APP下载

硒(Ⅳ)预处理下根表铁膜对水稻幼苗吸收和转运汞的影响*

2017-08-31高阿祥周鑫斌张城铭

土壤学报 2017年4期
关键词:提取液根部预处理

高阿祥 周鑫斌张城铭

(西南大学资源环境学院,重庆 400716)

硒(Ⅳ)预处理下根表铁膜对水稻幼苗吸收和转运汞的影响*

高阿祥 周鑫斌†张城铭

(西南大学资源环境学院,重庆 400716)

采用水培试验的方法研究硒(Se,Ⅳ)预处理下,根表铁膜对水稻幼苗吸收和转运汞(Hg)的影响。将水稻幼苗置于Se0和Se0.5(mg L-1)培养液中培养2周,再用4种不同浓度的Fe2+溶液(0、25、50和100 mg L-1即Fe0、Fe25、Fe50、Fe100)诱导水稻根表形成不同数量的铁膜,随后置于0.3 mg L-1的HgCl2培养液中继续培养72 h。结果表明,根表铁膜对水稻幼苗生长无显著影响,但硒可以增加其生物量。碳酸氢钠―柠檬酸三钠―连二亚硫酸钠(DCB)提取液(即根表铁膜)中含铁比例(57.3%~96.2%)显著高于水稻幼苗地上部(1.1%~17.5%)和根部(2.7%~25.9%),水稻幼苗的大部分铁被积累至DCB提取液中。随着根表铁膜数量的增加,根和地上部汞含量均显著降低。在Fe50和Fe100处理中,硒的加入显著减少了地上部和根部的汞含量,也显著降低了汞的分配系数,Se(Ⅳ)预处理能明显提高铁膜固持汞的量。综上所述,Se(Ⅳ)预处理和根表铁膜均能阻碍水稻幼苗对汞的吸收和向地上部的转运,减轻水稻汞胁迫,从而起到保护水稻避免汞毒害的作用。本研究对于提高汞污染区稻米质量和保证粮食安全具有一定的现实意义。

铁膜;水稻幼苗;硒;汞

汞是一种毒性很强的污染物,并通过食物链在人和动物体内富集,因其在环境中具有持久性、生物累积性和强毒性被国际组织列为优先控制污染物[1]。我国汞污染状况较为严重,土壤中汞含量的平均值为0.04 mg kg-1,高于世界土壤中汞自然含量的平均值[2]。我国汞污染最严重的贵州万山地区,水稻田总汞达790 mg kg-1[3],作物平均汞浓度达到78 mg kg-1,万山地区10%的农田硒含量也超过3.0 mg kg-1,属于典型的富硒土壤[4],而硒又是人体必需的微量营养元素。早期研究表明,硒与汞存在拮抗作用,由于硒与汞能形成难溶性复合物,施硒可减少汞向作物地上部转运[5]。亚硒酸盐能限制大蒜内部汞的积累和转运,主要原因是在大蒜根部形成了谷胱甘肽汞Hg(GSH)2和蛋氨酸汞Hg(Met)2难溶性复合物,进而阻碍了汞向大蒜地上部转运[6]。

稻田是一个兼具水生和陆地特性的生态系统。稻田土壤中铁、锰氧化物被还原为Fe2+和Mn2+[7];水稻在生长过程中通过特殊的输氧组织,将地上部的氧气由叶和茎输送至根部,除供根系呼吸消耗外,剩余的氧气则侧渗至根际中,并在根系氧化酶和铁氧化细菌等的共同作用下将根际中的Fe2+氧化并在水稻根表面形成铁氧化物膜[8](简称铁膜)。铁膜属两性胶体,对土壤中某些分子和离子均具有富集作用,一定程度上作为这些分子和离子的储备库[9],改变这些元素在土壤固液相的分配比例,从而影响其在土壤中的移动性和生物有效性[10-12]。水稻根表铁膜可以吸附汞,抑制汞在水稻体内的吸收和转运,进而减少汞在稻米中累积[13]。

在生产实践中,人们通过基施亚硒酸钠提高水稻籽粒硒含量[14],即在水稻幼苗期根表铁膜很少或者还没有形成前,水稻根系已经吸收积累大量的硒[15],随后再形成根表铁膜,这种情况下会对水稻吸收和转运汞有何影响,目前尚未见报道。本研究采用Fe2+诱导的方式形成水稻根表铁膜,模拟研究硒(Ⅳ)预处理下根表铁膜对水稻幼苗吸收和转运汞的影响,该研究可为寻找降低水稻汞吸收途径、解决食物链汞污染提供一定的科学依据。

1 材料与方法

1.1 供试水稻硒预处理

试验在西南大学实验温室内进行。所用的水稻(Oryza sativa L.)品种为渝香203,挑选籽粒饱满的水稻种子使用30%的H2O2浸泡消毒10 min,用去离子水洗净后置于垫有滤纸的培养皿中,在28℃人工培养箱中培养至萌发5 d后,在1/3浓度霍格兰培养液中继续培养10 d,再置于霍格兰培养液中培养1周。挑选生长一致的水稻幼苗24株,分为无硒(Se0)和有硒(Se0.5,0.5 mg L-1(以纯硒计))两个处理,采用亚硒酸钠(Na2SeO3)供应硒,置于霍格兰培养液中硒预处理2周。水稻培养期间用0.1 mol L-1的HCl或NaOH溶液调整pH为5.5,每3天更换一次营养液。水稻培养条件:28℃/14h光照和20℃/10h黑暗,相对湿度为50%~70%,光照强度为300 µmol m-2s-1。

1.2 铁膜诱导及硒汞暴露方法

在上述硒培养结束后,将水稻植株转移至去离子水中浸泡24 h,以消除营养液中其他元素对铁膜形成的影响。取出水稻植株分别置于0、25、50和100 mg L-1的Fe2+(FeSO4)溶液中(pH=5.5)中培养24 h,分别标记为Fe0、Fe25、Fe50和Fe100。然后将水稻植株转移至霍格兰培养液中培养48 h后,转至含有0.3 mg L-1HgCl2的霍格兰培养液中继续培养72 h。每个处理设3次重复。

1.3 碳酸氢钠-柠檬酸三钠-连二亚硫酸钠(DCB)法提取水稻根表铁膜

水稻幼苗收获后,用去离子水彻底冲洗干净,分为根部和地上部。将洗净的根组织沿基部剪下,放入30 ml含有0.03 mol L-1柠檬酸三钠(Na3C6H5O7·2H2O)、0.125 mol L-1碳酸氢钠(NaHCO3)及0.5 g保险粉(Na2S2O4)混合溶液中,室温下浸提1 h,冲洗根组织并定容浸提液至50 ml。用ICP-OES(Optima 2000DV,PerkinElmer,美国)测定DCB浸提液铁含量,ICP-MS(Thermo Elemental X7,美国)测定汞含量。经DCB提取后的水稻根及地上部叶在70℃烘干至恒重,用于汞含量测定。

1.4 样品消解与测定

分别称取约0.1 g水稻根、地上部样品于消化管中,加入5 ml浓硝酸和1 ml H2O2,置于室温下过夜。然后再向每支消化管中加入5 ml HNO3和2 ml H2O2,分别加热至90℃恒温3 h,120℃恒温3 h,160℃恒温2 h,直至消化管中剩余液体1 ml左右。冷却后将剩余液体转移至25 ml容量瓶中定容。植株中硒含量的测定参照Zhang等[16]的方法,植株中汞含量的测定参照李士杏等[17]的方法。

1.5 数据分析

汞分配系数 DR(Distribution ratio)=地上部吸收汞的量/总吸收量[18]。试验所得植株各部位的汞含量采用SPSS 13.0软件进行统计分析;植株各部位干重数据采用方差分析(ANOVA);不同处理浓度间采用最小显著差异法(LSD)检验其显著性(p<0.05)。

2 结 果

2.1 不同数量铁膜对水稻生长的影响

水稻幼苗经硒培养2周后,再经过24 h的Fe2+溶液处理,根系表面能够看见明显的红色,这表明形成了铁膜。随后将水稻幼苗置于0.3 mg L-1HgCl2培养液中继续培养72 h,加硒处理相对于不加硒处理,水稻幼苗根部和地上部生物量的增加较为明显(表1)。这说明,硒可以提高汞处理下水稻幼苗生物量,在一定程度上减轻了汞对水稻的胁迫效应。

2.2 硒预处理下水稻幼苗对铁的吸收

如表2所示,在同一硒处理水平,随着Fe浓度的增加,水稻幼苗地上部、根和DCB溶液中的铁含量均有升高,DCB提取液(即根表铁膜)中含铁比例(57.3%~96.2%)显著高于水稻幼苗地上部(1.1%~17.5%)和根部(2.7%~25.9%),水稻幼苗的大部分铁被积累至DCB提取液中,即累积至

铁膜中。

表1 不同浓度Se和Fe供应的营养液中水稻幼苗生物量Table 1 Biomass of rice seedlings grown in Hoagland solution relative to concentration of Se and Fe

表2 不同浓度Se和Fe供应的营养液中水稻幼苗地上部、根和DCB提取液中Fe含量和含铁比例Table 2 Content and proportion of Fe in dithionite-citrate-bicarbonate(DCB)extracts of iron plaque on the root surface,roots and shoots of rice seedlings grown in nutrient solution,relative to concentration of Se and Fe

在相同铁供应水平下,Se0.5处理的水稻幼苗地上部、根和DCB提取液中的铁含量均较Se0处理的有所降低。从铁在水稻幼苗各部位中所占的比例来看,加硒处理后,水稻幼苗地上部和DCB提取液中的铁含量均显著降低。

2.3 铁膜和硒对水稻幼苗吸收转运汞的影响

如图1所示,在Se0处理中,随着Fe浓度的增加,水稻幼苗地上部和根中的汞含量均降低;在无铁膜存在的情况下,Se(Ⅳ)预处理后,水稻地上部汞含量显著下降(图1A)。从根中汞含量来看,随着铁膜数量的增加,根中汞含量显著下降;同一Fe2+浓度下,加硒和未加硒相比,仅有Fe100处理下根中汞含量显著下降,其他Fe2+浓度处理下汞含量差异不显著(图1B)。如图1C所示,在Se0和Se0.5处理中,随着铁膜数量的增加,DCB提取液(即铁膜)中的汞含量均有所增加;在Fe0处理中,Se0.5处理铁膜中汞含量是Se0处理的3.5倍,这说明硒可能显著增加水稻根系质外体汞含量;Fe25处理中,加硒处理后铁膜中的汞含量也有所增加,但当Fe2+浓度从25~100 mg L-1变化时,加硒处理对DCB提取液中汞含量无显著影响。

综上所述,随着根表铁膜数量的增加,根和地上部汞含量均显著降低。对于Fe0和Fe25处理,硒的加入对地上部和根部的汞含量无显著影响,但对于Fe50和Fe100处理,硒的加入显著减少了地上部和根部的汞含量。Se0和Se0.5处理相比,硒的加入显著增加了根质外体或根表铁膜中汞含量。

图2可以看出,在低量铁膜情况下,加硒与不加硒对水稻幼苗汞分配系数的影响差异不显著,但是在高量铁膜存在情况下,加硒显著降低了汞分配系数。

图1 不同浓度Se和Fe处理下水稻幼苗地上部(A)、根(B)和DCB提取液(C)中的Hg含量Fig 1 Content of mercury in shoots(A),roots(B)and dithionite-citrate-bicarbonate(DCB)(C)extracts of rice seedlings grown in nutrient solution relative to concentration of Se and Fe

图2 不同浓度Se和Fe处理对水稻幼苗汞分配系数的影响Fig 2 Effect of Se and Fe treatments on distribution ratio of mercury in rice seedlings relative to concentration of Se and Fe

如图3,汞主要分布在水稻幼苗的根系中,无论加硒与否,随着Fe浓度的增加,水稻幼苗地上部和根系中汞所占的比例均会逐渐减少,但增加了铁膜中汞所占的比例。随着铁膜数量增加,Se0和Se0.5处理的水稻幼苗地上部中汞所占比例分别从3.18%降低至2.40%、2.90%降低至1.32%;根中汞所占比例分别从91.44%降低至65.23%、80.46%降低至64.11%;而铁膜中的汞则分别从5.32%提高至32.37%、16.64%提高至34.57%,说明铁膜可以吸附大量的汞。铁浓度从Fe0到Fe100变化时,在相同铁浓度下,Se0.5处理与Se0处理相比,水稻幼苗地上部和根中汞所占比例均逐渐降低,但铁膜中的汞所占比例逐渐升高。这说明随着根表铁膜数量的增加,水稻幼苗根和地上部中汞所占的比例有所降低,加硒后铁膜吸附了更多的汞,增加了铁膜中汞的比例,相应降低了地上部汞的含量及比例。

图3 不同浓度Se和Fe处理下水稻幼苗不同部位中Hg含量百分比Fig 3 Distribution ratio of Hg in different parts of rice seedlings grown in nutrient solution relative to concentration of Se and Fe

图4 不同浓度Se和Fe处理下根表铁膜中Hg和Fe的关系Fig 4 Relationship between Hg concentration and Fe concentration in the iron plaque on the root surface of rice seedlings grown in nutrient solution relative to concentration of Se and Fe

如图4所示,铁膜铁与铁膜汞两者呈现线性关系,其R2值在加硒和不加硒情况下均大于0.95(p<0.01),表明两者线性拟合度极好。图4可看出,随着铁膜数量的增加,铁膜汞也呈上升趋势。直线斜率由4.347变为7.269,表明,硒预处理会明显提升铁膜汞的累积变化趋势,这说明Se(Ⅳ)预处理能明显提高铁膜固持汞的量。

3 讨 论

硒是动物和人体的必需营养元素,现已发现硒对植物生长也非常有利。郑甲成和刘婷[19]通过研究不同浓度硒肥对水稻硒含量和产量的影响证实,适当的硒肥浓度(10~15 g hm-2)能够促进水稻植株生长,显著增加水稻生物量和籽粒产量,但过量的硒肥浓度(≥25 g hm-2)则抑制了水稻植株生长。本研究结果得出,硒可以提高汞处理下水稻幼苗生物量(表1)。

硒在提高植物抗逆性、缓解重金属胁迫以及阻碍植物对重金属吸收等方面有着重要作用,但其机制尚不明确。主流观点认为,硒是谷胱甘肽过氧化物酶(GSH-Px)的必需组分,GSH-Px利用谷胱甘肽(GSH)将有毒的过氧化物还原成无毒的物质,清除由重金属引起的自由基[20]。本试验得出,Se(Ⅳ)预处理能够阻碍水稻铁从根向地上部转运(表2)。从生理学角度来看,Feng等[21]发现硒可以减轻蜈蚣草对铁的吸收和转运,其主要机理为低剂量硒(2 mg L-1)能够降低蜈蚣草体内丙二醛含量和过氧化氢酶活性,而高剂量硒(20 mg L-1)能够增加蜈蚣草体内丙二醛含量和过氧化氢酶活性。硒也可以激活植物螯合肽(PC)合成酶及增加PC合成的前体,使植物产生更多的PC,形成更多的重金属-PC配合物[22],其在植物体内不易移动,硒阻碍水稻铁从根向地上部转运,其具体机理尚需进一步研究。

铁膜降低了水稻幼苗地上部汞含量和汞分配系数,铁膜数量越多,固持在根表铁膜中的汞越多,表明水稻根表铁膜限制了汞从根到地上部的转运。铁膜对于其他元素也有吸附固持作用,如Liu等[23]的结果,铁膜中铜、锌、磷和砷的浓度与铁膜数量呈正相关。有研究表明,铁膜能够吸附无机汞(IHg)和有机汞(MeHg),随着铁膜数量的增加,水稻根内IHg和地上部MeHg均显著减少,水稻根系内Hg的化学形态却未改变[24]。Zhang等[25]研究了Se对于水稻—土壤系统中MeHg / IHg吸收和迁移的影响后发现,Se的水平与稻谷中MeHg / IHg 的水平负相关,而且,增加土壤中的硒水平,IHg和MeHg向地上部迁移均会持续降低。

Se(Ⅳ)预处理能够降低水稻幼苗地上部汞含量(图1A)。究其具体机理,一方面可能是硒和汞在水稻根内形成难溶性复合物HgSe(pKsp = -64.5),从而限制了汞向地上部转运。Khan和Wang[26]研究表明,在植物体内或根表硒与汞发生拮抗作用,容易形成难溶的HgSe复合物,从而抑制了植物对汞的吸收和转运。Zhang等[25]通过研究根部土壤施硒发现,植株地上部对汞的吸收和转运也有显著减少。这可能是由于游离的SeO32-或SeO42-会被还原为Se2-,游离的Se2-可以与游离的Hg2+结合,形成HgSe复合物沉淀。Afton和Caruso[27]研究大葱和雪里蕻根部发现,大部分HgSe难溶性复合物均被固定在根部,并未转运至植株地上部,表明硒汞复合物基本固着于植物根部,进而减少植株地上部对汞的吸收。大蒜添加硒后,能够降低体内Hg-S结合力而生成谷胱甘肽汞化物Hg(GSH)2和Hg(Met)2,从而减少大蒜对汞的吸收和积累,硒通过降低大蒜对汞的吸收转运而起着保护大蒜被汞毒害的作用[6]。

另一方面,根据Lewis酸理论,无机汞对硫醇有着较高的亲和力,并可与硫氢结合成难溶解、稳定的硫醇盐螯合物[28]。植物螯合肽(PCs)是一种富含-SH的多肽,仅能在植物体内形成[29],因为其含有大量的巯基,对Hg2+的亲和力很大。Carrasco-Gil等[30]证明了Hg2+在水稻根中以Hg(Cys)2、Hg(GS)2和HgPCs等螯合物存在,从而降低Hg2+的毒性。Osaki等[31]发现重金属Hg2+进入植物后,首先与PCs结合形成低分子量植物螯合肽复合物(LMW),在ATP的作用下穿过液胞膜转运至液泡中储存,并被隔离和固定在液泡内。因此,进入细胞中的大部分Hg与PC结合成螯合物,然后进入液泡中固定和隔离[32],进而限制了汞向地上部的转运。

其次,Rascio[33]在早期的研究中发现,当植物受到重金属胁迫时,植物能产生新的组织来隔离和富集这些重金属,例如初生根皮层通过形成内周皮而起隔离作用,使重金属在植株根部细胞壁沉淀而“束缚”其跨膜吸收,或使重金属高度积累在根部,减少重金属向地上部各组织的转移。Wang等[34]证实,硒抑制了根细胞对汞的吸收,主要原因是硒处理能增强水稻根系质外体屏障,增加了根中内外皮层初生壁的凯氏带以及次生壁栓质化和木质化等保护组织,这些保护组织可以阻碍根细胞对汞等有毒物质的被动吸收。Se(Ⅳ)预处理显著降低水稻地上部汞含量和汞分配系数的具体机理还需进一步研究。那么,在水稻生产实践中,水稻移栽后根系先吸收硒随后产生根表铁膜,在整个生育时期特别是成熟期水稻根系吸收Se(Ⅳ)以及根表铁膜对水稻籽粒汞积累有何影响,有待进一步研究。

4 结 论

水培条件下,沉积在根表的铁膜阻碍了水稻对汞的吸收和向地上部转运,随着铁膜数量的增加,铁膜中固持汞的量也显著增加,铁膜能显著降低水稻苗期汞积累。Se(Ⅳ)预处理能明显提高铁膜固持汞的量,同时显著降低水稻地上部汞含量和分配系数。Se(Ⅳ)能够减轻水稻汞胁迫效应,降低水稻汞从根部向地上部转移,减少地上部汞积累。在水稻灌浆和成熟期,根表铁膜和Se(Ⅳ)对水稻籽粒汞积累的影响尚需进一步研究。

[1] Jiang G B,Shi J B,Feng X B. Mercury pollution in China. Environmental Science and Technology,2006,40(12):3672—3678

[2] 洪春来,贾彦博,杨肖娥,等. 农业土壤中汞的生物地球化学行为及其生态效应. 土壤通报,2007,38(3):590—596

Hong C L,Jia Y B,Yang X E,et al. Biogeochemistry and ecological effect of mercury in agricultural soil(In Chinese). Chinese Journal of Soil Science,2007,38(3):590—596

[3] Qiu G L,Feng X B,Wang S F,et al. Mercury and methylmercury in riparian soil,sediments,minewaste calcines,and moss from abandoned Hg mines in east Guizhou Province,southwestern China. Applied Geochemistry,2005,20(3):627—638

[4] Zhang H,Feng X B,Larssen T,et al. In inland China,rice,rather than fish,is the major pathway for methylmercury exposure. Environment Health Perspectives,2010,118(9):1183—1188

[5] Mounicou S,Shah M,Meija J,et al. Localization and speciation of selenium and mercury in Brassica junceaimplications for Se-Hg antagonism. Journal of Analytical Atomic Spectrometry,2006,21(4):404—412

[6] Zhao J T,Gao Y X,Li Y F,et al. Selenium inhibits the phytotoxicity of mercury in garlic(Allium sativum). Environmental Research,2013,125(7):75—81

[7] 郑芸芸,李忠意,李九玉,等. 铁膜对水稻根表电化学性质和氮磷钾短期吸收的影响. 土壤学报,2015,52(3):690—696

Zheng Y Y,Li Z Y,Li J Y,et al. Effect of iron plaque on surface electrochemical properties and short-term N,P and K uptake by rice roots(In Chinese). Acta Pedologica Sinica,2015,52(3):690—696

[8] Jiang F Y,Chen X,Luo A C. Iron plaque formation on wetland plants and its influence on phosphorus,calcium and metal uptake. Aquatic Ecology,2009,43(4):879—890

[9] Hansel C M,Fendorf S,Sutton S,et al.Characterization of Fe plaque and associated metals on the roots of mine-waste impacted aquatic plants. Environmental Science and Technology,2001,35(19):3863—3868

[10] Zheng R L,Cai C,Liang J H,et al. The effects of biochars from rice residue on the formation of iron plaque and the accumulation of Cd,Zn,Pb,As in rice(Oryza sativa L.)seedlings. Chemosphere,2012,89(7):856—862

[11] Huang Y C,Chen Z,Liu W J. Influence of iron plaque and cultivars on antimony uptake by and translocation in rice(Oryza sativa L.)seedlings exposed to Sb(Ⅲ)or Sb(Ⅴ). Plant and Soil,2012,352(1/2):41—49

[12] Hossain M B,Jahiruddin M,Loeppert R H,et al. The effects of iron plaque and phosphorus on yield and arsenic accumulation in rice. Plant and Soil,2009,317(1):167—176

[13] 李云云,赵甲亭,高俞希,等. 根表铁膜的形成和添加硒对水稻幼苗吸收转运无机汞和甲基汞的影响. 生态毒理学报,2014,9(5):972—977

Li Y Y,Zhao J T,GaoY X,et al.Effects of iron plaque and selenium on the absorption and translocation of inorganic mercury and methylmercury in rice(Oryza sativa L.)(In Chinese). Asian Journal of Ecotoxicology,2014,9(5):972—977

[14] 张联合,赵巍,郁飞燕,等. 水稻离体叶片吸收亚硒酸盐的生理特性. 土壤学报,2012,49(1):189—193

Zhang L H,Zhao W,Yu F Y,et al. Physiological characteristics of selenite uptake by excised leaves of rice(In Chinese). Acta Pedologica Sinica,2012,49(1):189—193

[15] 周鑫斌,施卫明,杨林章. 叶面喷硒对水稻籽粒硒富集及分布的影响. 土壤学报,2007,44(1):73—78

Zhou X B,Shi W M,Yang L Z. Effect of foliar application of selenite on selenium accumulation and distribution in rice(In Chinese). Acta Pedologica Sinica,2007,44(1):73—78

[16] Zhang L H,Shi W M,Wang X C. Difference in selenite absorption between high-and low-selenium rice cultivars and its mechanism. Plant and Soil,2006,282(1):183—193

[17] 李士杏,李波,王定勇. 腐殖酸对土壤汞向植株迁移的影响. 西南大学学报(自然科学版),2002,24(4):378—380

Li S X,Li B,Wang D Y. Effect of humus on the shift of mercury from the soil to the plants(In Chinese). Journal of Southwest University(Natural Science Edition),2002,24(4):378—380

[18] 龙小林,向珣朝,徐艳芳,等. 镉胁迫下籼稻和粳稻对镉的吸收、转移和分配研究. 中国水稻科学,2014,28(2):177—184

Long X L,Xiang X C,Xu Y F,et al. Absorption,transfer and distribution of Cd in indica and japonica rice under Cd stress(In Chinese). Chinese Journal of Rice Science,2014,28(2):177—184

[19] 郑甲成,刘婷. 不同浓度硒肥对籼稻硒含量和产量的影响. 土壤,2014,46(1):88—93

Zheng J C,Liu T. Selenium content and yield of indica rice under different selenium concentration(In Chinese). Soils,2014,46(1):88-93

[20] Yadav S K. Heavy metals toxicity in plants:An overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. South African Journal of Botany,2010,76(2):167—179

[21] Feng R W,Wei C Y,Tu S X. The roles of selenium in protecting plants against abiotic stresses. Environmental and Experimental Botany,2013,87:58—68

[22] Feng R W,Wei C Y. Antioxidative mechanisms on selenium accumulation in Pteris vittata L.,a potential selenium phytoremediation plant. Plant,Soil and Environment,2012,58(3):105—110

[23] Liu W J,Zhu Y J,Smith F A,et al. Do iron plaque and genotypes affect arsenate uptake and translocation by rice seedlings(Oryza sativa L.)grown in solution culture? Journal of Experimental Botany,2004,55(403):1707—1713

[24] Li Y Y,Zhao J T,Zhang B,et al. The influence of iron plaque on the absorption,translocation and transformation of mercury in rice(Oryza sativa L.)seedlings exposed to different mercury species. Plant and Soil,2016,398(1):87—97

[25] Zhang H,Feng X B,Zhu J M,et al. Selenium in soil inhibits mercury uptake and translocation in rice(Oryza sativa L.). Environmental Science and Technology,2012,46(18):10040—10046

[26] Khan M A K,Wang F Y. Mercury-Selenium compounds and their toxicological significance:Toward a molecularunderstanding of the Mercury-Selenium antagonism. Environmental Toxicology and Chemistry,2009,28(8):1567—1577

[27] Afton S E,Caruso J A. The effect of Se antagonism on the metabolic fate of Hg in Allium fistulosum. Journal of Analytical Atomic Spectrometry,2009,24(6):759—766

[28] Hoffmeyer R E,Singh S P,Doonan C J,et al. Molecular mimicry in mercury toxicology. Chemical Research in Toxicology,2006,19(6):753—759

[29] Strasdeit H,Duhme A K,Kneer R,et al. Evidence for discrete Cd(SCys)4units in cadmium phytochelatin complexes from EXAFS spectroscopy. Journal of the Chemical Society-Chemical Communications,1991,16(16):1129—1130

[30] Carrasco-Gil S,Siebner H,LeDuc D L,et al. Mercury localization and speciation in plants grown hydroponically or in a natural environment. Environmental Science and Technology,2013,47(7):3082—3090

[31] Osaki Y,Shirabe T,Nakanishi H,et al. Characterization of phytochelatin synthase produced by the primitive red alga Cyanidioschyzon merolae. Metallomics,2009,1(4):353—358

[32] Malik A J,Goel S,Kaur N,et al. Selenium antagonizes the toxic effects of arsenic on mungbean(Phaseolus aureus Roxb.)plants by restricting its uptake and enhancing the antioxidative and detoxification mechanisms. Environmental and Experimental Botany,2012,77:242—248

[33] Rascio N. Metal accumulation by some plants growing on zinc-mine deposits. Oikos,1977,29(2):250—253

[34] Wang X,Tam F Y,Shi F,et al. Selenium addition alters mercury uptake,bioavailability in the rhizosphere and root anatomy of rice(Oryza sativa L). Annals of Botany,2014,114(2):271—278

Effect of Iron Plaque on Root on Uptake and Translocation of Mercury in Rice Seedlings Treated with Selenium(Ⅳ)

GAO Axiang ZHOU Xinbin†ZHANG Chengming
(College of Resources and Environment,Southwest University,Chongqing 400716,China)

【Objective】 Iron plaque on root adsorbs heavy metal elements in the soil,thus reducing the content of heavy metals in the environment the plant grows in,while selenium is antagonistic to heavy metal elements in plant roots,thus inhibiting the transfer of Cd,As,Mn and some other heavy metals in the roots of rice seedlings as was found in the researches. In the presence of a proper amount of iron plaque,selenium reacts with Cd,As,Mn,and so on to form insoluble compounds that accumulate in the iron plaque,thus reducing toxicity of these heavy metals to the plants. In this study,a hydroponic experiment was conducted to explore effects of the iron plaque on the surface of the roots of rice seedlings on absorption and transport of mercury by the plants treated with selenium. 【Method】Having been disinfected and washed clean,rice seeds were sown in Hoagland culture medium for germination. Out of the seedlings,24 consistent in growth were selected and transplanted into two groups of vessels with Hogland culture medium,one treated without selenium(Se0)and the other with selenium(Se0.5,0.5 mg L-1in the form of Na2SeO3),for cultivation for 2 weeks. Then the rice plants were moved into Fe2+(FeSO4)solutions(pH=5.5),0,25,50 and 100 mg L-1in concentration,or Treatment Fe0,Fe25,Fe50 and Fe100,separately,for 24 h,to let iron plaque form on root surface. And then the rice plants were then transferred into HgCl2solution,0.3 mg L-1in concentration for 72 h of cultivation. Each treatment had three replicates. 【Result】No significant effect of the iron plaque was found on growth of the rice seedlings,but selenium was to be able to increase the plants in biomass. With rising Fe concentration in the solution,iron contents in the shoots and roots of the plants and in the dithionite-citrate-bicarbonate(DCB)solution all increased. The iron content in the DCB solution(extraction of root surface iron plaque)reached 57.3%~96.2%,significantly higher than that(1.1%~17.5%)in theshoot and(2.7%~25.9%)in the root of the rice seedlings,Most of the iron in the seedling plants were accumulated in the iron plaque or DCB extract. With the rising amount of iron plaque on the root surface,the content of mercury in the roots and shoots of the plants decreased significantly. The addition of selenium did not affect much the content of mercury in the shoots and roots of the plants in Treatments Fe0 and Fe25,but it did reduce the content of mercury significantly in Treatments Fe50 and Fe100. With the formation of iron plaque on the root surface,the content of mercury in the shoots and roots reduced because the iron plaque adsorbed much mercury and the addition of Se(Ⅳ)enabled the iron plaque to adsorb more mercury,thus increasing the proportion of mercury in the iron plaque and consequently reducing that in the shoots of the plans. Quite obviously,Se significantly enhances Hg fixation capacity of the iron plaque on the root surface of rice seedlings. 【Conclusion】Under hydroponic conditions,iron deposits on the root surface to form iron plaque,which inhibits Hg adsorption by rice roots and upward transfer of Hg in the plant. With the forming of more iron plaque,Hg fixation capacity of the coating increases significantly,too,thus markedly reducing Hg accumulation in the rice seedling. Se(Ⅳ)can alleviate the effect of mercury stress on rice,inhibit Hg transfer from roots to shoots and reduce Hg accumulation in the shoots,thus playing a role in protecting rice from mercury toxication. This study has certain practical significance in improving the quality of rice in mercury contaminated area and ensuring food safety.

Iron plaque;Rice seedlings;Se;Hg

S143.7+1

A

(责任编辑:陈荣府)

10.11766/trxb201610060383

* 国家自然科学基金项目(31372141,31672238)资助 Supported by the National Natural Science Foundation of China(Nos. 31372141 and 31672238)

† 通讯作者 Corresponding author,E-mail:zxbissas@swu.edu.cn

高阿祥(1992—),男,江苏泗洪人,硕士研究生,主要从事植物硒营养研究。E-mail:gax3737@163.com

2016-10-06;

2017-01-11;优先数字出版日期(www.cnki.net):2017-02-13

猜你喜欢

提取液根部预处理
求解奇异线性系统的右预处理MINRES 方法
一起GIS终端环氧套管法兰根部开裂的原因分析
高COD二噻烷生产废水预处理研究
航空液压导管根部喷丸强化性能研究
亚麻木脂素提取液渗透模型建立与验证
穿山龙提取液不同纯化方法的比较
复方龙脉宁不同提取液对H2O2诱导H9c2 心肌细胞氧化损伤的保护作用
基于预处理MUSIC算法的分布式阵列DOA估计
山香圆叶提取液纯化工艺的优化
根部穿孔性阑尾炎的腹腔镜治疗策略