APP下载

施肥方式对砂姜黑土钾素利用及盈亏的影响*

2017-08-31花可可王道中郭志彬李丛丛

土壤学报 2017年4期
关键词:钾素猪粪牛粪

花可可王道中†郭志彬李丛丛

(1 安徽省农业科学院土壤肥料研究所,合肥 230031)

(2 安徽省农业科学院机关党委,合肥 230031)

施肥方式对砂姜黑土钾素利用及盈亏的影响*

花可可1王道中1†郭志彬1李丛丛2

(1 安徽省农业科学院土壤肥料研究所,合肥 230031)

(2 安徽省农业科学院机关党委,合肥 230031)

以砂姜黑土长期施肥试验为平台,研究砂姜黑土冬小麦—夏大豆轮作系统下作物钾素吸收量、钾素回收率、土壤钾素盈亏量和速效钾含量的演变特征,探明土壤速效钾与外源钾投入、土壤累积钾盈亏的响应关系,分析不施肥(CK)、常规化肥(CF)、化肥+麦秆(SCF)、化肥+猪粪(PCF)、化肥+牛粪(CCF)等施肥方式对土壤钾素利用及盈亏的影响,以期探寻砂姜黑土地区高产高效的施钾方式。结果表明:29 a作物钾素平均回收率在55.1%~66.1%,高低顺序为CCF > PCF> SCF > CF。土壤累积钾盈亏与土壤速效钾增量呈显著线性关系(p<0.05),土壤中钾素每盈余100 kg hm-2,CF、SCF、PCF和CCF处理土壤速效钾含量分别增加1.4、1.8、2.3和15.8 mg kg-1;土壤钾素投入量与速效钾含量呈显著线性关系(p<0.05),CF处理每投入钾100 kg hm-2,土壤速效钾含量增加0.4 mg kg-1,而SCF、PCF和CCF处理每投入钾100 kg hm-2,土壤速效钾含量分别增加0.5、0.6和4.3 mg kg-1,这说明适当增施有机肥可提升土壤钾素的供应能力。综上所述,投入有机物料是影响土壤钾素利用的重要调控措施,长期增施有机肥可提高作物钾素回收率以及土壤中盈余的钾素向速效钾的转化能力,本试验条件下以增施牛粪效果最好,猪粪和秸秆次之。因此,砂姜黑土小麦—大豆轮作系统下秸秆养畜过腹还田是实现作物高产高效的一种推荐施钾方式。

长期施肥;有机物料;钾素利用;钾素盈亏;土壤速效钾

钾是土壤肥力的重要物质基础,是作物生长所必需的营养元素之一,其对保障作物的高产稳产有重要作用[1-4]。但是,耕地缺钾依然是制约农业可持续生产的重要因素[5-6]。近几十年来,由于作物产量的提高及土壤钾素产出与投入不平衡的加剧,农田土壤缺钾面积有不断扩大的趋势。因此,加强农田土壤钾素利用及其调控因素的研究对实现钾肥的高效利用有重要的理论和现实意义。

影响农田土壤钾素利用的因素诸多,如气候、土壤类型和管理措施等[7-9]。施肥作为重要的农田管理措施之一,是影响土壤钾素利用的重要因素。目前,国内外学者对农田土壤钾素的研究较为全面,在不同施肥方式下作物钾素利用率、土壤钾形态和有效性等方面均开展了系列研究,并取得了丰硕的学术成果[10-11]。相关研究认为,土壤钾素含量随着外源钾素投入量的增加而增加,外源钾素的形态可直接影响土壤中不同形态钾素含量的增幅,因此,有机肥可有效提升土壤钾库和速效钾含量[12-13]。例如,张水清等[14]发现有机肥可显著提高土壤速效钾含量和钾肥的有效性。当前,针对施肥方式对作物钾素利用及土壤钾有效性的影响开展了较为系统的研究,但不同施肥方式下土壤速效钾与外源钾投入、土壤累积钾盈亏的定量关系及其差异尚不清楚。

砂姜黑土区是我国黄淮海平原主要的粮食产区,全国面积约400万hm2,其中安徽省面积最大,约165万hm2,占安徽省旱地总面积的40%以上,也是本省主要的中低产田之一[15]。在该地区,较多研究主要集中在施肥方式对土壤有机质、磷素利用和微生物性状的影响等[16-18],而关于长期不同施肥方式下土壤钾素利用与演变特征的研究极少,特别是对土壤钾素累积与土壤速效钾的定量关系并不清楚。

本文以砂姜黑土长期施肥试验为平台,分析砂姜黑土冬小麦—夏大豆轮作系统下作物钾素吸收量、钾素回收率、土壤钾盈亏量和速效钾含量的年际变化特征,探究土壤速效钾与外源钾投入、土壤累积钾盈亏的响应关系,阐明施肥方式对土壤钾素利用及盈亏的影响,为确定砂姜黑土区高产高效的施钾方式奠定基础。

1 材料与方法

1.1 试验区概况

试验点位于农业部蒙城砂姜黑土生态环境重点野外观测站内(33°13′N,116°37′E),地处黄淮海平原南部的淮北平原,属暖温带半湿润季风气候,多年平均气温16.5 ℃,年平均降水量872 mm。土壤类型为砂姜黑土(钙积湿润变性土),成土母质为河湖相沉积物,多呈碱性。

1.2 试验设计

试验始于1982年,试验区初始土壤的基本理化性质为:有机质10.1 g kg-1,全氮0.96 g kg-1,全磷0.28 g kg-1,全钾17 g kg-1,pH 7.4。种植制度为冬小麦—夏大豆轮作,共设置5种施肥处理:不施肥(CK)、常规化肥(CF)、化肥+麦秆(SCF)、化肥+猪粪(PCF)和化肥+牛粪(CCF)。每个小区面积为70 m2,随机分布,4次重复。全年施氮肥总量180 kg hm-2(以纯氮计)、磷肥39.3 kg hm-2(以纯磷计)、钾肥112 kg hm-2(以纯钾计)。氮磷钾肥中氮肥为尿素,磷肥为过磷酸钙,钾肥为氯化钾。施肥的方式采用基肥一次性于小麦播种前人工施入,大豆不施肥。耕作和施肥同步,耕作方式为人工锄耕,深度为20 cm。冬小麦采取条播的方式,夏大豆为穴播。冬小麦播种时间为每年11月初,夏大豆播种时间为每年6月初。各处理施肥设计方案见表1。

1.3 样品采集与测定方法

每年土壤样品的采集均在大豆收获后,用土钻进行“S”形多点取样,采集0~20 cm 耕层土壤。土样自然风干后,人工除去肉眼可见的根茬及秸秆碎屑,过2 mm筛,混匀后备用。原土磨细后分别过20目和100目筛,以供不同指标分析。土壤样品采集的年份为1983年、1991年、1999年、2001年、2003年、2005年、2007年、2009年和2011年,共9个年份。植株样品的采集为小区内“S”形随机采样。土壤及植株样品分析均参照鲁如坤[20]的方法,其中,土壤有机质测定采用重铬酸钾外加热法;土壤全氮采用凯氏定氮法;碱解氮采用碱解扩散法;全磷采用酸溶钼锑抗比色法;有效磷采用NaHCO3提取—钼锑抗比色法;土壤全钾采用氢氧化钠熔融―火焰光度计法;缓效钾采用硝酸溶液煮沸提取―火焰光度计法;速效钾采用乙酸铵浸提―火焰光度计法测定;pH测定采用电位法;植株钾采用H2SO4-H2O2氧化―火焰光度计法测定。

表1 不同施肥处理施肥量Table 1 Application rates of chemical fertilizers and organic manure relative to treatment

1.4 数据分析

作物产量采用小区实打实收法,产量测定的年份与土壤采集的年份相同。小麦和大豆的草谷比分别按1.2和1.1[17]计算,风干测产含水率,按0.14计算[17],作物地上部分钾素吸收量Ku与作物钾素回收率Re参照Qiu等[13]所提供方法。

土壤钾素年盈亏和累积盈亏量:

式中,Ks为某一年份土壤钾素年盈亏量,kg hm-2a-1;Kt为相应年份钾素投入量,kg hm-2a-1;Ku为相应年份作物地上部分吸钾量,kg hm-2a-1;Kb为某一年份土壤钾素累积盈亏量,kg hm-2;i为施肥年数。

土壤速效钾变化量ΔAK:

式中,Ka为某一年份土壤速效钾含量,mg kg-1;Ki为1982年土壤速效钾含量。

土壤钾累积投入量Kc、累积钾盈亏与土壤速效钾的定量关系:

式中,x代表Kc或Kb,kg hm-2;y代表ΔAK或AK,mg kg-1。

所有的测定结果用Excel 2010进行数据的初步整理和汇总,用SPSS 19.0进行统计分析,多重比较采用最小显著差异法(LSD)检验,显著水平p<0.05;用SigmaPlot 10.0进行绘图。

2 结 果

2.1 施肥方式对土壤肥力的影响

长期施肥可显著影响土壤肥力状况(表2),与CK处理相比,CF处理土壤有机质、全氮、全磷、全钾、碱解氮、有效磷和速效钾含量分别增加44.1%、25%、31.3%、13.7%、29.5%、254.8%和13.9%,差异均达到显著水平(p<0.05)。与CF处理相比,长期增施有机肥(SCF、PCF和CCF处理)土壤全量养分(有机质、全氮、全磷)及有效养分(土壤碱解氮、有效磷、速效钾和缓效钾)含量均有显著提高,提升的幅度因有机物料类型的不同有所差别,而对土壤全钾含量无显著影响。SCF、PCF和CCF处理土壤有机质提升的幅度分别为30.6%、44.2%和109.5%,CCF处理显著高于SCF和PCF处理(p<0.05),SCF和PCF处理间无显著差异(p>0.05)。与CK处理相比,长期施用化肥(CF)和增施秸秆(SCF)处理土壤pH分别降低10.1%和14.5%,差异显著(p<0.05),而增施猪粪和牛粪处理(PCF和CCF)对土壤pH无显著影响。

2.2 施肥方式对植株钾含量及钾素动态吸收的影响

各施肥处理小麦籽粒和秸秆钾含量分别在3.2~4.4和5.5~14.4 g kg-1之间(表3)。与CK处理相比,CF处理可显著(p<0.05)增加小麦秸秆中钾含量,而对籽粒钾含量无显著影响(p>0.05);增施有机物料(SCF、PCF和CCF处理)可显著增加小麦籽粒和秸秆中钾素含量(p<0.05),其中CCF处理增幅最大。施肥方式对大豆籽粒和秸秆中钾素含量的影响与小麦相似;小麦和大豆地上部分吸钾量动态变化如图1所示。CK处理作物吸钾量逐年下降,而各施肥处理作物吸钾量均随产量的增加呈稳步上升的态势。整个试验期,CK、CF、SCF、PCF和CCF处理小麦和大豆地上部分多年平均吸钾量在8.3~104.4和13.8~59.6 kg-1hm-2a-1之间,作物吸钾量(小麦与大豆之和)分别为22.0、83.7、117.6、121.7和164.0 kg-1hm-2a-1。与CK处理相比,CF处理作物年均吸钾量增加了280.5%,SCF、PCF和CCF处理分别较CF处理提升40.5%、45.4%和95.9%,差异显著(p<0.05),其中SCF与PCF处理间无显著差异,CCF处理显著高于SCF与PCF处理(p<0.05)。

表2 不同施肥处理表层土壤(0~20 cm)理化性质Table 2 Physicochemical properties of the soil in the 0~20 cm soil layer relative to treatment

表3 不同施肥处理作物籽粒和秸秆钾含量Table 3 Content of crop K in grain and straw relative to treatment(g kg-1)

图1 不同施肥处理小麦和大豆吸钾量动态变化Fig. 1 Dynamics of crop K uptake for wheat and soybean relative to treatment

2.3 施肥方式对作物钾素回收率的影响

图2 不同施肥处理小麦和大豆钾素回收率动态变化Fig. 2 Dynamics of crop K recovery rate for wheat and soybean relative to treatment

根据施肥处理每年作物地上部分的吸钾量,并以CK处理为对照,计算出不同施肥方式下作物钾肥回收率(图2)。总体而言,各施肥处理作物钾回收率随施肥年限的增加而逐渐升高,大豆回收率的增长幅度高于小麦。CF、SCF、PCF和 CCF处理小麦和大豆钾素回收率多年平均值分别在19.8%~23.0%和34.4%~44.8%,4种施肥处理钾素总回收率(小麦与大豆回收率之和)分别为55.1%、58.2%、62.2%和66.1%,以CCF处理最高,CF处理最低,呈现突出的CCF > PCF > SCF~CF,说明,长期增施猪粪或牛粪等农家厩肥可显著提升作物钾素回收率。

2.4 土壤速效钾演变及其对钾素投入的响应

除CK处理土壤速效钾含量逐年下降外,其余各施肥处理均有增加的趋势(图3),土壤速效钾含量变化范围为70.1~397.3 mg kg-1,其中CCF处理土壤速效钾含量增加速率最大,CF处理最小。CK、CF、SCF、PCF和CCF此5种施肥处理土壤速效钾含量多年平均值分别为72.3、82.4、128.4、133.0和289.5 mg kg-1。与CK处理相比,CF处理土壤速效钾含量显著增加(p<0.05),增加比例为13.9%,SCF、PCF和CCF处理土壤速效钾含量分别较CF处理增加55.8%、61.4%和251.3%,差异显著(p<0.05),而SCF与PCF处理间无显著差异(p>0.05)。土壤速效钾与外源钾累积投入之间的线性回归分析表明,4种施肥处理(CF、SCF、PCF和CCF)土壤速效钾含量均随着外源钾素投入量的增加而增大,但增长幅度有一定差异(图4)。即每投入外源钾100 kg hm-2,CF、SCF、PCF和CCF处理土壤速效钾含量分别增加0.37、0.54、0.62和4.27 mg kg-1,增加幅度的顺序为CCF> PCF > SCF > CF,其中,增施秸秆和猪粪处理(SCF和PCF)分别较CF处理增加45%和67%,而增施牛粪处理(CCF)增长幅度约为CF处理的10倍。

图3 不同施肥处理土壤速效钾含量的动态变化Fig. 3 Dynamics of content of soil readily available K relative to treatment

2.5 土壤钾累积盈亏量与速效钾增量的关系

土壤速效钾的变化量与土壤钾素累积盈亏量的响应关系如图5所示,各处理土壤速效钾增量与土壤钾素累积盈亏均呈极显著的直线正相关性,这表明土壤速效钾的消长与钾盈亏呈正相关。CK处理,土壤中钾素每耗竭100 kg hm-2,土壤速效钾含量减少0.64 mg kg-1;而其余4种施肥处理,土壤钾素每盈余100 kg hm-2,CF、SCF、PCF和CCF处理土壤速效钾含量分别增加1.4、1.8、2.3和15.8 mg kg-1,增加幅度为CCF>PCF>SCF>CF,其中,增施秸秆和猪粪处理(SCF和PCF)分别较常规CF处理增加31%和63.8%,而增施牛粪处理(CCF)增长幅度约为CF处理的10倍,这与土壤速效钾含量和外源钾累积投入量的响应关系相似。

图4 土壤速效钾含量与累积外源钾投入量的响应关系Fig. 4 Relationship between content of soil readily available K and cumulative K input

3 讨 论

3.1 施肥方式影响作物钾素回收率的机理

砂姜黑土29 a长期定位试验研究表明,小麦—大豆轮作制度下长期施肥处理作物钾素回收率多年平均值为55%~66%,高于全国钾肥平均利用率35%~50%[21],这主要与本试验点大豆生长期不施用钾肥有关。由于本试验年限较长和人员更替频繁等因素,无法获取每一年度植株钾及有机物料(麦秆、猪粪和牛粪)钾的含量。为估算不同施肥方式下作物钾素吸收量和外源钾素投入量,本文用某一年所测定的植株钾或有机肥养分提供的有机物料钾含量进行计算,会对年度土壤钾素收支平衡及作物钾素回收率的计算产生一定误差;肥料的施用对作物钾素利用率的影响会因肥料的总类、施肥量的不同而差异显著,因施肥方式会直接影响养分的输入量,从而影响作物产量和养分吸收量。本研究中,长期增施有机肥(秸秆、猪粪和牛粪)对作物钾素回收率有显著的提升作用,这与前人的研究结果基本一致[22],主要因长期增施秸秆、猪粪和牛粪等物料增加了土壤外源氮磷钾养分的投入,尤其是氮素投入量的增加显著提高了作物产量和土壤肥力,因而,长期增施有机肥处理作物钾素吸收量和钾素回收率高于常规化肥处理。此外,增施牛粪、猪粪和麦秆处理间作物钾素回收率也有一定差异,且牛粪的效果优于猪粪和麦秆,这主要与牛粪处理外源钾素投入量及作物产量较高有关。施肥方式还可通过影响土壤有机质含量,影响肥料利用效率[23-24],鲁艳红等[25]研究表明,土壤有机质利于作物产量和养分吸收量的提升,降低作物对肥料的依赖,提高肥料利用效率,主要因有机质可加强土壤对养分的固持固定能力,提高其缓冲性能和持久性[26-27]。有机质可通过酸化、配位交换及还原作用溶解和转化一些难溶性矿物,促进水溶性钾和交换性钾的形成,促进土壤钾素活化和增强钾素的有效性[28-29]。因此,长期增施有机肥提高土壤有机质含量,进而增加作物对钾素的吸收,可能是本研究作物钾素回收率显著高于常规化肥处理的另一重要原因。本研究仅从有机质对土壤钾素活化和增强钾素保持能力的角度阐释增施有机肥对作物钾肥回收率的影响,具有一定的局限性,今后应加强不同施肥方式下土壤供钾特性(如容量、强度、形态)与作物钾素回收率的定量耦合关系研究,进而明确外源有机物料对作物钾肥利用率的作用机制。

图5 土壤速效钾含量与土壤钾累积盈亏量的响应关系Fig. 5 Relationship between content of soil readily available K and soil K budgeting

3.2 施肥方式影响钾素盈亏及速效钾变化的机理

施肥方式通过影响外源钾的输入状况(数量和质量)和土壤—作物系统钾素的收支平衡,进而影响土壤钾素的盈亏状况与有效性[30-31],本研究各施肥处理外源钾累积投入量、钾素累积盈亏量与土壤速效钾含量的线性关系进一步例证了这一现象。常规化肥处理每投入外源钾100 kg hm-2,土壤速效钾含量增加0.4 mg kg-1(图4);土壤累积钾素每盈余100 kg hm-2,土壤速效钾增量为1.4 mg kg-1,而增施麦秆、猪粪和牛粪处理土壤速效钾含量的变化幅度均显著高于常规化肥处理(图5),这说明增施有机肥(麦秆、猪粪和牛粪)在提升土壤速效钾的供应能力方面较常规化肥更有优势,其原因可能是长期增施有机物料增加了外源钾素的投入量,同时增强了土壤中钾素的有效性,使得土壤中其他形态的钾更易向土壤速效钾转化[32]。相关研究表明,长期施用有机肥可提高土壤矿物各吸附点位钾的含量与有效性,增加土壤中有机复合体中的交换性钾、非交换性钾含量及非交换性钾的释放能力,促进钾素的释放和其他形态的钾素向土壤速效钾的转化[33-34]。长期施用有机肥还可通过提高作物吸钾量促进土壤非交换性钾向速效钾的释放[35]。进一步分析表明,长期增施牛粪、猪粪和麦秆处理土壤盈余的钾素向速效钾的转化能力有显著差异,且增施牛粪的效果显著优于猪粪和麦秆,这与投入有机物料中钾素含量和作物吸钾量有关,还与投入外源有机物料的数量和有机物料本身的特性有关。本试验点前期研究表明,增施牛粪处理外源有机物料养分投入量较高,使其土壤肥力水平相对较高(表2),同时微生物性状(酶活性、微生物群落结构多样性)均得以大幅提升[18],从而促进土壤钾等营养物质的循环过程。

总之,施肥方式能显著改变土壤中盈余的钾素向速效钾转化,长期增施有机肥可提高这种转化能力,利于土壤钾素养分的保持和利用。在本试验条件下,增施牛粪效果最好,猪粪和秸秆次之,说明投入有机物料是影响砂姜黑土农田土壤钾素高效利用的重要措施,在外源钾素投入量和土壤钾累积盈亏量相同的情况下,适量增施牛粪、猪粪和秸秆等有机物料可提高土壤速效钾含量并实现钾肥的高效利用,其中以秸秆过腹还田的牛粪效果最好,是砂姜黑土区小麦—大豆轮作体系下实现土壤钾素高效利用的一种优化施钾方式。

4 结 论

投入有机物料是影响土壤钾素利用及盈亏的重要调控措施,在外源钾素投入量和土壤钾累积盈亏量相同的情况下,长期增施有机物料可提高土壤速效钾含量的增幅,促进土壤钾素向速效钾的转化。本试验条件下,增施牛粪效果最好,猪粪和秸秆次之。因此,砂姜黑土冬小麦—夏大豆轮作系统下秸秆养畜过腹还田是实现作物高产高效的一种推荐施钾方式。

[1] Pettigrew W T. Potassium influences on yield and quality production for maize,wheat,soybean and cotton. Physiologia Plantarum,2008,133( 4 ):670—681

[2] Cong R H,Li H,Zhang Z,et al. Evaluate regional potassium fertilization strategy of winter oilseed rape under intensive cropping systems:Large-scale field experiment analysis. Field Crops Research,2016,193:34—42

[3] Dong H Z,Kong X Q,Li W J,et al. Effects of plant density and nitrogen and potassium fertilization on cotton yield and uptake of major nutrients in two fields with varying fertility. Field Crops Research,2010,119(1):106—113

[4] Moterle D F,Kaminski J,dos Santos Rheinheimer D,et al. Impact of potassium fertilization and potassium uptake by plants on soil clay mineral assemblage in South Brazil. Plant and Soil,2016,406(1/2):157—172

[5] 范钦桢,谢建昌. 长期肥料定位试验中土壤钾素肥力的演变. 土壤学报,2005,42(4):591—599

Fan Q Z,Xie J C. Variation of potassium fertility in soil in the long-term fertilizer experiment(In Chinese). Acta Pedologica Sinica,2005,42(4):591—599

[6] 葛玮健,常艳丽,刘俊梅. 塿土区长期施肥对小麦–玉米轮作体系钾素平衡与钾库容量的影响. 植物营养与肥料学报,2012,18(3):629—636

Ge W J,Chang Y L,Liu J M. Potassium balance and pool as influenced by long-term fertilization under continuous winter wheat summer maize cropping system in a manual loess soil(In Chinese). Plant Nutrition and Fertilizer Science,2012,18(3):629—636

[7] 徐晓燕,马毅杰,张瑞平. 土壤中钾的转化及其与外源钾的相互关系的研究进展. 土壤通报,2003,34(5):489—492

Xu X Y,Ma Y J,Zhang R P. Research progress in transformation of soil potassium in relation to potash application(In Chinese). Chinese Journal of Soil Science,2003,34(5):489—492

[8] Cox A E,Joern B C,Brouder S M,et al. Plantavailable potassium assessment with a modified sodium tetraphenylboron method. Soil Science Society of America Journal,1999,63(4):902—911

[9] Bhattacharyya R,Prakash V,Kundu S,et al. Potassium balance as influenced by farmyard manure application under continuous soybean–wheat cropping system in a typic Haplaquept. Geoderma,2006,137(1/2):155—160

[10] He C,Ouyang Z,Tian Z,et al. Yield and potassium balance in a wheat-maize cropping system of the North China Plain. Agronomy Journal,2012,104(4):1016—1022

[11] Mallarino A P,Higashi S L. Assessment of potassium supply for corn by analysis of plant parts. Soil Science Society of America Journal,2009,73(6):2177—2183

[12] Simonsson M,Hillier S,Öborn I. Changes in clay minerals and potassium fixation capacity as a result of release and fixation of potassium in long-term field experiments. Geoderma,2009,151(3):109—120

[13] Qiu S J,Xie J G,Zhao S C,et al. Long–term effects of potassium fertilization on yield,efficiency,and soil fertility status in a rain-fed maize system in northeast China. Field Crops Research,2014,163:1—9

[14] 张水清,杨莉,黄绍敏,等. 长期施肥下潮土速效钾含量与钾素投入水平关系. 植物营养与肥料学报,2014,20(3):773—777

Zhang S Q,Yang L,Huang S M,et al. Relationship between available K content and K input levels in fluvoaquic soil under long term fertilization(In Chinese). Journal of Plant Nutrition and Fertilizer,2014,20(3):773—777

[15] 王道中,花可可,郭志彬,等. 长期施肥对砂姜黑土作物产量及土壤物理性质的影响. 中国农业科学,2015,48(23):4781—4789

Wang D Z,Hua K K,Guo Z B,et al. Effects of long-term fertilization on crop yield and soil physical properties in lime concretion black soil(In Chinese). Scientia Agricultura Sinica,2015,48(23):4781—4789

[16] Hua K K,Wang D Z,Guo X S,et al. Carbon sequestration efficiency of organic amendments in a long-term experiment on a Vertisol in Huang-Huai-Hai Plain,China. PLoS One,2014,9(9):e108594

[17] Hua K K,Zhang W J,Guo Z B,et al. Evaluating crop response and environmental impact of the accumulation of phosphorus due to long-term manuring of vertisol soil in northern China.Agriculture,Ecosystems and Environment,2016,109:101—110

[18] Sun R B,Zhang X X,Guo X S,et al. Bacterial diversity in soils subjected to long-term chemical fertilization can be more stably maintained with the addition of livestock manure than wheat straw. Soil Biology & Biochemistry,2015,88:9—18

[19] 全国农业技术推广服务中心. 中国有机肥料养分志. 北京:中国农业科技出版社,1994

National Center for Agricultural Technology Service. Chinese organic fertilizer handbook(In Chinese). Beijing:China Agricultural Science and Technology Press,1994

[20] 鲁如坤. 土壤农业化学分析方法. 北京:中国农业科技出版社,2000

Lu R K. Analytical methods for soil and agro-chemistry(In Chinese). Beijing:China Agricultural Science and Technology Press,2000

[21] 张福锁,王激清,张卫峰,等. 中国主要粮食作物肥料利用率现状与提高途径. 土壤学报,2008,45(5):915—924

Zhang F S,Wang J Q,Zhang W F,et al. Nutrient use efficiencies of major cereal crops in China and measures for improvement(In Chinese). Acta Pedologica Sinica,2008,45(5):915—924

[22] Zhang H M,Yang X Y,He X H,et al. Effect of long-term potassium fertilization on crop yield and K efficiency and balance under wheat-maize rotation in China. Pedosphere,2011,21(2):154—163

[23] Niu J F,Zhang W F,Ru S H,et al. Effects of potassium fertilization on winter wheat under different production practices in the North China Plain. Field Crops Research,2013,140:69—76

[24] Scanlan C A,Bell R W,Brennan R F. Simulating wheat growth response to potassium availability under field conditions in sandy soils. II. Effect of subsurface potassium on grain yield response to potassium fertilizer. Field Crops Research,2015,178:125—134

[25] 鲁艳红,廖育林,周兴,等. 长期不同施肥对红壤性水稻土产量及基础地力的影响. 土壤学报,2015,52(3):597—606

Lu Y H,Liao Y L,Zhou X,et al. Effect of long-term fertilization on rice yield and basic soil productivity in red paddy soil under double-rice system(In Chinese). Acta Pedologica Sinica,2015,52(3):597—606

[26] Garcia R A,Crusciol C A,Calonego J C,et al. Potassium cycling in a corn-brachiaria cropping system. European Journal of Agronomy,2008,28(4):579—585

[27] Heckman J R,Kamprath E J. Potassium accumulation and corn yield related to potassium fertilizer rate and placement. Soil Science Society of America Journal,1992,56(1):141—148

[28] Guo T R,Zhang G P,Zhou M X,et al. Influence of aluminum and cadmium stresses on mineral nutrition and root exudates in two barley cultivars. Pedosphere,2007,17(4):505—512

[29] Tan K H. The release of silicon,aluminum,and potassium during decomposition of soil minerals by humic acid. Soil Science,1980,129(1):5—10

[30] 王西和,吕金岭,刘 骅. 灰漠土小麦-玉米-棉花轮作体系钾平衡与钾肥利用率. 土壤学报,2016,53(1):214—223

Wang X H,Lü J L,Liu H. Potassium balance and use efficiency in grey desert soil under continuous wheatmaize-cotton crop rotation system(In Chinese). Acta Pedologica Sinica,2016,53(1):214—223

[31] 胡敏,任涛,廖世鹏,等. 不同含钾物料对土壤钾素含量动态变化影响. 土壤,2016,48(1):48—52

Hu M,Ren T,Liao S P,et al. Effects of K-bearing materials on dynamic changes of soil K contents(In Chinese). Soils,2016,48(1):48—52

[32] 何冰,薛刚,张小全,等. 有机酸对土壤钾素活化过程的化学分析. 土壤,2015,47(1):74—79

He B,Xue G,Zhang X Q,et al. Analysis on chemical mechanism of potassium release process from soil as influenced by organic acid(In Chinese). Soils,2015,47(1):74—79

[33] 李娜,韩晓日,杨劲峰,等. 长期施肥对棕壤矿物吸附点位钾有效性及其剖面分布的影响. 植物营养与肥料学报,2012,18(6):1412—1417

Li N,Han X R,Yang J F,et al. Effects of longterm fertilization on the availability of K adsorbed by clay minerals and profile distribution in brown soil(In Chinese).Plant Nutrition and Fertilizer Science,2012,18(6):1412—1417

[34] 岳龙凯,蔡泽江,徐明岗,等. 长期施肥红壤钾有效性研究. 植物营养与肥料学报,2015,21(6):1543—1550

Yue L K,Cai Z J,Xu M G,et al. Potassium availability in red soil under long-term fertilization(In Chinese). Plant Nutrition and Fertilizer Science,2015,21(6):1543—1550

[35] Benbi D K,Biswas C R. Nutrient budgeting for phosphorus and potassium in a long-term fertilizer trial. Nutrient Cycling in Agroecosystems,1999,54(2):125—132

Effects of Long-term Fertilization on Soil Potassium Utilization and Budgeting in Vertisol Relative to Application Method

HUA Keke1WANG Daozhong1†GUO Zhibin1LI Congcong2
(1 Soil and Fertilizer Research Institute,Anhui Academy of Agricultural Sciences,Hefei 230031,China)
(2 Party Committee for the Organs,Anhui Academy of Agricultural Sciences,Hefei 230031,China)

【Objective】 Soil potassium is an essential macronutrient for crop growth and plays a key role in maintaining high crop yield. However,so far it is still unclear as to dynamics of soil potassium utilization,especially quantitative relationships of content of soil readily available K with input of extraneous and budgeting of cumulative soil potassium relative to fertilization method. Therefore,this study was oriented to analyze dynamics of crop K uptake,crop K recovery rate,soil K budgeting and content of soil readily available K and to explore quantitatively relationships of soil readily available K with input of extraneous K and budgeting of cumulative soil K relative to fertilization practice based on a long-term fertilization field experiment in a field of vertisol in North China.【Method】The long-term experiment,located at the Mengchen Agro-Ecological-Station in the Huang-Huai-Hai Plain,North China,was initiated in 1982 and designed to have five treatments,i.e.,CK(no fertilizer),CF(mineral fertilizers),SCF(mineral fertilizers plus wheat straw),PCF(mineral fertilizers plus pig manure),and CCF(mineral fertilizers plus cattle manure),and four replicates for each. Plots,70 m2each in area,of the treatments and replicates were laid out in a randomized block design and separated from each other with cement boards embedded 50 cm deep. Soil samples were collected randomly from the top 20 cm soil layer of each plot along a S-shaped line,after the crop of soybean was harvested in October each year,with a soil core sampler(inner diameter 7 cm). Chemical N,P and K fertilizer was applied in the form of urea,calcium superphosphate and potassium chloride,respectively,at a rate the same as the local farmers did,i.e.,180 kg N,39.3 kg P,and 112 kg K hm-2yr-1. Soil total K was measured with the sodium hydroxide melting-flame photometry,soil slowly available K with the nitric acid boiling-flame photometry,soil readily available K with the ammonium acetate extraction-flame photometry and crop K with the vitriol peroxide/hydroxidation-flame photometry. 【Result】 It was found that the mean crop K recovery rate varied in the range of 55.1%~66.1%,relative to treatment and displaying an order of CCF > PCF > SCF > CF. The content of soil readily available K increased somewhat in all the treatments except in CK,where the content declined steadily over time. The over-year mean content of soil readily available K exhibited an order of CCF(289.5 mg kg-1)> PCF(133.0 mg kg-1)> SCF(128.4 mg kg-1)> CF(82.4 mg kg-1)> CK(72.3 mg kg-1). On the whole,a significant(p<0.05)positive linear relationship was observed between soil K budgeting and content of soil readily available K. Thegain of each 100 kg hm-2in soil K budgeting raised the content of soil readily available K in Treatment CF,SCF,PCF,and CCF by 1.4 mg kg-1,1.8 mg kg-1,2.3 mg kg-1and 15.8 mg kg-1,respectively. Besides,a significant(p<0.05)positive linear relationships between input of soil K and content of soil readily available K was also observed in all the fertilization treatments. The input of each 100 kg hm-2increased the content of soil readily available K by 0.4 mg kg-1,0.5 mg kg-1,0.6 mg kg-1and 4.3 mg kg-1in Treatment CF,SCF,PCF,and CCF,respectively. Compared to the increase in Treatment CF,that in the treatment amended with organic material(wheat straw,pig manure or cattle manure),that is,Treatment SCF,PCF and CCF was 25%,50% and 975% higher,respectively,which indicates that application of a proper rate of organic material may improve soil K supply capacity in soils the same in input of extraneous K and soil K budgeting.【Conclusion】To sum up,application of organic material is an important practice regulating soil potassium utilization. Long term application of organic manure,especially cattle manure in the study,may increase crop potassium recovery rate and transformation rate of surplus soil K into readily available K. Therefore,the application of animal-digested crop straw is a recommended practice to achieve stable and high crop yields in fields of vertical under wheat-soybean cropping system in North China.

Long-term fertilization;Organic amendments;Potassium recovery rate;Soil potassium budget;Soil available potassium

S153

A

(责任编辑:陈荣府)

10.11766/trxb201610240426

* 国家自然科学基金项目(41401331)、安徽省农业科学院学科建设项目(15A1013)和安徽省养分循环重点实验室项目(1606c08231)资助 Supported by the National Natural Science Foundation of China(No. 41401331),Programs of the Anhui Academy of Agricultural Science(No. 15A1013),and Project of the Key Laboratory of Nutrient Recycling,Resources and Environment Performance Evaluation of Anhui Province(No. 1606c08231)

† 通讯作者 Corresponding author,E-mail:wdzhong-3@163.com

花可可(1983—),男,博士,助理研究员,主要从事长期施肥下土壤肥力与养分循环研究。E-mail:huakeke1220@126.com

2016-10-24;

2017-02-15;优先数字出版日期(www.cnki.net):2017-03-24

猜你喜欢

钾素猪粪牛粪
不同贮存方式对猪粪水理化特性的影响
石牛粪金
猪粪配施化肥对侵蚀林地土壤团聚体及其有机碳分布的影响
丢失的牛粪
猪粪变有机肥一年卖了3个亿
屎壳郎大战牛粪
野保糗事之捡牛粪
施钾对西洋参钾素含量与积累的影响
猪粪中添加腐殖酸添加剂可降低粪便中的臭气
长期定位施肥对夏玉米钾素吸收及土壤钾素动态变化的影响