APP下载

含硫材料对中碱性农田土壤镉的钝化效果

2019-10-31符云聪朱晓龙解晓露杨国航李鹏祥刘代欢

生态与农村环境学报 2019年10期
关键词:钝化剂济源新乡

符云聪,朱晓龙,袁 毳,解晓露,杨国航,李鹏祥,刘 晨,刘代欢,3①

(1.永清环保股份有限公司,湖南 长沙 410330;2.湖南永清环保研究院有限责任公司,湖南 长沙 410330;3.农田土壤污染防控与修复技术国家工程实验室,江苏 南京 210008)

重金属污染对生态环境和人类健康具有潜在危害[1]。随着我国经济快速发展,土壤重金属污染程度日益加剧。2014年4月原环境保护部和原国土资源部发布的《全国土壤污染状况调查公报》显示,我国耕地重金属点位超标率达19.4%,其中82.8%正遭受严重的镉、汞、砷、铜、铅污染,镉污染尤为突出[2]。镉具有较强的毒性,是影响人类健康的主要重金属之一[3]。中碱性土壤主要分布于我国北方,其主要种植作物小麦是世界上最重要的粮食作物之一,我国小麦的地位仅次于水稻[4]。土壤中的镉易被小麦吸收并富集于各个部位,小麦籽粒中累积的镉可以通过食物链进入人体,对人体健康造成严重危害[5]。因此,中碱性镉污染农田修复是亟待解决的难题。

目前治理土壤重金属污染的方法较多,包括化学淋洗[6]、植物修复[7-8]和化学钝化[9-10]等。然而部分方法在时间、成本和环境友好等方面有一定不足。化学钝化主要是通过降低土壤重金属活性来治理重金属污染[11-12],该技术效果好且周期短,操作简单易行,是一种廉价且环保的治理方法。南方酸性土壤的钝化修复技术较为成熟,是通过撒施钝化剂与调节土壤pH值的共同作用,达到降低土壤重金属活性的效果。而北方中碱性土壤本底pH值较高,无法通过提高pH值的方式进行修复,需通过钝化材料与重金属间发生化学反应生成沉淀物、络合物、螯合物或通过表面吸附和离子交换作用固定重金属。此外,部分钝化剂在中碱性土壤中降镉效果不稳定,且重复性不好,稍微有效果的钝化剂施用量却很高(一般在w=1%以上),不利于实际应用。因此,研发施用量低且适合修复中碱性土壤重金属污染的钝化剂尤为重要。

部分学者进行了硫化钠钝化土壤重金属试验,结果表明硫化钠主要通过改变土壤中可交换态和残渣态的比例来影响重金属在植物体内的分配[13-15]。添加硫化钠后重金属容易形成溶解性低、相对稳定的形态,从而导致重金属在土壤中的移动性和生物有效性降低。与硫化钠相比,硫化钙(CaS)具有不易潮解、分散性好等特性,更利于实际应用。聚合二硫代氨基甲酸钠(DTCR)是一种无毒无害的重金属捕捉剂,它与重金属有很强的络合能力[16]。DTCR通过CSS—二硫代基团提供电子与重金属螯合,形成多硫螯合物[17]。近年来对DTCR的研究多集中在重金属废水处理方面[18-19],关于DTCR对土壤重金属治理研究较少[20]。2,4,6-三巯基均三嗪三钠(TMT)也是一种无毒无害的重金属捕捉剂,按其纯度一般分为w=15%的TMT15(液体)和w=55%的TMT55(固体)。TMT中3个S—键能与多种重金属离子螯合,形成极难溶于水且稳定性良好的有机硫沉淀,因而常用于重金属废水处理[21-22],鲜见关于TMT对土壤重金属的治理研究[23]。

CaS、DTCR和TMT55这3种材料对土壤中重金属的治理研究相对较少,特别是对中碱性土壤重金属的治理研究更少。该研究以3种含硫材料CaS、DTCR和TMT55作为钝化剂,通过土壤培养试验研究3种含硫钝化剂对土壤二乙烯三胺五乙酸(DTPA)有效态镉含量的影响,并对其钝化效果进行研究分析,以期为中碱性农田土壤镉污染的修复治理提供技术支持。

1 材料与方法

1.1 供试材料

河南新乡和济源两地化工企业较多,部分地区使用污水灌溉,导致农田重金属污染严重。供试的2种来源土壤分别采自新乡和济源麦田,采样深度为0~20 cm,野外采集后自然风干,除去可见的石块和根系,研磨后过2.0 mm孔径筛备用。土壤部分理化性质见表1,两地土壤总镉浓度均已超过GB 15618—2018《土壤环境质量 农用地土壤污染风险管控标准(试行)》〔pH值>7.5时,w(Cd)≤0.6 mg·kg-1〕。

钝化剂CaS、DTCR和TMT55分别来源于湖北七八九化工有限公司、武汉佰瑞特环保技术有限公司和吴江市杏雄金属化工有限公司,其主要理化性质见表2。其他试验材料如二水合氯化钙、三乙醇胺(TEA)、DTPA等均为分析纯。

表1 供试土壤基本理化性质

Table 1 Physical and chemical properties of soil for experiment

1.2 试验设计与处理

1.2.1不同钝化剂对土壤有效态镉的影响

取2种来源土壤(新乡和济源土壤),每个塑料盆装土0.2 kg,分别添加CaS、DTCR、TMT55于土壤中,其投加量为土壤质量的0.10%,用勺子充分拌匀后加等量去离子水,保持土壤含水率w=20%[20]。每个处理设置3个重复,并设置未投加钝化剂的对照(CK)。在室温下避光稳定15 d后采集土壤样品并检测,土壤中有效态镉含量按照GB/T 23739—2009《土壤质量 有效态铅和镉的测定 原子吸收法》,DTPA提取后用Agilent Technologies 240Z AA型石墨炉原子吸收分光光度计测定。pH值测定使用雷磁PHS-3C型pH计[17]。

表2 钝化剂理化性质

Table 2 Physical and chemical properties of the passivators

钝化剂w/%粒径/mmpH值1)w(Cd)/(mg·kg-1)CaS≥40~460.07511.890.1DTCR990.1509~10未检出TMT55550.1508.5~11未检出

CaS为硫化钙;DTCR为聚合二硫代氨基甲酸钠;TMT55为w=55%的2,4,6-三巯基均三嗪三钠固体。1)DTCR 和TMT55测定其w=10%水溶液的pH值。

1.2.2钝化剂投加剂量对土壤有效态镉的影响

取2种来源土壤,每个塑料盆装土0.2 kg,分别添加CaS、DTCR、TMT55于土壤中,其投加量分别为土壤质量的0.05%和0.10%,用勺子充分拌匀后加等量去离子水,保持土壤含水率w=20%。每个处理设置3个重复,设置未投加钝化剂的对照(CK)。在室温下避光稳定15 d后,采集土壤样品并检测。

1.2.3钝化剂稳定时间对土壤有效态镉的影响

取2种来源土壤,每个塑料盆装土1.0 kg,分别添加CaS、DTCR、TMT55于土壤中,其投加量为土壤质量的0.10%,用勺子充分拌匀后加等量去离子水,保持土壤含水率w=20%。每个处理设置3个重复,并设置未投加钝化剂的对照(CK)。在室温下避光稳定7、15和30 d后,采集土壤样品并检测。

1.2.4数据分析方法

数据采用Excel 2013软件进行整理,采用SPSS 22.0统计分析各数据的差异显著性,采用Origin 9.0软件进行数据处理并制图[17]。

2 结果与讨论

2.1 钝化剂对土壤有效态镉的影响

新乡和济源土壤初始有效态镉含量(DTPA提取)分别为1.56和0.97 mg·kg-1。如图1所示,在2种土壤中分别添加w=0.10%的钝化剂,稳定15 d后,3种钝化剂均能显著降低土壤有效态镉含量(P<0.05)。新乡土壤中,添加CaS、DTCR和TMT55材料后的土壤有效态镉含量较对照分别降低28.73%、59.91%、70.27%;济源土壤中,添加CaS、DTCR和TMT55材料后土壤有效态镉含量较对照分别降低19.68%、51.55%、53.61%。在2种土壤中3种钝化剂降镉效率均为TMT55>DTCR>CaS,其原因可能与3种钝化剂和重金属镉之间的反应机制有关。CaS进入土壤后能够形成S2-或HS-,可与土壤中的镉形成稳定且难溶的CdS沉淀,固定土壤中的可交换态镉,显著降低土壤镉活性[24-25];DTCR中的二硫代基团(C)SS—能与镉形成多硫螯合物[26-27],同一镉离子螯合的配价基极可能来自不同的DTCR分子,这样生成的螯合物分子为高交联、立体结构,原DTCR的分子量为10万~15万,而生成的难溶螯合盐的分子量可达到数百万甚至上千万,具有很强的稳定性;TMT55有3个S—键,能与镉螯合形成极难溶于水且稳定性良好的有机硫沉淀[21-23]。

CaS—硫化钙;DTCR—聚合二硫代氨基甲酸钠; TMT55—w=55%的2,4,6-三巯基均三嗪三钠固体。图1 钝化剂对土壤有效态镉的影响Fig.1 Effects of passivators on the soil available Cd

3种钝化剂在新乡土壤中的降镉率均高于济源土壤,其原因可能是新乡土壤有机质含量(25.00 g·kg-1)高于济源土壤(14.42 g·kg-1)。有机质对土壤重金属的作用主要有吸附作用、离子交换和络合,有机质中含有大量的氨基、羧基、环形氮化物、偶氮化合物、醚和酮等官能团,能够螯合重金属,起到降低重金属有效态的作用[28]。焦文涛等[29]试验发现,3种土壤有机质含量由大到小为乌栅土(40.6 g·kg-1)>黄泥土(21.7 g·kg-1)>红壤(9.1 g·kg-1),同等条件下它们对镉的吸附量也为乌栅土>黄泥土>红壤,对镉的解吸量为乌栅土<黄泥土<红壤,结果表明土壤有机质含量越高,吸附的镉越多且解吸的镉越少,土壤对镉的固定作用越强。

2.2 钝化剂投加剂量对土壤有效态镉的影响

由图2可见,2种土壤中,随着3种钝化剂投加量w从0.05%提高到0.10%,15 d后土壤有效态镉含量较对照均显著降低(P<0.05)。随着钝化剂投加剂量的增加,土壤中重金属的结合位点也逐渐增多,有效态镉含量逐渐降低。然而,在新乡土壤中,DTCR投加量为0.05%和0.10%时,有效态镉含量比CK分别降低53.60%和59.91%,投加量由0.05%增至0.10%时,土壤有效态镉降幅仅增加6.31百分点;在济源土壤中,TMT55投加量为0.05%和0.10%时,有效态镉含量比CK分别降低49.48%和53.61%,投加量由0.05%增至0.10%时,土壤有效态镉降幅仅增加4.13百分点。造成这些现象的原因可能与土壤中重金属的结合位点有关[17]。陈杰等[20]进行了几种硫化物对紫色土汞的稳定化效果研究,固定汞含量为150 mg·kg-1,按照不同S∶Hg 摩尔比(1∶1、5∶1、10∶1、20∶1、50∶1、100∶1)添加DTCR,在稳定化处理60 d内,汞浸出浓度始终维持在极低水平,不同投加剂量处理稳定效率均在99.77% 以上,笔者的研究结果与其相符。

CaS—硫化钙;DTCR—聚合二硫代氨基甲酸钠;TMT55—w=55%的2,4,6-三巯基均三嗪三钠固体。图2 钝化剂剂量对土壤有效态镉的影响Fig.2 Effects of passivator dose on the available Cd in Xinxiang and Jiyuan soils

2.3 钝化剂稳定时间对土壤有效态镉的影响

由图3可见,随着时间的推移,2种土壤中添加w=0.10%的CaS处理土壤有效态镉含量逐渐升高(P<0.05);添加w=0.10%的DTCR和TMT55处理土壤有效态镉含量先降低再升高(P<0.05)。CaS在2种土壤中降镉效率最高的时间是7 d时,此时新乡和济源土壤中有效态镉含量比CK分别降低58.03%和52.11%;DTCR在2种土壤中降镉效率最高的时间是15 d时,此时新乡和济源土壤中有效态镉含量比CK分别降低59.91%和51.55%;TMT55在2种土壤中降镉效率最高的时间是15 d时,此时新乡和济源土壤中有效态镉含量比CK分别降低70.27%和53.61%。张江生等[23]进行了新型TMT-硫酸铁固定剂对重金属污染土壤的修复研究,发现土壤中添加0.04 L·kg-1TMT(纯度w为15%)和35.7 g·kg-1硫酸铁的复配钝化剂,在试验7、15、30和60 d时,土壤有效态镉含量分别为0.19、0.009、0.46和0.38 mg·kg-1,降镉效率最高的时间是试验15 d时,笔者的研究结果与其相符。分析其原因,可能是由于时间的推移,钝化剂与重金属镉逐渐反应完全,有效态镉含量逐渐降低,试验到达一定天数后,由于土壤中其他重金属离子如Pb、Zn等与钝化剂反应存在竞争,导致有效态镉含量有所升高[23]。

CaS—硫化钙;DTCR—聚合二硫代氨基甲酸钠;TMT55—w=55%的2,4,6-三巯基均三嗪三钠固体。图3 钝化剂稳定时间对土壤有效态镉的影响Fig.3 Effects of passivator stabilization time on the available Cd in Xinxiang and Jiyuan soils

添加w=0.10%的CaS、DTCR和TMT55处理稳定30 d后,新乡土壤有效态镉含量较对照分别降低21.15%、48.71%和41.69%,济源土壤分别降低10.42%、40.43%和40.70%。其中,DTCR和TMT55降镉效率均在40%以上,具有良好的稳定性。这可能是因为多硫物质比单硫物质拥有更多的重金属结合位点,且与重金属形成的多硫结合产物比单硫结合产物更加稳定[17]。

2.4 钝化剂稳定时间对土壤pH值的影响

由图4可见,2种土壤中,随着时间的推移,在7和15 d时,添加w=0.10%的CaS处理土壤pH值较CK显著降低(P<0.05),特别是在济源土壤中,试验15 d时土壤pH值较CK降低0.28个单位。陈杰等[20]研究表明,在碱性土壤中添加Na2S能够显著降低土壤pH值,笔者的研究结果与其相符,说明添加硫化物能够在一段时间内降低土壤pH值;在新乡土壤中,随着时间的推移,添加w=0.10%的DTCR均能显著提高土壤pH值(P<0.05),特别是在30 d时,土壤pH值较CK提高0.34个单位。添加w=0.10%的TMT55也能提高土壤pH值,但是效果不显著。在济源土壤中,随着时间的推移,添加w=0.10%的DTCR和TMT55对土壤pH值的影响没有明显规律。

笔者研究中,碱性土壤pH值与土壤有效态镉降低率没有明显的相关性。在酸性土壤修复过程中,只要简单地添加碱性材料就能够提高pH值,降低土壤有效态镉含量,达到一定的修复效果。但是在中碱性土壤中,调整pH值却明显行不通,必须通过添加钝化材料与重金属发生化学反应,生成沉淀物、络合物、螯合物或通过表面吸附和离子交换等复杂的作用才能固定重金属,从而使土壤中有效态重金属含量降低,达到修复目标[30]。这或许是碱性土壤和酸性土壤镉修复的最大区别。

CaS—硫化钙;DTCR—聚合二硫代氨基甲酸钠;TMT55—w=55%的2,4,6-三巯基均三嗪三钠固体。图4 钝化剂稳定时间对土壤pH值的影响Fig.4 Effects of passivator stabilization time on the pH in Xinxiang and Jiyuan soils

2.5 不同材料在中碱性土壤中降镉效果的比较

不同材料在中碱性土壤中降镉效率比较[31-43]见表3。材料类型主要包括含磷材料、黏土矿物、铁铝氧化物、赤泥、油菜粉末、椰壳生物炭及含腐殖酸物质,土壤均为中碱性且种类较多,试验方法主要有土培、盆栽和大田,材料投加剂量w在0.4%~3%之间。表3主要比较的是DTPA-Cd降低效率,部分大田试验还包括作物降镉效率。这些材料降镉效率高低不一,部分材料在40%以上,但其投加剂量非常高,可能是笔者试验的10倍以上。

含磷材料的降镉方式主要是磷酸盐与重金属产生共沉淀作用。羟基磷灰石、钙镁磷肥在高添加量(w=2%)时,土壤DTPA-Cd降低率可达45.16%~73.4%[31-32],磷酸二氢钾在添加量稍低(w=0.4%)时,土壤DTPA-Cd降低率仅为10.5%~19.4%[33],含磷材料在高添加量时有很好的降镉效果,但不利于工程实际应用,且过多的磷容易造成水体污染。

黏土矿物具有较大的比表面积和孔隙度,结构层带电荷,有较强的吸附能力和离子交换能力,主要通过吸附、配位、共沉淀等方式与重金属结合,黏土矿物中海泡石的施用效果在不同研究中存在显著差异,存在不确定性[32,34],而w=3%的膨润土可使低污染土壤有效态镉含量降低30%以上[35],需要较大的施用量才能达到预期效果,高投入量不仅增加成本,还会对土壤产生一定的危害。因此,单一黏土矿物不适用于中碱性农田土壤修复。任丽英等[37]研究表明,在添加铁铝复合氧化物后,土壤交换态镉含量明显降低。赤泥富含铁铝氧化物,是制铝工业提取氧化铝时排出的污染性废渣[38],但其含有多种微量元素,放射性主要来自镭、钍、钾,属于危险固体废物,赤泥附液pH值大于12.5则属于有害废渣,因此赤泥不适用于农田土壤修复。

表3 不同材料的降镉效率

Table 3 The cadmium reduction efficiency of different materials

材料土壤类型pH值添加量w /%方法试验效果文献羟基磷灰石褐潮土8.12IDTPA-Cd降低47.8%、45.16%[31]钙镁磷肥潮土7.432IDTPA-Cd降低65.6%~73.4%[32]钙镁磷肥—8.311、2I/FDTPA-Cd降低35.3%,小麦地上部Cd降低10.38%[32]磷酸二氢钾—7.930.4PDTPA-Cd降低10.5%~19.4%,黑麦草地上部Cd降低31.4%~73.6%[33]海泡石潮土7.431~4IDTPA-Cd最高降低3.29%[32]海泡石沙壤土8.030.4~0.6FDTPA-Cd降低12.8%~17.9%[34]膨润土褐土8.013P低污染土壤可交换态Cd降低36.34%[35]膨润土褐土7.851PDTPA-Cd降低25.2%,油菜植株Cd降低44%[36]铁铝氧化物—7.61P交换态Cd降低89.51%[37]赤泥黄泥土7.121I交换态Cd降低17.32%[38]油菜粉末褐潮土8.12IDTPA-Cd降低52%~57%[31]椰壳生物炭—8.311、2IDTPA-Cd降低69.8%、99.08%[39]鸡粪黑土7.242IDTPA-Cd降低30.5%[40]鸡粪栗钙土8.482IDTPA-Cd降低49.6%[40]蚕沙—8.172IDTPA-Cd降低39.2%[41]腐殖酸—7.400.5、1.5PDTPA-Cd降低14.3%、23.9%,油菜地上部Cd分别降低31.2%、35.7%[42]风化煤—8.231ITCLP-Cd降低67.2%[43]CaS钙积褐土7.950.1IDTPA-Cd降低21.15%笔者试验CaS普通褐土7.630.1IDTPA-Cd降低10.42%笔者试验DTCR钙积褐土7.950.1IDTPA-Cd降低48.71%笔者试验DTCR普通褐土7.630.1IDTPA-Cd降低40.43%笔者试验TMT55钙积褐土7.950.1IDTPA-Cd降低41.69%笔者试验TMT55普通褐土7.630.1IDTPA-Cd降低40.70%笔者试验

I为土培试验;F为田间试验;P为盆栽试验。CaS为硫化钙;DTCR为聚合二硫代氨基甲酸钠;TMT55为w=55%的2,4,6-三巯基均三嗪三钠固体。“—”表示原文献未说明。

有机废物不仅能改善土壤肥力,还可以作为有效的重金属吸附和络合剂,应用于农田Cd污染修复。其中油菜粉末[31]、椰壳生物炭[39]、风化煤[43]的钝化效果较好。油菜主要种植于南方,来源受限且不易储存和运输,操作不便,因而不适用于中碱性农田土壤修复。椰壳生物炭因其特殊的表面性质、价格适中、应用效果好,可用于农田土壤修复。风化煤属于工业废弃物,本身存在一定的污染,不适于用作土壤调理剂。笔者试验表明,DTCR和TMT55投加量w=0.1%时,2种土壤降镉效率均在40%以上,与其他材料相比,具有低剂量、高效率的优点。

3 结论

(1)在新乡和济源土壤中,随着3种钝化剂投加剂量w从0.05%提高到0.10%,稳定15 d后,土壤有效态镉含量较对照均有不同程度的明显降低(P<0.05),添加w=0.10%的CaS、DTCR和TMT55,稳定15 d后,与对照相比,降镉效率顺序均为TMT55>DTCR>CaS,其中,添加DTCR和TMT55材料后2种土壤有效态镉含量较对照的降低率在51.55%~70.27%之间。

(2)在新乡和济源土壤中添加w=0.10%的DTCR和TMT55,稳定30 d后,较空白对照相比,降镉效率在40.43%~48.71%之间。与其他材料相比,DTCR和TMT55具有低剂量、高效率的优点,是潜在的中碱性土壤重金属镉修复材料。

猜你喜欢

钝化剂济源新乡
钝化处理对热轧酸洗钢板SPHC 防锈性能的影响
领航示范 振兴乡村——河南济源从脱贫攻坚走向乡村振兴的考察报告
3种钝化剂施用下川芎主要部位生长和镉积累情况初探△
组配钝化剂对复合污染蔬菜地土壤重金属的钝化效果
河南济源:产业扶贫大格局 助力群众脱贫致富
不同组分与配比钝化剂对Pb、Cd污染土壤修复时效性研究
济源钢铁六十年积淀发展捐款三千万元实现工业反哺农业
中小学校园欺凌法律规制研究——以新乡为例
立法为新乡教育事业“保驾护航”
为新乡教育均衡发展上一道“法律保险”