APP下载

四阶收敛的斯蒂芬森迭代修正格式

2018-01-09魏佳黄佳玥

哈尔滨理工大学学报 2017年6期

魏佳+黄佳玥

摘 要:结合斯蒂芬森迭代和牛顿迭代,用抛物线插值函数的导函数取代f(x)的一阶导数,提出一种新的可达到四阶收敛的迭代方法,新的迭代公式每步计算仅需计算三次函数值,且无需计算导函数。

关键词:牛顿法;斯蒂芬森方法;抛物线插值

DOI:10.15938/j.jhust.2017.06.025

中图分类号: O24

文献标志码: A

文章编号: 1007-2683(2017)06-0131-03

Abstract:A new fourthorder convergent iterative method formed by Newton′s method and Steffensen method is presented to solve nonlinear equations in this paper. The new iteration formula uses derivative of quadratic interpolation as substitute for derivative of function, so it is totally free from derivatives. Furthermore, this method requires only three evaluations of the function by each iteration.

Keywords:Newton′s method; Steffensen method; quadratic interpolation

0 引 言

求解非线性方程f(x)=0是数学界经久不衰的研究课题,究其原因就是其在科学研究以及生产生活中的广泛应用,而迭代法又是求解非线性方程最为常用的方法之一。迭代法中最为经典的就是牛顿法,除此之外比较有代表性的还有:三阶Halley迭代[1],Chebyshev迭代[2],SuperHalley迭代[3],还有四阶King迭代[4]等等。前人在此领域也做出了大量的探索和努力,主要致力于收敛阶数的提高,计算量的减少等方面[5-14]。本文结合牛顿法和斯蒂芬森法用抛物线插值函数在该点的导函数取代f(x)的一阶导,提出一种新的可达到四阶收敛的迭代方法,新的迭代公式每步计算仅需计算三次函数值,且无需计算导函数。

1 新方法与收敛性分析

斯蒂芬森迭代法无需求导且能达到二阶收敛,其迭代公式每步运算需计算两个函数值。

3 结 论

本文提出的求解非线性方程单根的四阶收敛迭代方法,每步迭代过程只需计算三次函数值就能达到四阶的收敛效果,而且不必计算导数。数值试验结果表明该方法具有较好的优越性,它丰富了非线性方程求根的方法,在理论上和应用上都具有较高的价值和意义。

参 考 文 献:

[1] HALLEY E. A New, Exact and Easy Method for Finding the Roots of Equations Generally and withOut Any Previous Reduction[J]. Philos. Trans. R. Soc.Lond., 1694(18): 136-148.

[2] KOU J, LI Y. Modified Chebyshev′s Method Free from Second Derivative for Nonlinear Equations[J]. J. Appl. Math. Comput., 2007, 187(2): 1027-1032.

[3] GUTIERREZ J M, HERNANDEZ M A. An Acceleration of Newton′s Method: Super Halley Method[J]. J. Appl. Math. Comput., 2001, 117(2): 223-239.

[4] KING R F. A Family of Fourth Order Methods for Nonlinear Equations[J]. SI AMJ. Numer. Anal., 1973(10): 876-879.

[5] LIU Z, ZHENG Q, ZHAO P. A Variant of Ste Ensens Method of Fourthorder Convergence and Its Applications[J]. Applied Mathematics and Computation, 2010, 216(7): 1978-1983.

[6] OSTROWSKI A M. Solutions of Equations and Systems of Equations[M]. New York, Academic Press, 1966.

[7] KUNG H T, TRAUB J F. Optimal Order of Onepoint and Multipoint Iteration[J]. J. Assoc. Comput. Mach., 1974,21: 643-651.

[8] BI W, REN H, WU Q. Threestep Iterative Methods with Eighthorder Convergence for Solving Nonlinear Equations[J]. J. Comput. Appl. Math., 2009, 255: 105-112.

[9] CORDERO A, HUESO J L, MARTNEZ E, et al. New Modifications of Po traPtks Method with Optimal Fourth and Eighth Order of Convergence[J]. J. Comput. Appl. Math., 2010, 234: 2969-2976.

[10]CORDERO A, TORREGROSA J R, Vassileva M P. A Family of Modified Ostrowskis Method with Optimal Eighth Order of Convergence[J]. Appl. Math. Lett., 2011, 24(12): 2082-2086.

[11]LIU L, WANG X. Eighthorder Methods with High Efficiency Index for Solving Nonlinear Equations[J]. Appl. Math. Comput., 2010, 215: 3449-3454.

[12]SHARMA J R, SHARMA R. A Family of Modified Ostrowskis Methods with Accelerated Eighth Order Convergence[J]. Numer. Algoritms, 2010(54): 445-458.

[13]THUKRAL R, PETKOVIC M S. A Family of Threepoint Methods of Optimal Order for Solving Nonlinear Equations[J]. J. Comput. Appl. Math., 2010, 233: 2278-2284.

[14]SOLEYMANI F, KARIMI B S, KHAN M, et al. Some Modifications of Kings Family with Optimal Eighth Order of Convergence[J]. Math. Comput. Model., 2012(55): 1373-1380.

(編辑:王 萍)endprint