APP下载

地市级供电局配电网通信技术分析

2018-01-22洪子宁张源

科技视界 2017年30期
关键词:光纤通信

洪子宁+张源

【摘 要】分析了配网通信承载的业务需求,多维度比较了光纤通信、中低压载波、无线专网、无线公网等多种通信技术,提出了各种业务的承载方式,为配电通信网络规划、建设提供参考。

【关键词】配电通信网;光纤通信;工业以太网

0 概述

配电网是国民经济和社会发展的重要公共基础设施,而我国配用电网的自动化、智能化程度以及自愈和优化运行水平仍未能达到国际水准。随着我国智能配电网系统建设力度的不断加大,选择合适的通信技术作为智能配电网的支撑是需要关注的重点。

1 需求分析

配电通信网需要承载包括配电自动化、计量自动化、汽车充电设施管理、分布式电源管理、配网生产管理等业务。

配电自动化系统通过配电通信网实现开关站、环网柜、柱上开关、配电变压器等设备的信息采集和控制,对业务实时性要求较高,属于生产控制大区。10kV配电自动化单个终端带宽需求在20kb,按典型变电站汇聚带宽为1Mb左右。

计量自动化系统主要实现用户负荷、电量、电压等重要信息的采集和计量装置在线监测,对业务实时性要求较低,属于管理信息大区。单块电表每天上传数据至集中器,数据量约为几百b,单个集中器每天的数据量在10-100kb,按典型变电站汇聚带宽为1Mb左右。未来计量自动化系统将提高采集频度,并增加电压、电流、事件等多项数据,对通信速率的需求将提高。

电动汽车充电设施分为集中式充/换电站和充电桩两类,主要业务包含用电信息采集、运营管理、充电监控等。集中式充/换电站的通信带宽在10Mb左右,充电桩的通信带宽在20kb左右。分布式电源站点主要包括电能质量监测、分布式电源监测终端信息接入、电费计量等业务。10kV分布式电源站点流量在10kb数量级,0.4kV分布式电源站点流量在1k字节数量级。配网生产管理业务包括配电房视频监控、配电房门禁、配电房环境监测、配电设备在线状态监测等。

具体配电通信网需要承载的业务需求如图1所示:

2 技术分析

为满足配电自动化等业务要求,必须对配电网通信技术进行分析,选择合理的通信技术保障配电网通信的可靠性、安全性和有效性。以下对配网通信可采用的主流技术进行逐一分析。

2.1 光纤通信技术

光纤通信的主要特点是传输容量大、传输距离长、抗干扰性强,可应用于配电房、配电线路等高电压强电磁干扰环境,是目前电力通信中广泛应用的通信方式,光纤通信可以分为多种通信技术:

1)SDH/MSTP组网

使用SDH/MSTP设备与光纤组成的光传输网络,是一种将线路传输及交换功能融为一体的综合信息传送网络。SDH/MSTP技术十分成熟,在电力通信网中广泛应用,缺点是设备庞大,无法满足配网通信的空间需求。

2)商用以太网交换机组网

使用商用以太网交换机与光纤组成IP网络,广泛应用于电网企业的调度数据网与综合数据网。在应用于配电网中,商业以太网交换机不具备在高温、潮湿、电磁干扰的工业环境中长时间连续可靠地传送数据的能力,无法满足配网通信的稳定性要求。

3)工业以太网交换机组网

工业以太网交换机组网方式与商用网络交换机组网方式相同,但组网设备采用的是工业以太网交换机。工业以太网交换机具有良好的环境适应性,并且针对工业传输信息长度较短、交换频繁、周期信息较多、非周期信息较少的特点做出了优化。

4)PON光纤通信技术组网

使用PON技术组网的无源光网络包括一个安装于中心控制站的光线路终端(OLT),以及一批安装于用户场所的光网络单元(ONU),在OLT与ONU之间的光配线网(ODN)包含了光纤以及无源分光器或者耦合器。由于配网线路变更比较频繁,采用分光器需跟随变动,且设备性能不稳定,通信可靠性无法得到保证。

基于上述光纤通信组网技术的分析,建议采用工业以太网交换机方式进行组网。

2.2 中低压载波技术

电力线载波通信是电力系统通信的一种方式,其原理是将信号按一定方式调制后,用耦合设备注入输电线,利用现有的输电线传递信息。配电中低压载波通信优点主要有:灵活性大,可以连接任何测控点;成本低,利用输电线作为通信,无需额外架设通信通道。

受限于中压载波技术体制的影响,载波技术并没在在配网通信中大规模的应用,主要的缺点是:可靠性较低,配电载波通道的传输特性较恶劣,速率低可靠性不高;建设较难,中压载波设备主要有注入式和卡接式两种安装方式,前者需要停电、受干扰小、信号好;后者不需要停电,但受干扰大、信号差;运维困难,载波设备在运维管理需要一次专业支持。

2.3 电力无线专网技术

电力无线专网技术是电网公司采用主流无线技术建设的无线专用网络。电力无线宽带专网建设速度快,可很好地覆盖各类终端,实现末端用户的接入。电力无线专用还可以满足电力业务信息安全、实时性以及服务质量的需求,可以作为光纤通信最后一公里的补充。

电力无线专网的主要问题有:站址选择受限,而站点选址不好会导致网络覆盖受限,部分室内或地下室存在无线专网覆盖盲区;无线频率不够理想,且存在一定的不确定性;投资成本较高。

2.4 无线公网技术

无线公网技术是使用运营商提供的GPRS、CDMA 3G和LTE 4G等通信技术来传输配电网的业务。无线公网组网速度快,适合布局在偏远或者零散的终端,应用于对通信速率、时延、中断率、安全性等要求不严格的场景。

无线公网主要缺点是:无线公网技术由于存在资源的竞争性、易受环境因素干扰,一般时延较大;运维困难,电网企业无法监控无线终端、无线链路的运行情况,在运行维护过程中完全依赖运营商,造成故障发现和处理不及时的现象;费用过高,由于配用电终端数量迅速增加,运营商的租赁费用也迅猛增加。

2.5 主要通信技术对比分析

针对以上描述的各种通信技术,图2中进行多维度的简要对比分析:

从表中的分析对比综合得出,光纤通信技术具备传输容量大、传输距离长、抗干扰性强、安全性好、具备保护机制等优势,应以光纤通信技术中的工业以太网交换机组网方式作为配网通信的主用技术,并采用环形拓扑结构形成通道自愈保护环。

对于具体业务,配电自动化智能分布式配电终端与“三遥”终端、大客户负荷管理终端、配变监测终端、低压集抄集中器终端均应优先采用光纤通信方式承载,保证通信可靠接入。配电自动化“一遥”、“二遥”终端、计量自动化终端以无线公网通信为主,已有专网通信覆盖的优先选择专网通信方式。

在光缆无法敷设的区段,配电自动化智能分布式配电终端与“三遥”终端、大客户负荷管理/大客户负荷控制终端、10kV分布式能源站、汽车充电桩管理接入优先采用无线专网方式承载,宜配置一条无线公网通信通道作为备用,不具备专网条件,可采用无线公网通信承载,应配置双网双待无线通信终端。无专网覆盖的配变监测终端、低压集抄集中器终端采用无线公网通信方式,配置一条无线公网通信通道。

不建议大规模电力线载波组网,在光缆、无线通信无法覆盖的业务,可用电力线载波作为补充方式承载业务。已建设无线专网的地区应充分利用无线专网,配网自动化、计量自动化等业务终端逐步调整为无线专网通信方式。

3 结论

智能配电网及相应的配电网通信网络是当前电力行业的重点建设内容,本文从智能配电网业务及通信需求分析出发,解析了配电网通信的主流技术,选择光纤通信为主,无线公网、无线专网为辅的组网技术,为配電通信网络规划、建设提供参考,实现智能配电信息的安全、可靠传输。在接下来的配网通信的规划建设中,应持续关注宽带电力线载波通信与北斗系统在配网通信中的应用。endprint

猜你喜欢

光纤通信
浅析基于SDH的多业务平台(MSTP)技术及应用