APP下载

微型谷物联合收割机割台最小振幅点分析及挂接点优化

2017-10-14姬江涛徐龙姣耿令新王升升

农业工程学报 2017年12期
关键词:收割机振幅幅值

姬江涛,徐龙姣,庞 靖,耿令新,王升升



微型谷物联合收割机割台最小振幅点分析及挂接点优化

姬江涛,徐龙姣,庞 靖※,耿令新,王升升

(河南科技大学农业装备工程学院,洛阳 471003)

针对联合收割机的振动问题,该文以4L-0.2微型联合收割机为研究对象,利用最小幅值点法,通过优化割台与整机的连接点,减小振动能量的传递。首先,对比割台有限元仿真模态和试验模态,验证仿真模型和试验数据的正确性,为后续分析确定模态分析的阶次。其次,利用电机驱动割刀模拟工作工况,发现5、10和15 Hz 3个频率的频谱幅值较大,对整机的振动影响明显。而后,利用激振器作激励源,测量单频激励时分布在拟挂接区域内选定点的振动幅值,以这些点的坐标和振幅为采样,拟合二次曲线,(拟合度取值范围0.879~0.975),得到单频极小振动幅值点。最后,以频谱幅值比例和人体对不同方向振动的敏感度作为影响系数,求出3个频率极小振动幅值点的加权重心,作为连接点的优化解。为了验证优化解的正确性,试验测量该点在工作工况下的振幅,结果表明振幅小于拟挂接区其他各点,为该区域平均加权幅值29.707 m/s2的89.29%,最大振幅点幅值35.044 m/s2的74.92%,达到优化要求。

农业机械;联合收割机;优化;模态分析;最小振动幅值点;曲线拟合;加权综合

0 引 言

谷物联合收割机经多年发展,收获性能如损失率、清洁率、破碎率、生产率等都已达到国际先进水平,但由于成本限制,减振研究时间短等原因,国产收割机广泛存在振动强、噪声大等问题[1-3]。这些问题进一步会造成零部件快速失效[4-5],驾驶员易疲劳[6-8]等一系列不良后果。为了降低收割机的振动强度,减弱不了影响,多位学者分别从振动特性检测、振源辨识、减振方法等多方面进行了研究。如徐立章等[9-10]对谷物收割机的振动进行了测试,认为引起收割机振动的振源有发动机活塞、割刀、往复式清选筛的往复运动,脱粒滚筒、传动轴的不平衡转动,和行走过程中的地面激励等。陈建恩等[11-12],认为割刀的往复运动是主要振源之一。Krolczyk等[13]通过对脱粒滚筒进行动平衡,庞凤斌等[14]通过优化发动机的隔震垫,李耀明等[15-16]通过优化底盘、割台的结构避开共振频率,韩正晟等[17]通过改变切割器工作方式降低收割机的振动。

国内外对割台振动的研究主要集中于振动检测[12-18]、驱动机构动力学分析建模[19-23]等方面,减振措施大多为在曲柄连杆机构的合适位置增加平衡块[23-25]。机械装备的减振可从三方面入手:降低振源强度;振动传递路径增加阻尼隔振;结构件优化降低对振源激励的响应[26]。收割机切割装置的运动参数受作业效果的限制不宜改动。而给割刀驱动装置增加配质量的方法,受结构尺寸限制,平衡块质量不易达到最优化的要求,减振效果不明显。结构优化避开共振频率的方法只对存在共振的机型有效。对于无共振现象的机型,从割台振动向收割机机体传递的路径入手,将割台与机体的连接点布置在振幅较小的位置,可明显减小割台对机体的激励,从而减小机体的振动强度,达到减振的目的。

本文以4L-0.2微型联合收割机为例,利用模态分析法获取各阶振型[27-28],综合分析后预估出振幅较小的拟连接点区域,利用振幅加权综合得出区域内各测点的振动评价指标-各方向加速度的加权综合,利用二次曲线拟合估算出区域内振幅最小点,并用试验验证,以期为连接点的选点优化提供参考。

1 最小幅值点法概述

对于一个多自由度线性系统,其基本振动方程为:

式中[]为质量矩阵,[]为阻尼矩阵,[]为刚度矩阵。{}为系统的位移响应向量,和为位移对时间的一阶和二阶导数,即节点的速度响应向量和加速度响应向量,{()}为系统的激励向量。在进行模态分析时,可看作系统不受外部激励,即{()}0,同时若忽略阻尼的影响,即[]0,则振动微分方程可简化为:

(2)

其对应的特征方程为:

求解该方程即可得到{和{},即系统的多阶固有频率和相应振型。通常与激励频率相近的模态导致部件的变形较大,考虑到割台工作频率较低,本文取前四阶模态。

考察方程(1)、(3)可以发现,解析方程中没有结构点的位置坐标,求解方程不能获得振动幅值最小点的位置。同时,大多数商业模态分析软件并不能给出各点在各阶模态中的阵型系数,也不能给出各阶模态节点的具体坐标。因此,除直接测出幅值外,利用解析方法和有限元仿真方法无法确定最小真的能够幅值点的具体位置。而结构件上有无数个点,要测出所有点的振动幅值是不可能实现的,必须通过工程方法解决。

本文提出一种寻找最小振动幅值点的方法,称最小幅值点法。该方法是通过模态分析,获取各阶模态节点的大致区域,在这块区域内选取若干个点,测量其振动特性和坐标,建立振动幅值拟合曲线,推测最小振动幅值点,最后试验验证最小幅值点的准确性。

考虑到二次函数在极值点求解的便利性,本文构建三元二次待定系数方程作为拟合曲线:

(4)

式中()为点的振动幅值,,,为点在三维空间内的坐标,11,22,33122331,1,2,3,4为待定系数,将试验测得的各点振幅带入式中,可求得极值点坐标。为考察拟合曲线的准确性,用拟合度方程(5)进行检验。

(5)

式中2为拟合度,TSS为总体平方和,ESS为回归平方和,RSS为残差平方和。

2 割台的模态分析与拟挂接区确定

图1为试验用微型联合收割机割台。为了保证试验模态估计的可信度,本文采用有限元仿真模态和试验模态相结合的方法,建立有限元仿真模型,并进行模态分析,与试验模态数据进行对比,观察振型结构和频率,如两者相符或相近,则说明根据试验数据估计的模态频率、振型接近于理论真值,可作为后续计算的依据。

图1 微型联合收割机割台

2.1 割台的有限元仿真模态

割台机架主要是由低碳钢板、角钢、矩形管等焊接而成。考虑到拨禾轮、割台搅龙对结构的整体模态影响较小,故将其质量附加在轴上,而省略其外形结构,同时将伸缩扒指的曲轴简化为直轴。在Solidworks中建立割台三维数学模型,并将该模型导入Workbench中进行有限元模态分析。割台材料为结构钢,采用六面体网格,网格尺寸为15 mm。为使模型接近实际,采用约束模态。依据实物结构,约束位置分别是2个连接点和割台提升装置与割台的焊接区,设置为面约束。计算得到前四阶有限元模态如图2所示。

图2 前四阶有限元模态阵型与频率

2.2 割台的试验模态分析

为计算说明方便,在割台上建立笛卡尔坐标系,割台宽度方向为向,前后方向为向,竖直方向为向。割台的模态试验过程为:由力锤激励割台定刀梁向,由布置在割台上的加速度计采集振动信号,同时,力锤中的力传感器获取激励力信号,随后将采集到的力信号和振动信号一起传递到动态信号分析系统中进行模态分析。模态试验使用的仪器的参数如表1所示。

表1 模态试验所用仪器

测试由三部分组成,分别是力锤、动态信号采集系统和模态分析处理系统。动态信号采集系统由传感器和DH5902动态信号采集仪组成;模态分析处理系统由DHAM模态分析系统组成。试验在满足各点连线能勾勒出割台形状的基础上,测试了68个点,对于割刀定刀梁布置了较多的点,测点尽量避免布置在各阶模态的节点位置,以便能激起更多的模态,同时,为了减小地面对试验模态的影响,割台下垫有海绵垫。割台的前四阶试验模态如图3所示。图中标尺为比例化振幅,无量纲。

图3 前四阶试验模态阵型与频率

通过对比图2和图3可以看出,有限元仿真模态和试验模态的阵型相似,都表现为第一阶两侧壁外凸;第二阶侧壁凸凹,底面凸起;第三阶侧壁和底面凸凹;第四阶底面凸凹,侧壁凸凹,背壁内凹。有限元仿真模态和试验模态各阶次模态频率除第二阶相差17.685%略大外,其余各阶模态频率差值均在10%以内。进一步观察割台振动信号的频谱图发现,底面各测点在22.733 Hz附近有明显的峰值,说明试验模态的频率估计正确,出现差异的原因可能是由有限元模型简化造成的,对下一步挂接区确定不会产生影响。

通过观察试验模态的前四阶阵型,并结合割台可挂接区域,确定拟连接区如图4。

注:1,2,3为拟连接区。

3 割台的最小幅值点确定

联合收割机上往复运动的部件较多,为了防止其他部件运动对割台的振动产生影响,在试验前,将来自发动机的动力切断,仅由一台调速电机通过链条带动割刀刀杆驱动轴转动,这样保证了整个割台只有切割器一个振源。

3.1 工况测量试验

点的时域振动幅值是频域内所有频率下振动幅值的叠加。为了考察工作工况下对割台振动有较大影响的频率成分,将调速电机驱动转速设置为工作转速300 rad/min。考虑到切割器的振动方向为左右摇摆,即向,因此测量定刀梁靠近中间位置处的向振动信号,作为激励源信号。割刀稳定运动时,由加速度计测得的时域信号经快速傅里叶变换(fast fourier transform,FFT)得到频谱图如图5所示。由图5可知,5、10、15 Hz 3个频率下切割器的振动较强,同时可确定各频点的幅值大小为0.540,0.300,0.160。

图5 切割器振动幅频图

3.2 单频激励试验

考虑到3种频率激励下,割台振动特性不同,为了获取单一频率激励下拟挂接区各测点振动幅值,进行单频激励试验。

微型收割机的割台通过割台后上部的2个挂接点和后下部的1个支撑点与机架相连。第3区(见图4)较为复杂、典型,因此本文只详细介绍第3区的试验过程和分析方法。考虑到割台结构和减小支撑点的支反力以减小变形,下支撑点应在割台后壁下缘靠近水平转折线的位置选取。选取第3区内能覆盖全部区域的同水平线的8个点进行测量,为说明方便建立如图4所示的坐标系,8个测点的坐标分别为:1(0.010,0,0),2(0.055,0,0),3(0.105,0,0),4(0.165,0,0),5(0.230,0,0),6(0.280,0,0),7(0.340,0,0),8(0.390,0,0),单位为m。由于该区域内,方向的坐标并没有改变,只有向坐标改变,因此二次拟合曲线简化为:

本次试验采用激振器正弦信号激励,试验过程为:利用信号发生器产生单频正弦信号,信号经功率放大器输入激振器,激振器的激振点同样为定刀梁的左端端点,激励方向向,利用传感器将采集到的割台振动信号输入动态分析系统中。分析数据时,为了减小偶然因素对被测点振动信号产生的影响,选取较为稳定的一段信号进行分析,同时也为了减小试验误差,对被选取片段内的采样数据绝对值前500个的数值进行平均,得到每一个方向上的振动幅值,测量数据如表2。

由于振动幅值在各坐标向的分量不同,且人体对各方向振动的敏感度不同[29-30],依据5 Hz时各向振动对人体影响(,,)三向的加权因子为(0.409,0.409,1.039),10 Hz时的加权因子为(0.212,0.212,0.988),15 Hz时的影响因子为(0.125,0.125,0.768),计算出各点在各频率下3向综合振动幅值,拟合得到3个频率下的振幅拟合方程。

5 Hz时:

极值点为:=0.317,同时求得拟合度2=0.903。

10 Hz时:

极值点为:=0.296,同时求得拟合度2=0.975。

15 Hz时:

此时拟合度2=0.879,因为方程(9)中的值为负,即该方程的曲线开口向下,由一元二次方程的性质可知最小值点在两端点上,比较两个端点幅值的大小,发现靠近右端幅值比较小,因此在这种情况下取最小值点的坐标为(0,0,0)。

表2 3号区域点各幅值

3个频率下的极值点并不一样,考虑到工况测量试验中各频率对振幅贡献,选定频谱幅值系数作为3个频率(5,10,15 Hz)的加权系数,分别为:0.540,0.300,0.160,计算得到3个极值点的加权重心(0.260,0,0)作为第3区的最小幅值点。

3.3 验证试验

为了验证该结论,进行电机驱动试验,试验中电机转速设置为300 rad/min。因该转速下5 Hz对振幅影响较大,因此各测点三向综合振幅计算取5 Hz下,,向的幅值加权因子(0.409,0.409,1.039),验证测点的坐标分别为9(0.260,0,0),10(0.010,0,0),11(0.100,0,0),12(0.200, 0,0),13(0.350,0,0),测得数据如表3所示。

表3 验证试验各点幅值

对比可知,测点9的加权幅值最小,为该区域平均加权幅值29.707 m/s2的89.29%,最大振幅点幅值 35.044 m/s2的74.92%,因此,割台下支撑点的位置应在第3区坐标为9(0.260,0,0)的点周围。同理,对另外2个区域进行分析也可得到相应的最小幅值点。

4 优化后强度数值模拟验证

连接点的位置改变后对割台进行结构分析,将简化后的割台三维模型导入Workbench中,并在连接点处施加面约束。割台处于工作状态时,谷物秸秆的质量可忽略不计,因此割台的载荷为自身重力。

由图6可知,割台连接点改变之后,最大应力发生在2个挂接点及其附近上,其最大应力值77.775 MPa小于材料的屈服强度235 MPa,因此,连接点优化后割台的结构强度满足要求。

图6 割台应力云图

5 结 论

1)本文利用模态分析、振幅加权综合、二次曲线拟合等方法估算出研究区域的振幅最小点的坐标,并用试验检测该点的实际振动强度,可看出该方法能较准确的预测出最小振动幅值点的位置,预测的最小幅值点3向加权振幅为该区域平均幅值29.707 m/s2的89.29%,最大振幅点幅值35.044 m/s2的74.92%。

2)针对不同频率、不同方向的振动在整机振动的贡献度评价问题,提出用工作工况的频谱幅值比例计算不同频率的贡献度,用人体对不同频率不同方向振动的敏感度计算不同方向的贡献度。

3)采用三元二次多项式作为振动幅值拟合的逼近方程,具有方程结构简单,求解极值点快速的优点,但机械结构的振动特性复杂,用二次多项式是否有广泛的代表性和有效性,或者存在其他代表性更强的拟合方程,需要进一步研究、试验。

利用仿真模型对新机型设计时挂接点进行预判,对新产品优化设计具有重要意义,可作为后期研究内容。

[1] 陈庆文,韩增德,崔俊伟,等. 自走式谷物联合收割机发展现状及趋势分析[J]. 中国农业科技导报,2015, 17(1):109-114. Chen Qingwen, Han Zengde, Cui Junwei, el al. Development status and trend current situation of self-propelled combine harvester[J]. Journal of Agricultural Science and Technology, 2015, 17(1): 109-114. (in Chinese with English abstract).

[2] 兰心敏,杜金. 我国谷物联合收割机质量分析[J]. 农机质量与监督,2009,38(6):19,28-31.

[3] 阳尧瑞. 微型收获机发展存在的若干问题及对策[J]. 农业机械学报,2006,37(12):226-228. Yang Yaorui. Some problems and countermeasures in the development of micro harvester[J]. Transactions of the Chinese Society for Agricultural Machinery, 2006, 37(12): 226-228. (in Chinese with English abstract).

[4] 方吉,李季涛,王悦东,等.基于随机振动理论的焊接结构疲劳寿命概率预测方法研究[J]. 工程力学,2016,33(3):24-30. Fang Ji, Li Jitao, Wang Yuedong, et al. Research on fatigue life probability prediction method of welded structure based on random vibration theory[J]. Engineering Mechanics, 2016, 33(3): 24-30. (in Chinese with English abstract)

[5] 贺光宗,陈怀海,贺旭东,等.多轴向与单轴向随机振动疲劳试验对比研究[J]. 振动工程学报,2015,28(5):754-761. He Guanghong, Chen Huaihai, He Xudong, et al. Comparison study between multiaxial and uniaxial random vibration fatigue test[J]. Journal of Vibration Engineering, 2015, 28(5): 754-761. (in Chinese with English abstract)

[6] 祝荣欣,王金武,唐汉,等. 基于心率变异性的联合收割机驾驶员疲劳分析与评价[J]. 农业工程学报,2016,32(1):77-83. Zhu Rongxin, Wang Jinwu, Tang Han, el al. Analysis and evaluation of combine harvester driver fatigue based on heart rate variability[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(1): 77-83. (in Chinese with English abstract)

[7] 田晓峰,孔德刚,刘立意,等. 长时间振动对拖拉机驾驶员腰部疲劳的影响研究[J]. 农机化研究,2011,33(2): 193-196. Tian Xiaofeng, Kong Degang, Liu Liyi, et al. Study on the influence of long-time vibration to tractor driver’ low back fatigue[J]. Journal of Agricultural Mechanization Research, 2011,33(2): 193-196. (in Chinese with English abstract)

[8] 刘军,孔德刚,刘立意,等. 拖拉机座椅振动对驾驶员腰部疲劳影响研究[J]. 农机化研究,2011,33(1):53-56. Liu Jun, Kong Degang, Liu Liyi, et al. The study on the effect of tractor seat vibration to driver lumbar fatigue [J]. Journal of Agricultural Mechanization Research, 2011, 33(1): 53-56. (in Chinese with English abstract)

[9] 徐立章,李耀明,孙朋朋,等. 履带式全喂入水稻联合收获机振动测试与分析[J]. 农业工程学报,2014,30(8):49-55. Xu Lizhang, Li Yaoming, Sun Pengpeng, el al. Vibration measurement and analysis of tracked-whole feeding rice combine harvester[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(8): 49-55. (in Chinese with English abstract).

[10] 马桂香,陈殿云,王彦生,等.自走式谷物联合收割机的振动测试[J]. 现代机械,2008(2):59-61. Ma Guixiang, Chen Dianyun, Wan Yansheng, et al. Vibration test of a self-moving grain combine harvester[J]. Modern Machinery, 2008(2): 59-61. (in Chinese with English abstract)

[11] 陈建恩.小麦联合收割机振动试验研究[D]. 兰州:甘肃农业大学,2009.

Chen Jianen. Experimental Study on Vibration of Wheat Combine[D]. Lanzhou: Gansu Agricultural University,2009.

[12] 陈树人,卢强,仇华铮. 基于LabVIEW的谷物联合收获机割台振动测试分析[J].农业机械学报,2011,42(增刊1):86-89,98. Chen Shuren, Lu Qiang, Qiu Huazheng. Header vibration analysis of grain combine harvester based on LabVIEW[J]. Transactions of the Chinese Society for Agricultural Machinery, 2011, 42(Supp.1): 86-89, 98. (in Chinese with English abstract).

[13] Krolczyk J B, Egutko S, Krolczyk G M. Dynamic balancing of the threshing drum in combine harvesters-the process, sources of imbalance and negative impact of mechanical vibrations[J]. Applied Mechanics & Materials, 2014(693):424-429.

[14] 庞凤斌,孟繁昌,方宇鹏. 3060型联合收割机发动机减振系统的研究[J]. 农业机械学报,2000,31(6):72-74. Pang Fengbin, Meng Fanchang, Fang Yupeng. Study on vibration isolation system of a 3060 combine engine[J] Transactions of the Chinese Society for Agricultural Machinery, 2000, 31(6): 72-74. (in Chinese with English abstract)

[15] 李耀明,孙朋朋,庞靖,等. 联合收获机底盘机架有限元模态分析与试验[J]. 农业工程学报,2013,29(3):38-46. Li Yaoming, Sun Pengpeng, Pang Jing, et al. Finite element mode analysis and experiment of combine harvester chassis[J].Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(3): 38-46. (in Chinese with English abstract)

[16] 李耀明,李有为,徐立章,等. 联合收获机割台机架结构参数优化[J]. 农业工程学报,2014,30(18):30-37. Li Yaoming, Li Youwei, Xu Lizhang, et al. Structural parameter optimization of combine harvester cutting bench[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(18): 30-37. (in Chinese with English abstract)

[17] 韩正晟,赵武云,杨天兴. 4GG-170型高速收割机的试验分析[J]. 农业机械学报,2005,36(12):56-59. Han Zhengsheng, Zhao Wuyun, Yang Tianxing. Experimental analysis on 4 GG 170 high speed harvester[J]. Transactions of the Chinese Society for Agricultural Machinery, 2005, 36(12): 56-59. (in Chinese with English abstract)

[18] 何成秀. 小麦联合收割机割台振动试验与分析[J]. 农业机械, 2012(7): 107-108.

[19] 陈昆昌,赵匀,俞高红. 全喂入水稻联合收割机切割机构的动力学分析与惯性力平衡[J]. 机械设计与研究,2005,21(3):98-100.

Chen Kunchang, Zhao Yun, Yu Gaohong. Dynamic analysis of cutting mechanism of full feeding rice combine and balance of inertia force[J]. Machine Design and Research, 2005, 21(3): 98-100. (in Chinese with English abstract).

[20] Chuan Udom. Development of a cutter bar driver for reduction of vibration for a rice combine harvester[J]. Kku Res J, 2010, 15(7): 572-580.

[21] Fukushima T, Inoue E, Mitsuoka M, et al. Vibration characteristics and modeling of knife driving system of combine harvester (Part 3)[J]. Journal of the Japanese Society of Agricultural Machinery, 2006, 68(5): 65-70.

[22] Miu Pi. Combine Harvesters: Theory, Modeling, and Design[M]. Boca Raton: Crc Press, 2015: 154-158.

[23] 井上英二,丸谷一郎,光岡宗司,等. コンバイン刈刃駆動部の力学モデルとその検証[J]. 農業機械学会誌, 2004,66(2): 61-67.

[24] 严帅. 往复式切割器的振动稳态响应分析和减振设计[J]. 农机化研究,2013(12):32-35.

Yan Shuai. Steady-state vibration response analysis and vibration attenuation design of reciprocating cutter[J]. Journal of Agricultural Mechanization Research, 2013(12): 32-35. (in Chinese with English abstract).

[25] 朱聪玲,程志胜,王洪源,等. 联合收获机割台振动问题研究[J]. 农业机械学报,2004,35(4): 59-61,65.

Zhu Congling, Cheng Zhisheng, Wang Hongyuan, el al. Study on the header vibration of a combine[J]. Transactions of the Chinese Society for Agricultural Machinery, 2004, 35(4): 59-61, 65.(in Chinese with English abstract).

[26] 庞剑,谌刚,何华. 汽车噪声与振动-理论与应用[M]. 北京:北京理工大学出版社,2006:320-328.

[27] 陈严,张林伟,刘雄,等. 水平轴风力机柔性叶片气动弹 性响应分析[J]. 太阳能学报,2014,35(1):74-82. Chen Yan, Zhang Linwei,Liu Xiong, et al. Response analysis of aeroelasticity for hawt flexible blade[J]. Acta Energiae Solaris Sinica, 2014, 35(1): 74-82.

[28] 任慧龙,于鹏垚,李辉,等. 船体三维变形响应的数值预报[J]. 哈尔滨工程大学学报,2015,36(1):134-138.

Ren Huilong,Yu Pengyao,LI Hui, et al. Numerical prediction of three dimensional deformation response of the ship hull[J]. Journal of Harbin Engineering University, 2015, 36(1): 134-138. (in Chinese with English abstract)

[29] GB/T 10910-2004. 农业轮式拖拉机和田间作业机械驾驶员全身振动的测量[S]. 北京:中国标准出版社,2004.

[30] ISO 2631-1-1997. Mechanical Vibration and shock- Evaluation of human exposure to whole-body vibration-Part 1: General requirements[S]. Switzerland: International Organization for Standardization, 1997.

Analysis of minimum amplitude points and optimization of connection position for header of micro grain combine

Ji Jiangtao, Xu Longjiao, Pang Jing※, Geng Lingxin, Wang Shengsheng

(471003,)

This paper was aimed to reduce the vibration energy transitivity form the cutting table of the combine harvester to combine. In this paper, the 4 L-0.2 micro combine harvester was chosen as the object, the structure of the machine and the characteristics of the header were analyzed, and the minimum vibration amplitude point of the cutting table was found by using the minimum amplitude point method. Then the finite element modal analysis of the cutting table was carried out by using the modal analysis software Workbench, and the first four order modal frequencies and shapes were obtained, which were also acquired through the modal experiment of the cutting table. The experiment result was proved to be believable by comparison with the finite element modal analysis result. Three different experiments were performed, which included the preliminary experiment, the single-frequency excitation experiment and the verification experiment. In the preliminary experiment, the motor was used to provide the power which was used to drive the cutter installed on the cutting table to reciprocate; the preliminary experiment was done under the condition of low frequency, and 3 different frequencies, which had significant influence on the vibration amplitude of the points, were obtained, which were 5, 10 and 15 Hz respectively. The single- frequency experiments were done on the base of these 3 frequencies. In the single-frequency experiment, a small area that contained the positions of the first four order modal node of the experiment mode was divided out from the experimental area on the cutting table. Some points were randomly chosen in the small area, and the exciter was used to force the cutting table to vibrate. The values of vibration amplitude of the points chosen were obtained, and they were imported into the MATLAB together with the coordinate values of the points. The least square method was used to obtain the fitting curve, which illustrated the relationship between the coordinate value and the value of vibration amplitude of the points. The points that had the minimum value of vibration amplitude were found at each frequency. According to the vibration theory, it could be seen that the value of the vibration amplitude in the time domain was the superimposition of the value of amplitude of each frequency. The weighting factors corresponding to the 3 frequencies were obtained, which were 0.54, 0.3 and 0.16 respectively according to the relationship between the 3 different frequencies obtained from the preliminary experiment. The positions of the points that had the minimum vibration amplitude could be calculated with this set of weighting factors. In the verification experiment, the motor was used to provide the power for driving the cutter installed on the cutting table to reciprocate. The experimental data were calculated and the experimental result was consistent with that of the finite element analysis, and the positions of the points that had the minimum value of the vibration amplitude were obtained, which weighted average magnitude for the region (29.707 m/s2) 89.29%, the maximum amplitude point amplitude (35.044 m/s2) 74.92%. At the end, the optimization scheme which provided the best position for the installation of the cutting table was put forward according to the result.After changing the connection point, the cutting table’s structure was analyzed, and the results showed that the structural strength of the cutting table met the requirements.

agricultural machinery; combine harvester; optimization; modal analysis; minimum amplitude point; curve fitting; weighted synthesis

10.11975/j.issn.1002-6819.2017.12.004

S225

A

1002-6819(2017)-12-0028-06

2017-02-21

2017-04-05

国家自然科学基金(51205110);“十三五”项目子课题(2016YFD0701805-1)

姬江涛,男,河南洛阳人,博士,教授,博士生导师,主要从事农业机械装备研制与开发研究。洛阳 河南科技大学农业装备工程学院,471003。Email:jjt0907@163.com

庞 靖,男,河南洛阳人,讲师,主要从事收获机械设计及理论研究。洛阳 河南科技大学农业装备工程学院,471003。 Email:jing_pang@163.com

姬江涛,徐龙姣,庞 靖,耿令新,王升升.微型谷物联合收割机割台最小振幅点分析及挂接点优化[J]. 农业工程学报,2017,33(12):28-33. doi:10.11975/j.issn.1002-6819.2017.12.004 http://www.tcsae.org

Ji Jiangtao, Xu Longjiao, Pang Jing, Geng Lingxin, Wang Shengsheng. Analysis of minimum amplitude points and optimization of connection position for header of micro grain combine[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(12): 28-33. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.12.004 http://www.tcsae.org

猜你喜欢

收割机振幅幅值
室温下7050铝合金循环变形研究
多尺度串联非线性能量阱的减振效能及阻尼连接方式研究
收割机维修与保养的方法研究
自走式油葵收割机研发成功
联合收割机跨区作业存在问题和对策
基于S变换的交流电网幅值检测系统计算机仿真研究
未来的收割机
十大涨跌幅、换手、振幅、资金流向
十大涨跌幅、换手、振幅、资金流向
Prevention of aspiration of gastric contents during attempt in tracheal intubation in the semi-lateral and lateral positions