APP下载

端部加密锚固洞室在重复顶爆作用下的应力波传播及衰减规律

2018-11-13王光勇陈安敏徐景茂

土木与环境工程学报 2018年6期
关键词:洞室端部拱顶

王光勇,陈安敏,徐景茂

(1. 河南理工大学 土木工程学院,河南 焦作 454000;2.总参工程兵科研三所,河南 洛阳 471023)

炸药在介质里发生爆炸时,会在介质中产生应力波,从破坏和防护两方面考虑,都需要知道应力波在介质中的传播及衰减规律。应力波在岩石中的传播及衰减规律主要受到爆炸条件和岩石的地质条件两方面影响。由于涉及许多复杂多变的因素,到目前为止,爆炸应力波的传播及衰减规律一直是国防工程及工程爆破界研究的热点问题。因此,研究应力波在岩体中的传播与衰减规律,对国防建设和国民经济均具有重大意义[1]。

由于爆炸应力波的传播及衰减规律涉及工程的各个环节,只有充分认识应力波扰动规律,才能确保工程结构的安全性与稳定性。许多学者开展了这方面的研究,并取得了丰富的成果。胡刚等[2]采用一维撞杆法,得到了爆炸作用下岩石的应变历程曲线,并导出应力波衰减规律。王占江等[3]根据在花岗岩中进行的1~150 kg TN系列化爆试验的应力波测试数据,给出了相应的自由场应力波衰减规律。何翔等[4]基于现场试验得到了石灰岩中的冲击传播规律。左魁等[5]研究发现,应力波峰值压力随比例距离衰减遵循一定规律,并给出的衰减公式。《常规武器防护设计原理》[6]中给出了爆炸应力波峰值计算公式。文献[7]利用数值分析方法,得到了应力波在岩体传播过程中的衰减规律,并证明PFC可以较好地模拟爆破过程。Yankelevsky等[8]、Feldgun等[9]利用试验和数值方法分别研究了应力波在土中的衰减规律。Pandya等[10]分析了在平面弹道冲击下纵向应力波在编织织物复合材料中的衰减规律。李新平等[11-12]、FAN等[13]、俞缙等[14]、范新等[15]考虑岩体结构面(节理、裂隙等)和初始应力对应力波传播规律的影响。

学者们虽然对自由场的爆炸应力波传播及衰减规律进行了大量研究,并考虑了一些因素的影响,但地下工程经过加固,会使围岩强度得到提高,从而改变围岩的波阻抗,影响地下工程上方岩石中的应力波强度,从而影响应力波的传播及衰减规律。目前,地下工程中锚杆支护应用比较广泛,对锚固洞室上方爆炸应力波传播及衰减规律的研究一般与锚固洞室的抗爆性能一起研究[16-21],大多数成果只对一次爆炸应力波传播及衰减规律进行分析。然而,随着军事上常规钻地武器的精度越来越高,重复打击已经成为可能。另外,地下工程开挖也会导致岩石受到重复动载作用,导致岩体中的损伤不断积累,从而影响爆炸应力波在岩石中的传播及衰减规律。为了提高普通长密锚杆支护洞室的抗爆能力,文献[21]通过在锚杆端部增加短锚杆而设计端部加密锚杆支护形式。由于锚固洞室有可能受到重复动载的作用,为了进一步提高端部加密锚固洞室受重复动载作用的抗爆能力,有必要研究端部加密锚固洞室在重复顶爆作用下应力波传播及衰减规律。

1 试验概况

1.1 试验模型及相似要求

图1 试验模型及测点布置图(单位:mm)Fig.1 Test model and measuring points

试验采用的装置尺寸、测点和洞室布置的位置见图1。试验中的相似条件按药量的立方根比尺和弗鲁德(Froude)比尺进行综合考虑后确定,其中,岩体模拟材料、几何比例系数和爆炸力相似系数的选取与文献[21]一样。

1.2 试验步骤

试验一共准备5炮,但第4炮洞室已经破坏,实际只进行了4炮。当岩体中炸药埋置较浅时,爆轰产物作用于药包上覆岩体形成喷射物抛掷现象,部分爆炸能可能溢出地表,为了确保每次爆炸条件对岩体的影响可以忽略[22],每次比例埋深(h/W1/3)均为17.1 cm/g1/3,每次装药量见表1。

表1 模型试验药量及埋深Table 1 Explosive quantity of model test and embedded depth of explosion

2 试验结果分析

2.1 应力波传播规律

图2是M3和M4两个洞室第1炮拱顶垂直压应力时程曲线图。从图中可以看出:爆心距越短,越先起跳,各条时程曲线形态相似,每根曲线由上升段和下降段两部分组成。随着爆心距的增加,上升时间越来越长,M3的P1~P3的上升时间分别从195、325到545 us,M4的P4~P6的上升时间从240、360到515 us。以上规律符合应力波时程曲线特征,说明所测曲线合理。

图2 第1炮拱顶垂直压应力时程曲线Fig.2 Time-history curves of vault vertical compression stresses after the first

洞室测点第1炮比例距离/(m·kg-1/3)压力/MPa第2炮比例距离/(m·kg-1/3)压力/MPa第3炮比例距离/(m·kg-1/3)压力/MPa第4炮比例距离/(m·kg-1/3)压力/MPaM3M4P10.6842.750.3479.760.032P21.1971.420.7883.360.4060.022P32.0860.451.5341.061.0530.5524.17P40.6843.640.3475.550.032P51.1971.800.7882.400.4067.780.022P62.0860.581.5340.721.0531.790.5524.16

2.2 应力波衰减规律

由表2中的第1炮和第2炮的拱顶垂直压力峰值和比例距离关系绘制图3和图4。从图中可以看出:两个洞室每一炮的拱顶压力峰值都随比例距离的增加逐渐减小,符合一定的衰减规律,根据《常规武器防护设计原理》[6]中给出的应力波的衰减公式,可以拟合出相应的幂函数关系曲线,其中,公式中R是指爆心距即爆心到相应测点的直线距离。根据文献[14-15]可知,试验中采用的衰减指数为1.871 8,拟合出来的两炮所有应力波衰减指数都小于未受扰动岩石的衰减指数,这是因为两个洞室都通过锚杆支护加固洞室围岩,围岩的强度超过了原岩的强度,从而使经过拱顶围岩的应力波能量衰减减慢。

图3 第1炮洞室拱顶垂直压力峰值与比例距离的关系Fig.3 Relation between peak value of vault vertical compression stresses and scaled stance after the first

图4 第2炮洞室拱顶垂直压力峰值与比例距离的关系Fig.4 Relation between peak value of vault vertical compression stresses and scaled stance after the second

从拟合曲线可以发现,随着比例距离增加,两个洞室在相同的比例距离压力差值逐渐减小,两个锚固洞室最终在某比较大的比例距离处压应力峰值没有差值。如果锚固区及其附近的比例距离小于压应力峰值相等处的比例距离,即使端部加密锚杆相对于普通长密锚杆对洞室锚固区的抗动强度有所提高,也有可能出现端部加密洞室的抗爆能力得不到提高。第1炮M4的3个监测点都比M3相同比例距离的3个监测点垂直压应力峰值分别大32.4%、26.8%、28.9%,而第2炮M4洞室的3个监测点分别比M3洞室相同比例距离的3个监测点垂直压应力峰值小43.1%、28.6%、32.1%。这可能主要是由于第1炮的主要作用是压实,在压实的过程中使得锚杆起到加固围岩的作用,也使加固范围之外的围岩强度得到提高,尤其离加固范围较近的岩石;由于端部加密锚杆支护比普通长密锚杆支护加固效果更好,即端部加密锚杆影响的岩石波阻抗较普通长密锚杆大,导致其应力波强度增量更大,故第1炮的端部加密洞室较普通长密锚杆在相同比例距离应力波强度要大。造成第2炮相同位置M4洞室的垂直压应力峰值比M3洞室小,有可能是由于第1炮的强度较小,在监测范围内第1炮时M4密实效果比M3洞室好,M3洞室密实滞后M4洞室,第2炮作用时两个洞室已开始由密实向损伤破坏转变,而M3可能进一步进行密实,并且M3洞室损伤滞后M4洞室。从第3炮开始,普通长密锚杆加固洞室的大部分压力数据没有测到,这主要是由于压力过大而导致的(第3炮P3除外),这说明,在第3炮作用下,相同比例距离普通长密锚杆加固洞室受到的应力波强度比端部加密锚杆加固洞室要大。从第1炮和第2炮的应力波上升时间分析可以发现,第2炮的应力波上升时间均比第1炮应力波上升时间短,进一步证明拱顶在应力波的作用下是先进行压密。

图5和图6分别是M3和M4所测到几炮应力衰减曲线图。从图中可以发现:两个洞室第2炮的衰减指数都比第1炮的衰减指数小,M3第2炮的衰减指数与第1炮衰减指数差不多,只小1.2%,M4第2炮的衰减指数比第1炮衰减指数减小了19.1%,这进一步表明第1炮起到密实的作用,并且M4明显比M3的加固效果好。图6中M4洞室3炮的衰减指数分别为1.430、1.157、1.542,衰减指数随着放炮的顺序先减小后增加,这也说明了第1炮密实作用,从第2炮开始端部加密洞室顶部的岩石开始损伤。

图5 M3第1、2炮洞室拱顶垂直压应力峰值与 比例距离发关系Fig.5 Relation between peak value of vault vertical compression stresses and scaled stance of M3 after the first blasting and the second

图6 M4第1、2、3炮洞室拱顶垂直压应力峰值与 比例距离的关系Fig.6 Relation between peak value of vault vertical compression stresses and scaled stance of M4 after the first blasting, the second blasting and the third

图7是端部加密锚固洞室根据4炮的比例距离绘制的拱顶垂直压应力峰值与比例距离的关系曲线,并利用幂函数拟合出P5和P6相应的曲线,它们的衰减指数分别为1.572和1.483,这说明越离爆心近的点在相同的爆炸条件下损伤越严重,这也与实际一致。

在研究爆炸荷载对地下工程的影响时,大家最关心是离地下结构最近点的动载强度,其大小直接影响到地下工程的稳定性和安全。图8是离两个加固洞室最近位置P3和P6测点与比例距离的关系曲线,从曲线中可以看出:在相同爆炸条件作用下,离加固范围最近的测点所得压应力峰值衰减规律比较相近,P3和P6衰减指数分别为1.462、1.483,相差仅1.4%,并且压应力峰值大小也比较相近。

图7 M4洞室P5、P6洞室拱顶垂直压应力峰值与 比例距离的关系Fig.7 Relation between peak value of vault vertical compression stresses and scaled stance of P5 and

图8 P3、P6洞室拱顶垂直压应力峰值与比例距离的关系Fig.8 Relation between peak value of vault vertical compression stresses and scaled stance of P3 and

3 结论

通过抗爆模型试验研究端部加密锚杆加固洞室在重复顶爆作用下应力波的传播及衰减规律,得出以下结论:

1)随着应力波传播,离爆心越近的测点越早起跳;所有的曲线规律性比较相似,每根曲线主要由上升和下降两个阶段组成,并且上升时间比下降时间短;随着爆心距的增加,上升时间越来越长。

2)两个洞室每一炮的拱顶压力峰值随着比例距离的增加成幂函数逐渐衰减,并拟合出相应的幂函数曲线。两炮所拟合的应力波衰减指数都小于未受扰动岩石的衰减指数。

3)在相同的爆炸条件作用下,随着比例距离增加,两个洞室在相同的比例距离时压力差值逐渐减小。两个洞室受到爆炸应力波作用时,由于应力波主要先对锚固区附近的岩石进行密实,然后不断损伤破坏,造成端部加密锚杆加固洞室相同比例距离峰值压力比普通长密锚杆加固洞室峰值压力先大后小。

4)在相同的爆炸条件作用下,端部加密锚杆加固洞室与普通长密锚杆加固洞室离加固范围最近测点的压应力峰值衰减规律比较相近,压应力峰值大小也比较相近。

猜你喜欢

洞室端部拱顶
中核集团:全球最大LNG储罐拱顶模块吊装成功
上软下硬地层隧道变形规律及预留变形量研究
大型水轮发电机绕组端部电晕问题探讨
大型核能发电机定子端部动力特性研究
关于隧洞围岩破坏特征的连续-离散耦合分析
弹簧扁钢51CrV4端部开裂原因分析
方斗山隧道拱顶FLAC沉降模拟及修正
浅谈辊道窑拱顶开裂或塌陷原因分析
基于激光雷达及视频分析的站台端部防入侵告警系统
地下洞室自稳性的尺寸效应研究