冲后撤作用导致的弧后拉张造成华北克拉通东部破坏峰期的出现和郯庐断裂早白垩世期间(~135Ma)由左行平移活动转变为强烈伸展活动(Zhangetal., 2003; Mercieretal., 2007; Zhuetal., 2012a; Guetal., 2017);另有部分学者认为180~145Ma期间古太平洋板块向欧亚大陆边缘不断俯冲前进造成了岩浆活动从沿海向内陆迁移,而145Ma之后古太平洋俯冲板片的回撤造成岩浆活动由内陆向沿海迁移(郑永飞等, 2018; 朱日祥和徐义刚, 2019),并于130~120Ma期间俯冲板片回撤了880km(朱日祥等, 2015);综合福建160~127Ma下火山岩系向洋年轻化及幔源年轻物质比例增加(Liuetal., 2016)、湖南晚中生代花岗岩Hf同位素组成和岩石地球化学特征显示的古太平洋板块于151~146Ma由拆沉转换为俯冲后撤并产生俯冲后撤岩浆作用(132~117Ma)(Jietal., 2017)、华南陆内存在早侏罗世(175Ma)埃达克质岩浆作用和晚白垩世(130Ma)双峰式岩浆作用(Xiaetal., 2016),李三忠等(2017)认为华南地区于中侏罗世发生了古太平洋板块俯冲后撤作用;长江中下游地区中生代(176~130Ma)成矿相关岩浆岩自西南向东北呈现成岩年龄递减的趋势可能与古太平洋板块俯冲回撤相对应;中国东南部白垩纪(145~118Ma)自内陆向沿海沿南东向岩浆岩年轻化迁移规律、壳幔相互作用增强等表明俯冲板片发生了南东向后撤,并表现出不同纬度南早北晚的非同步后撤(刘磊, 2015)。辽西兴城地区晚中生代花岗质岩石和铁镁质岩石均具有自内陆向沿海成岩时代逐渐变年轻即向洋年轻化的时空分布规律(图12)(Wanetal., 2019),同时锆石Hf同位素组成显示:形成于156~139Ma的岩浆成因锆石具有一致的负εHf(t)值(-22.70~-18.66)和古老的Hf同位素二阶段模式年龄(tDM2=2387~2767Ma),而形成于130Ma的岩浆成因锆石具有正的εHf(t)值(+3.64~+6.22)和较为年轻的Hf同位素单阶段模式年龄(tDM1=537~969Ma),即139~130Ma期间εHf(t)值突然由负值变为正值(图16),锆石Hf同位素表现出随时间由富集突变为亏损趋势表明139~130Ma期间有大量亏损地幔物质加入并指示经历了强烈壳幔相互作用。在埃达克岩相关判别图解中,冀北-辽西-辽东地区形成于160~139Ma的花岗质岩石大多落入埃达克岩区域(图17),其类似于埃达克质岩石的高Sr/Y值、低Y含量及富集的Hf同位素组成表明古太平洋的俯冲作用导致了地壳一定程度的加厚,而形成于130~120Ma的花岗质岩石大多落入典型岛弧岩浆岩区域(图17),与该时期强烈的区域伸展作用相吻合,同时暗示139~130Ma期间古太平洋可能发生了俯冲回撤作用并导致了构造环境的改变。区域研究资料显示145~135Ma期间古太平洋板块俯冲方向为NWW、俯冲速度为5.3cm/y,而135~119Ma期间俯冲方向为NNW、俯冲速度增大至21.1~30.0cm/y(Engebretsonetal., 1985; Maruyama and Send, 1986),同时古太平洋俯冲板块发生回撤导致由低角度斜向俯冲变为高角度正交俯冲(马强, 2013; Zhangetal., 2014; Liangetal., 2015),上述古太平洋板块于~135Ma发生俯冲回撤和俯冲角度、方向、速度的变化引发软流圈大规模上涌并不断改造岩石圈地幔,造成早白垩世岩石圈地幔流变性失稳(Zhuetal., 2011; 吴福元等, 2014),进而大量幔源物质得以参与到岩石成岩过程中,最终造成了139~130Ma期间辽西地区花岗质岩石Hf同位素组合和微量元素含量的突变,同时也导致了华北克拉通大规模的岩石圈减薄和克拉通破坏(崔芳华, 2015)。根据本文辽西地区分别形成于156~139Ma和130~125Ma的花岗质岩石Hf同位素组合和微量元素含量的突变规律,并结合区域研究资料可以将华北克拉通东部晚中生代期间古太平洋俯冲板块的回撤作用起始时间限定于139~130Ma之间,该认识与反映古太平洋俯冲板块于~140Ma开始回撤的辽东-辽西-冀北中生代岩浆活动迁移规律(图18)在误差范围内相一致,即180~140Ma期间岩浆活动向内陆迁移并代表古太平洋板块的持续前进俯冲,而~140Ma之后俯冲板片持续后撤作用导致古太平洋俯冲带向东南沿海方向迁移(郑建平和戴宏坤, 2018; Niu, 2018; 朱日祥和徐义刚, 2019)。

基于上述研究与认识,本文认为华北克拉通东部晚中生代期间经历了如下古太平洋俯冲与回撤作用过程:

(1)156~139Ma期间古太平洋板块对华北克拉通东部进行持续俯冲(图19a),与俯冲作用有关的活动陆缘构造背景下形成了辽西兴城地区高钾钙碱性I型花岗质岩石和区域内平行于俯冲带方向分布的岩浆岩带和构造行迹;

(2)139~130Ma期间古太平洋俯冲板块发生回撤(图19b),导致软流圈大规模上涌、局部伸展和岩石圈地幔失稳,造成辽西兴城地区花岗质岩石中~130Ma的岩浆成因锆石Hf同位素组成由富集向亏损发生突变;

(3)130Ma之后古太平洋俯冲板块的持续回撤造成软流圈持续上涌和强烈区域伸展作用(图19c),形成了包括辽西兴城地区A型花岗岩(125Ma)在内的大规模A型-I型花岗质、碱性、双峰式岩浆活动和拉张盆地、韧性剪切带和变质核杂岩等构造活动,并导致华北克拉通发生大规模的岩石圈减薄和克拉通破坏。

6 结论

(1)辽西兴城地区晚中生代花岗质岩石由二长花岗岩、石英闪长岩、花岗斑岩和石英正长岩组成,形成时代介于156~125Ma,具有向洋年轻化的时空分布规律。

(2)晚侏罗世-早白垩世早期(156~139Ma)花岗质岩石具有与I型花岗岩类似的岩石地球化学特征和古老富集的Hf同位素组成,初始岩浆来源于古老地壳,形成于古太平洋持续俯冲作用下的活动陆缘构造背景;早白垩世中期(130~125Ma)花岗质岩石Hf同位素组成不均一、岩浆源区复杂、壳幔相互作用印记明显,形成于与古太平洋板块俯冲回撤作用有关的区域伸展构造背景下。

(3)华北克拉通晚中生代期间古太平洋俯冲板片脱水交代岩石圈地幔并形成幔源岩浆,幔源岩浆不断底侵作用于古老/新生地壳使其发生部分熔融为花岗质岩石提供岩浆来源。

(4)华北克拉通东部156~139Ma期间受到太平洋板块的持续俯冲作用,139~130Ma期间古太平洋俯冲板块发生回撤作用,并于130Ma后进入持续回撤作用造成的强烈区域伸展作用阶段。

致谢感谢审稿专家和编辑部对本文提出的宝贵修改意见。

谨以此文祝贺杨振升先生九十华诞。

猜你喜欢

克拉通兴城辽西
兴城古城:明朝最后的关外孤城
地球第一块陆地比原来认为的早7亿年
【最创新】后发先至,科技兴城
辽宁兴城觉华岛历史学术研究综述
克拉通岩石圈地幔的形成与破坏:大洋板块俯冲的贡献
史前勤求索 辽西秀芬芳——纪念索秀芬先生
有关克拉通破坏及其成因的综述
辽西地区葡萄园作业历
华北克拉通重力剖面重力点位GPS测量精度分析
辽西地区慕容鲜卑汉化的考古学观察