APP下载

致密砂岩油藏微观孔隙结构及水驱油特征

2020-02-27窦亮彬

关键词:孔喉喉道驱油

黄 兴, 高 辉, 窦亮彬

(1.西安石油大学石油工程学院,陕西西安 710065; 2.陕西省油气田特种增产技术重点实验室,陕西西安 710065)

致密砂岩储层具有孔喉细小、微小原生孔隙及次生孔隙比重高、微裂缝发育、孔隙结构复杂等特征[1-3],导致其注水开发难度较大,水驱采收率较低。在开发过程中,许多宏观生产规律及储层的渗流特征均是储层微观结构和孔隙尺度下各相流体运移的综合反映,即储层的微观孔隙结构及流体性质是根本,而宏观特征只是表象[4-7]。近几年,随着电子显微镜在石油行业中的不断应用[8-9],越来越多的学者逐渐认识到微观孔隙结构与水驱油特征的关系,认为储层微观孔隙结构对水驱油特征有重大影响[10-11],孔喉半径更能反映致密储层的驱油效率与渗流特征,用微观孔隙结构划分出的储层类型与驱油效率之间的关系会更加准确。鄂尔多斯盆地延长组自上而下划分为10个油层组,其中长8油层是姬塬油田勘探开发的主力油层组。由于储层在沉积过程中受到压实、成岩等作用,导致目标储层岩石致密,并发育有大量的微、纳米级孔喉,孔隙度为1.35%~11.54%,渗透率为(0.1~2.5)×10-3μm2,属于致密砂岩储层。复杂的孔隙结构特征又进一步导致流体在孔喉内的渗流及分布变得复杂,直接制约了长8油层组的勘探开发。为了精细描述不同孔隙结构类型下的水驱油特征,笔者在铸体薄片分析、高压压汞测试、扫描电镜和核磁共振测试等试验结果的基础上,筛选出11个特征参数,建立目标储层的孔隙结构分类评价标准,结合真实砂岩微观模型水驱油试验对不同类型储层的水驱油渗流特征进行研究,并对微观水驱油效率的主要影响因素进行分析。

1 储层岩石学特征

研究区长8储层主要为细—中粒岩屑质长石砂岩、长石砂岩,其次为长石质岩屑砂岩和岩屑砂岩,主要碎屑组分由石英、长石、岩屑构成,其中石英体积分数为19.3%~45.5%,长石体积分数为22.5%~47%,岩屑体积分数为6%~58%。长8储层以细砂为主,碎屑颗粒呈次棱—次圆状,分选中等—好,颗粒支撑以点接触为主,其次为线接触,砂岩均粒径在0.1~0.4 mm,成分成熟度低,结构成熟度偏高,成岩作用较为强烈。填隙物含量较少,但类型多样,主要包括高岭石(3.2%)、绿泥石(3.4%)、水云母(2.8%)、方解石(2.3%)、铁方解石(3.7%)和白云石(2.5%)等。

2 储层微观孔隙结构特征及分类

2.1 储集空间类型

根据铸体薄片分析和扫描电镜图像可知,研究区长8储层孔隙包括原生孔隙和次生孔隙,其中原生孔隙是主要的孔隙类型。原生孔隙主要为残余粒间原始孔隙(图1(c),面孔率平均值为4.54%),即绿泥石黏土环边生长增强了颗粒的抗压实能力,使原生孔隙得以较好地保存而形成的,形状多为不规则状、三角状或多边状,孔径为10~250 μm。次生孔隙包括粒间溶孔(图1(a)、(b))、粒内溶孔、岩屑溶孔及少量微裂缝,面孔率为0~17%(平均为3.4%),平均孔径为46 μm,其中粒间孔、长石溶孔构成了主要的储集空间。储层孔隙内会被胶结矿物和杂基物充填,常见高岭石呈鳞片状充填颗粒之间(图1(d))、绿泥石呈薄膜状充填孔隙中,孔隙配位程度较差,连通程度一般。

图1 研究区长8储层孔隙类型Fig.1 Pore types of Chang 8 reservoir in study area

2.2 喉道类型

喉道是连通两个孔隙之间的桥梁,每个孔隙可以有多个喉道与之相连。岩石颗粒的接触关系、胶结类型以及颗粒本身的形状和大小决定了喉道的大小和形态[12-13]。研究区长8储层的喉道类型主要包括孔隙缩小型喉道(图2(a))、缩颈型喉道(图2(b))、弯片状喉道(图2(c))和管束状喉道(图2(d)),其中以弯片状喉道为主。弯片状喉道和管束状喉道的储层物性差、孔隙储集空间小,主要呈狭长弯曲的状态分布于颗粒之间,有时喉道甚至为堵塞状态。孔隙缩小型喉道具有孔隙大、喉道粗的特点,此类喉道连通性和渗流能力较强,但在研究区出现较少。缩颈型喉道是岩石颗粒经历压实以后,具有孔隙大、喉道窄的特点,常见于颗粒支持和点接触方式。

图2 研究区长8段典型岩样铸体薄片图像Fig.2 Compact cast images of typical core samples of Chang 8 reservoir in study area

2.3 孔隙结构类型及特征

根据高压压汞和核磁共振测试结果,辅以铸体薄片分析和扫描电镜方法,对研究区长8储层的43块岩心样品进行分析,选取孔隙度、渗透率、可动流体饱和度、可动流体孔隙度、排驱压力、中值压力、分选系数、孔喉半径、最大进汞饱和度、孔喉组合以及孔隙类型11个参数作为储层评价的特征参数[14-15],建立姬塬油田长8储层孔隙结构的分类评价标准(表1)。根据评价标准,姬塬油田长8储层孔隙结构可以划分为Ⅰ、Ⅱ、Ⅲ 3类。

(1)Ⅰ类孔隙结构。这类储层是3种类型中物性最好的储层,此类储层的T2谱形态主要为双峰,两峰清晰分开,且基本对称,可动流体饱和度饱和度超过62.5%。Ⅰ类储层对研究区长8储层的储集空间和渗流能力有很大贡献,主要分布于水下分流河道的中心部位,但此类储层占比较低(43块样品中有8块属于这一类型,占比18.6%)。Ⅰ类储层中最有代表性的为20号样品,如图3(a)、(b)所示。

(2)Ⅱ类孔隙结构。此类储层物性相比Ⅰ类偏差,T2谱形态主要为双峰,但束缚流体峰明显高于可动流体峰,有较为明显的斜坡段,可动流体饱和度为41.4%~62.5%。此类储层一般分布于与水下分流河道中心相连的河道边部,占比较大(46.5%),是下一步勘探开发的主要类型。Ⅱ类储层中最有代表性的为1号样品,如图3(a)、(c)所示。

(3)Ⅲ类孔隙结构。此类储层物性最差,T2谱形态主要为束缚流体峰明显的单峰形态,表明此类储层小孔喉含量多,连通性差,束缚流体含量大。此类储层一般分布于水下分流河道与分流间湾的过渡带或分流间湾处,占比相对较大(35%)。Ⅲ类储层中最有代表性的为36号样品,如图3(a)、(d)所示。

表1 研究区长8储层孔隙结构分类标准

注:表中数据分子表示取值范围,分母为平均值。

图3 不同类型储层典型样品的压汞曲线和核磁共振T2谱分布Fig.3 Mercury injection curves and NMR T2 spectra of typical samples under different reservoir types

3 水驱油特征及影响因素

3.1 真实砂岩微观模型制备

选取姬塬油田长8储层不同类型孔隙结构的储层进行取样,取样的岩心多选自于水下分流河道,部分选自水下天然堤微相。将岩心模型样品进行洗油、烘干、切片、磨片等工序后粘结在两块有机玻璃板之间,制作成微观模型。模型尺寸为25.5 mm×25.5 mm×0.7 mm,最大承压为0.5 MPa,最高试验温度为80 ℃。本次试验共制作长8储层微观岩心模型11块,通过引入模糊综合评判法(原理及方法参见文献[16]~[18]),对11块模型的孔隙结构进行评价并分类,孔隙度为4.59%~9.23%,渗透率为(0.06~0.51)×10-3μm2,可动流体饱和度为9.7%~75.7%,可动流体孔隙度为1.2%~8.5%,具体参数及分类如表2所示。

表2 真实砂岩微观模型水驱油试验结果

3.2 试验样品及步骤

试验中所用模拟油为地面脱气原油与煤油按1∶1比例配制而成,黏度为2.5 mPa·s。所用注入水为根据实际地层水分析资料配制的等矿化度的模拟地层水,矿化度为2 700 mg/L,黏度为0.98 mPa·s。为了便于观测,在模拟油中加入少量油溶红,在模拟地层水中加入少量甲基蓝。

试验步骤:①模型抽真空后饱和模拟地层水,计算每块模型的孔隙体积;②测量饱和水状态下模型的渗透率,每块模型测量3次取平均值;③全视域和局部视域扫描饱和水后的模型,确定模型的原始含水饱和度;④油驱水(即饱和油过程)至每块模型采出端不出水为止,对每块模型进行全视域和局部视域扫描、拍照,统计原始含油饱和度;⑤水驱油试验,先逐渐加压确定模型水驱油时的启动压力,然后开始注水驱替,统计模型在不同注入倍数和不同压力下的残余油饱和度,驱替过程中对每块模型进行全视域和局部视域扫描、拍照。

3.3 试验结果分析

通过对3种不同类型的储层分别开展真实岩心微观水驱试验,可以获得Ⅰ、Ⅱ、Ⅲ类储层所对应的驱油效率(表2),11块微观模型最终平均驱油效率为34.99%,且随着储层孔隙结构的变差,驱油效率逐渐降低。通过观察注水过程中水驱油的驱替类型,可以分为均匀驱替(图4(a))、网状驱替(图4(b))、树枝状驱替(图4(c))和蛇状驱替(图4(d))4类[18-19],4种驱替类型对应的驱油效果依次变差。

3.3.1 Ⅰ类储层水驱油特征

Ⅰ类储层水驱油试验中包含2块砂岩模型。此类储层在无水期的平均驱油效率为22.54%,驱替类型以均匀驱替和网状驱替为主;最终期的平均驱油效率为49.28%,驱替类型以均匀驱替为主。在水注入过程中水相会在较小压力下均匀进入各个孔隙和喉道中驱替原油,驱替前缘几乎平行推进,无明显高渗通道,注水波及面积逐渐增大,驱替效率高。由于此类储层物性较好,孔喉半径大,水相会从孔隙中部进入,进而向四周挤压、排走原油,残余油主要以油膜的形式附着在孔喉表面(图4(a))。

3.3.2 Ⅱ类储层水驱油特征

Ⅱ类储层水驱油试验中包含6块砂岩模型。此类储层在无水期的平均驱油效率为17.85%,驱替类型包含了网状驱替和树枝状驱替;由于孔喉结构相对复杂,大小孔喉交错分布,水相会优先选择进入大孔隙和阻力相对小的喉道中,出现指进现象。最终期的平均驱油效率为35.63%,驱替类型则包括均匀驱替、网状驱替和树枝状驱替;因为在驱替后期,随着注水压力的不断升高,水相能够进入原来一些阻力较大的小孔喉,逐渐形成了网状渗流通道,而孔喉连通性较好的模型到后期则能形成均匀驱替。由于此类储层孔喉结构及分布特征较为复杂,导致大小孔喉中的驱替速度存在差异,如果大孔喉中的驱替速度快于小孔喉,则会出现小孔喉中驱出的油被大孔喉中的水捕捉,形成水锁现象[19-21]。如果小孔喉中的驱替速度快于大孔喉,则会出现大孔喉中的油被小孔喉中的水分割包围,形成油滴。残余油类型主要为水锁型(图4(b))和油滴型(图4(c))。

3.3.3 Ⅲ类储层水驱油特征

Ⅲ类储层水驱油试验中包含3块砂岩模型。此类储层在无水期的平均驱油效率为12.69%,驱替类型以树枝状驱替和蛇状驱替为主,由于储层物性和连通性差,水在高压下只能进入少数孔喉,呈现出单向指进现象,注水波及面积分散。最终期的平均驱油效率仅为24.17%,远低于I、II类储层;驱替类型主要为树枝状驱替。由于此类储层孔喉半径小,且孔喉堵塞率较高,导致注水波及面积窄,易于形成连片状残余油(图4(d))。

图4 姬塬油田长8储层水驱油驱替类型和残余油分布(红色为油、蓝色为水)Fig.4 Displacement type and residual oil distribution of Chang 8 reservoir in Jiyuan Oilfield(red for oil, blue for water)

3.4 驱油效率的影响因素

3.4.1 储层物性

驱油效率与孔隙度、渗透率的关系如图5所示。由图5可知,最终驱替效率与孔隙度的相关性较差,而与渗透率的相关性较好。这因为某些孔隙度大的储层会出现死孔隙或连通孔隙的微小孔喉被黏土矿物阻挡和堵塞的现象,导致连通性变差,驱油效率低下,而渗透率则是表征喉道粗细、连通率的主要参数。

图5 驱油效率与孔隙度、渗透率的关系Fig.5 Relationship between oil displacement efficiency and porosity, permeability

3.4.2 可动流体参数

可动流体参数能反映整个孔隙空间中可动流体量及孔喉的相对大小,尤其是固体表面对流体的束缚作用,也是孔隙结构对流体渗流阻力的一种体现方式[22-24]。驱油效率与可动流体参数的关系如图6所示。由图6可知,驱油效率与可动流体饱和度和可动流体有效孔隙度的相关性较好,相关系数R2超过0.8。说明可动流体参数越高,孔喉的连通性越好,有效储集空间越大,可动用原油比例越高。因此相比于孔隙度和渗透率,可动流体参数更能反映出致密储层的物性好坏及其渗流特征。

图6 驱油效率与可动流体参数的关系Fig.6 Relationship between oil displacement efficiency and mobile fluid parameters

3.4.3 黏土矿物

典型岩样X-射线衍射黏土矿物分析结果见表3。由表3可知,黏土矿物绝对含量的不断增大会导致最终驱油效率明显降低,这是因为黏土矿物的存在容易增大岩石颗粒的比表面,使孔喉表面变得粗糙,增大孔壁与原油间的作用力,造成注水压力升高,原油不易从孔壁剥离。此外,由于孔隙、喉道被黏土矿物填充,容易减小孔隙空间或堵塞喉道,进一步造成水驱油效率降低。目标储层中绿泥石的赋存状态包括2种类型[25-26],一种以孔隙衬边方式产出的黏土膜,一种作为填隙物充填于孔隙中间。以Y35-98井13号为例岩样中黏土矿物绝对含量为13.7%,其中绿泥石相对含量达到64.6%,根据扫描电镜图像显示颗粒表面大量赋存有叶片状绿泥石。Y34-85井28号岩样中黏土矿物绝对含量为11.2%,伊利石相对含量为28.18%,绿泥石相对含量为39.8%,绿泥石大量填充在颗粒之间,长石表面也赋存有大量的片状伊利石。此外,由于含铁矿物溶蚀生成的铁、镁离子为高岭石转化为绿泥石提供了必要的物质条件,生成的针叶状绿泥石会填充、分割孔隙,减小孔隙储集空间和喉道半径,降低孔隙间的连通性,甚至会堵塞孔喉,形成死孔隙或死喉道,进而导致13号和28号岩样的微观驱油效率仅为20.78%和28.18%。

表3 典型岩样X-射线衍射黏土矿物分析结果

3.4.4 注水体积倍数

根据11块样品微观驱替结果可知,所有模型在无水期的平均驱油效率为17.29%。当采出端见水后继续注水1Vp(Vp为孔隙体积)后测得所有模型的中期平均驱油效率为30.47%。然后继续注水至采出端不出油为止,所有模型的最终平均驱油效率为34.99%。由此可知,注水体积倍数与驱油效率成正比,但随着注水体积倍数的增大,驱油效率增加幅度却不断降低。这说明驱油效率上升较快的时间为无水采油期和见水初期,而越到驱替后期,驱油效率增长速度越慢。这是因为模型采出端见水后,后续注入的水会沿着原有的渗流通道继续流动,不会进入渗流阻力较高的孔喉,出现无效水循环现象,导致驱替效率不变。

4 结 论

(1)姬塬油田长8储层岩石类型主要为细—中粒岩屑质长石砂岩和长石砂岩,主要碎屑组分由石英、长石、岩屑构成,填隙物含量较少,砂岩成熟度较低,属于低能量、近物源环境的产物;储集空间以粒间孔和长石溶孔为主,喉道类型以弯片状喉道为主。

(2)引入模糊综合评判法建立研究区长8储层孔隙结构分类评价标准,将目标储层划分为Ⅰ、Ⅱ、Ⅲ3种类型,其对应的储集性能和渗流能力依次降低,其中Ⅱ类储层是后续勘探开发的重点类型。

(3)姬塬油田长8储层中的I类储层驱油效率最高,以均匀和网状驱替为主,残余油以油膜型为主;Ⅱ类储层驱油效率次之,以网状和树枝状驱替为主,残余油以水锁型和油滴型为主;Ⅱ类储层驱油效率最差,以蛇状驱替为主,水驱后易于形成连片状残余油分布。

(4)姬塬油田长8储层的驱油效率与渗透率、可动流体参数的相关性较好,与孔隙度相关性较差;可动流体参数更能反映出致密储层的物性好坏及其渗流特征。黏土矿物易于充填孔隙、堵塞喉道,造成孔喉连通性变差;注水倍数对驱油效率的影响随着含水率的上升而减弱。

猜你喜欢

孔喉喉道驱油
一种新型双射流双喉道控制矢量喷管的数值模拟
砂岩孔喉结构复杂性定量表征及其对渗透率的影响
——以东营凹陷沙河街组为例
涡轮导向器喉道面积三坐标测量不确定度评估
基于数字岩心的致密砂岩微观孔喉结构定量表征
注空气驱油过程中N80钢的腐蚀规律研究
鄂尔多斯盆地白豹油田致密砂岩储层孔喉结构及NMR分形特征
二氧化碳驱油技术在三次采油工艺中的应用
三次采油驱油技术在油田开采中的应用研究
油田三次采油驱油技术应用研究
甲烷在煤的微孔隙喉道通过性及其对解吸的影响机理