APP下载

竖向压力和剪切速率对小麦直剪强度及剪胀特性的影响

2017-04-24蒋敏敏郭祝辉

农业工程学报 2017年6期
关键词:粮堆剪应力剪切

蒋敏敏,郭祝辉



竖向压力和剪切速率对小麦直剪强度及剪胀特性的影响

蒋敏敏,郭祝辉

(1. 河南工业大学土木建筑学院,郑州 450001;2. 粮食储运国家工程实验室,郑州 450001)

为了得出粮仓设计中粮堆强度和剪胀特性等关键指标,通过直剪试验研究粮堆剪切破坏面上,在竖向压力50~300 kPa、剪切速率0.78~2.33 mm/min条件下,小麦粮堆单元体的强度和剪胀特性。结果表明:小麦粮堆单元体剪切分为弹性、塑性变形和籽粒压缩3个阶段。小麦粮堆单元体抗剪强度符合莫尔库伦强度准则,剪切速率从0.78 mm/min增大至2.33 mm/min,咬合应力从7.5 kPa增大至12.9 kPa,内摩擦角从38.2°变化为35.0°,剪胀角介于5.1°~4.8°之间。弹性阶段发生剪缩,最大剪缩体变小于0.4%;塑性变形阶段发生剪胀,最大剪胀体变大于最大剪缩体变,竖向压力越大最大剪胀体变越小,剪切速率越大随着压力的增大最大剪胀体变的变化越小。研究结果可用于粮仓内粮堆应力、变形的计算,为粮食仓储结构的设计提供依据。

粮食;剪切试验;剪切强度;小麦粮堆;剪胀

0 引 言

粮食仓储设施是保障粮食安全、关系国计民生的重要基础设施。粮仓内的粮堆在一定的周期后需要进行装粮和卸粮的作业,引起粮堆竖向压力和侧向压力的变化,产生相对滑移和剪切,进而作用于仓壁结构上[1-5],会对仓壁的受力产生重要影响,因此研究粮食的强度和剪胀特性对粮仓的安全具有重要意义[6-9]。

科研工作者对粮食籽粒的力学性质进行了大量研究,Sayyah等[10]通过试验得出了小麦籽粒的表观弹性模量、粒间接触应力、破坏应力,提出模量等力学指标受籽粒硬度的影响。Figueroa等[11]通过单轴压缩试验和应力松弛试验,研究了小麦籽粒的压缩变形、弹性特性和流变特性等问题。张克平等[12-17]针对储藏和加工等条件下,小麦籽粒受挤压的力学性质、破坏特性和摩擦特性进行了研究。在粮堆的力学性质方面,Moya等[18]通过压缩、直剪等试验,研究了不同种类粮堆的压缩性、抗剪强度、容重的规律。程绪铎等[19-20]通过直剪试验研究了小麦的内摩擦角,小麦与钢板壁、混凝土板壁之间的摩擦系数规律。许启铿等[21]提出小麦堆三轴压缩分四阶段,分析了小麦堆弹性模量随剪切变形和围压的变化规律。陈家豪等[22]根据小麦三轴应力应变关系曲线,推导出小麦堆压缩模量的数学表达式,提出了不同阶段压缩模量的特性。曾长女等[23-24]通过小麦堆三轴压缩试验,研究了含水率和孔隙率对强度参数的影响。现有的关于粮食的试验研究中,单个颗粒的力学特性研究,难以反映粮仓内大体积粮堆的力学性能;而对于粮堆的强度和压缩等研究,主要为参数研究,缺乏对粮仓内粮堆单元体的强度和剪胀规律方面的研究。

本文通过小麦粮堆单元体直剪试验,模拟粮堆装卸料过程中,剪切面上单元体剪切过程,考虑一定籽粒可压缩特性,研究仓内粮堆抗剪强度和剪胀的规律,以期用于粮仓内粮食应力、变形的计算,为粮食仓储结构的设计提供依据。

1 材料与方法

直剪试验通常用于测试岩土体材料的力学性质[25-26],本研究中用于测试粮仓装卸料过程中粮堆的力学性质。考虑到小麦的平均粒径比砂土等材料的颗粒略大,研究中采用改进的全自动粮食直剪仪,如图1所示。直剪仪上、下剪切盒的总高度为20 mm,直径为100 mm,剪切盒直径与颗粒直径比值为22.2,满足散粒体材料直剪试验的规范要求。采用可编程控制器(PLC)和人机界面的伺服电机和压力传感器,保证直剪试验的均匀性、稳定性和精确性。上、下剪切盒之间的接触面处粘贴聚乙烯薄片,并用凡士林消除上下剪切盒之间的摩阻力。试验在恒定的竖向压力下,沿着上、下盒面剪切,直至产生较大的剪切位移,测量剪切过程中的剪切位移、应力和竖向变形量等参量。

a. 直剪试验仪器

a. Direct shear apparatus

b. 试样受力变形状态

b. Stress and deformation of sample

注:为试样高度,mm;为试样直径,mm。

Note:is the height of sample, mm;is the diameter of sample, mm .

图1 小麦粮堆直剪试验示意图

Fig.1 Schematic diagram of direct shear test of wheat heap

试验材料为河南小麦,品种为郑麦113,根据粮仓内储粮状态,试验中在直剪盒中装入248.2 g小麦试样,控制小麦的密度为0.79 g/cm3,小麦的含水率为10.9%,平均粒径为4.5 mm。

实际粮仓中,粮堆不同剪切破坏面上的上覆压力和剪切速率会不同,本文选择这2个影响因素,研究小麦粮堆直剪抗剪强度及剪胀特性。根据粮仓内粮堆压力的范围,选取试验竖向压力为50、100、150、200、250、300 kPa共6个等级。根据大体积粮堆破坏面上的剪切滑动速率,选取3种剪切速率为0.78、1.55、2.33 mm/min。小麦粮堆由小麦籽粒骨架和孔隙组成,粮仓内小麦堆视为松散介质材料,本文中应力均表示包含籽粒骨架和孔隙在内的整个面积上的平均应力[27]。试验最终剪位移与试样直径的比值约为0.2,剪切后试样面积减小约14%,针对直剪试验过程中剪切面积会逐渐减少的问题,进行了剪切面积修正,修正后的剪应力(kPa)为[28-29]

(1)

式中F为剪切面上的剪力,N;0为试样剪切面积,mm2;为试样直径,mm;为剪位移,mm。

2 小麦堆剪应力-剪胀-剪位移关系

不同剪切速率和竖向压力下小麦粮堆的剪应力-剪位移的关系曲线如图2所示,试验曲线为3次直剪试验的平均值。各次试验抗剪强度的变异系数CV为0.025,因此本文中试验结果均取平均值结果。从剪应力-剪位移试验结果可见,剪应力随着剪位移的增大初始时近似呈线性增大,随着剪位移增大,剪应力逐渐呈非线性增长,剪位移较大时,剪应力趋于稳定值或略有下降。

体积应变-剪位移的关系曲线如图3所示。体积应变ε=Δ/0(Δ为试样剪切体积变化量(mm3),0为竖向压力作用下压缩稳定后试样体积(mm3)),上下剪切盒径向为刚性边界,剪切过程中面积不变,剪胀仅受竖向变形影响,,通过试样盒上方的LVDT位移传感器测量(mm)。试样发生剪缩,体积应变为正值;试样发生剪胀,体积应变为负值。从体积应变-剪位移关系曲线可见,剪切初始阶段小麦堆产生一定的剪缩,随着剪位移增大产生急剧的剪胀,剪位移较大时试样发生一定的剪缩。

剪切体积变形主要为上下剪切盒之间剪切面附近的籽粒错动引起,在不同的应力和剪切位移条件下,小麦籽粒部分越过前方的籽粒往上抬升,部分落入前方的孔隙中,在宏观上引起体积膨胀或收缩,如示意图1b所示。剪切体积变形主要发生在剪切面附近的区域。与剪切体积变形不同,剪盒中所有的籽粒均会受到压应力,小麦籽粒单向压缩的最大变形ε在0.7%~1.0%之间[12],在三向压力作用下,粮堆会产生宏观体积压缩变形。剪切过程中剪切体积变形和籽粒压缩体积变形构成了粮堆的总体积变形。

根据小麦粮堆剪应力与剪位移关系、体积应变与剪位移关系结果,小麦粮堆剪切可分为3个阶段:1)弹性阶段:在该阶段剪应力随着剪位移近似呈线性增长关系,该过程中试样体积减小,发生剪缩。各组试验弹性阶段的最大剪位移介于0.2~0.6 mm,竖向压力越大弹性阶段变形范围越大,剪切速率对弹性变形的影响较小。该阶段由于粮堆的剪应力和剪位移较小,粮堆骨架处于弹性阶段,近似呈弹性变形。剪切过程中由于骨架发生压密、孔隙减小,粮堆发生剪缩。2)塑性变形阶段:该阶段剪应力随着剪位移呈非线性增长,粮堆体积随着剪位移的增大发生膨胀。该阶段由于粮堆骨架产生较大的塑性剪切变形,粮堆中的剪应力增大,粮堆骨架承担的剪应力逐渐趋于抗剪强度。各组试验塑性变形阶段的最大剪位移介于6.3~11.4 mm,该阶段剪位移较大,剪切面上小麦籽粒克服咬合作用和摩擦作用,产生相对位移,部分籽粒落入孔隙中,部分籽粒向上抬升,同时籽粒还会发生一定的弹性变形[12,15],其中籽粒抬升作用最显著,最终形成了小麦堆宏观上的体积膨胀。3)籽粒压缩阶段:剪位移大于6.3~11.4 mm时,该阶段小麦粮堆剪切变形量较大,小麦籽粒间的接触力逐渐增大,籽粒发生屈服[12,15],籽粒体积收缩,导致籽粒填入孔隙中,形成宏观上粮堆骨架体积发生收缩,该阶段剪应力随着剪位移的增大略有下降或保持稳定。

3 小麦粮堆强度和剪胀特性

3.1小麦粮堆强度特性

由小麦粮堆单元体剪应力与剪位移关系曲线可见,剪位移为10mm左右时,小麦粮堆剪应力出现峰值或趋于稳定值,该值取为抗剪强度。不同竖向压力(50、100、150、200、250、300 kPa)和不同水平向剪切速率下(0.78、1.55、2.33 mm/min)小麦粮堆的抗剪强度τ结果如图4所示。

结果表明,与无黏性土类似,小麦粮堆的抗剪强度τ主要包括剪胀和摩擦2个分量,抗剪强度符合莫尔库伦强度准则,可表示为

式中τ为抗剪强度,kPa;为竖向压力,kPa;为咬合应力,kPa;为峰值内摩擦角,(°)。

得出不同剪切速率下粮堆的咬合应力和平面应变峰值内摩擦角,如下表1所示。从试验结果可见:剪切速率对咬合应力影响最大,剪切速率从0.78增大至2.33 mm/min,咬合应力从7.5增大至12.9 kPa;而内摩擦角从38.2°变化为35.0°;剪胀角则介于5.1°~4.8°之间。

表1 小麦粮堆强度参数

3.2 小麦粮堆剪胀特性

从图3体积应变与剪位移关系曲线可见:在弹性阶段,随着剪位移的增大,小麦粮堆体积逐渐收缩,直至最大剪缩变形,此时体积应变为剪切全过程中最大的剪缩体变ε,为体积应变曲线的最低点。在塑性变形阶段,随着剪位移的增大,试样发生显著的剪胀,直至达到最大剪胀变形,此时体积应变为剪切全过程中最大的剪胀体变ε,为体积应变曲线的最高点。在籽粒压缩阶段,小麦籽粒发生屈服,粮堆体积再次发生一定程度的收缩。

小麦粮堆具有代表性的剪胀性指标有弹性阶段的最大剪缩体变ε和塑性变形阶段的最大剪胀体变ε。根据图3得出弹性阶段的最大剪缩体变ε总体小于0.4%,一般介于0.1%~0.2%之间,变化较小。塑性变形阶段的最大剪胀体变结果如图5所示。从试验结果可见,塑性变形阶段的最大剪胀体变ε通常大于最大剪缩体变ε。剪切速率为最小值0.78 mm/min时,竖向压力从50kPa变化到300 kPa,最大剪胀体变ε从−4.1%变化到−0.8%,表明上覆压力越大,最大剪胀体变越小,小麦粮堆的剪胀性越小,上覆压力较大会限制粮堆的剪胀变形。剪切速率越大,最大剪胀体变ε受竖向压力影响越小,剪切速率为最大值2.33 mm/min时,竖向压力从50 kPa变化到300 kPa,最大剪胀体变的变化较小,总体介于−2.2%~−1.5%之间,表明较大的剪切速率会限制最大剪胀体变的变化。

4 结 论

粮仓内粮堆的强度、剪胀等性质和参数是进行粮仓结构设计的重要方面。通过直剪试验分析和研究了小麦粮堆在竖向压力为50~300 kPa、剪切速率为0.78~2.33 mm/min时的强度和剪胀规律,得到以下结论:

1)小麦粮堆剪切变形分弹性、塑性变形和籽粒压缩3个阶段。

2)小麦粮堆抗剪强度包括剪胀分量和摩擦分量,符合莫尔库伦强度准则;剪切速率从0.78增大至2.33 mm/min,咬合应力从7.5增大至12.9 kPa,峰值内摩擦角从38.2°变化为35.0°,剪胀角介于5.1°~4.8°之间。

3)小麦粮堆在弹性阶段的最大剪缩体变较小,总体小于0.4%。在塑性变形阶段的最大剪胀体变通常远大于最大剪缩体变,竖向压力越大最大剪胀体变越小,剪切速率越大随着压力的增大最大剪胀体变的变化越小。

[1] Ayuga F, Guaita M, Aguado P J, et al. Discharge and the eccentricity of the hopper influence on the silo wall pressures[J]. Journal of Engineering Mechanics, 2001, 127(10): 1067-1074.

[2] Ayuga F, Guaita M, Aguado P J. Static and dynamic silo loads using finite element models[J]. Journal of Agricultural Engineering Research, 2001, 78(3): 299-308.

[3] 程绪铎. 筒仓中粮食卸载动压力的研究与进展[J]. 粮食储藏,2008,37(5):20-24. Cheng Xuduo. Research and advance of dynamic pressure in silo during discharge[J]. Grain Storage, 2008, 37(5): 20-24. (in Chinese with English abstract)

[4] Cheng X, Zhang Q. A particular model for prediction vibration-induced loads in bulk solids storage bins[J]. Transactions of the ASABE, 2006, 49(3): 759-765.

[5] 李智峰,彭政,蒋亦民. 粮仓内颗粒压力的测量:Janssen行为及其偏差[J]. 物理学报,2014,63(10):292-299. Li Zhifeng, Peng Zheng, Jiang Yimin. Measurement of granular pressure in silo: Janssen behaviour and deviation[J]. Acta Phys Sin, 2014, 63(10): 292-299. (in Chinese with English abstract)

[6] Song C Y, Teng J G. Buckling of circular steel silos subject to code-specified eccentric discharge pressures[J]. Engineering Structure, 2003, 25(11): 1397-1417.

[7] Sadowski A J, Rotter J M. Study of buckling in steel silos under eccentric discharge flows of stored solids[J]. Journal of Engineering Mechanics, 2010, 136(6): 769-776.

[8] Sadowski A J, Rotter J M. Buckling in eccentrically discharged silos and the assumed pressure distribution[J]. Journal of Engineering Mechanics, 2013, 139(7): 858-867.

[9] Dogangun A, Karaca Z. Cause of damage and failures in silo structures[J]. Journal of Performance of Constructed Facilities, 2015, 23(2): 65-71.

[10] Sayyah A A H, Minaei S. Behavior of wheat kernels under quasi-static loading and its relation to grain hardness[J]. Journal of Agricultural Science and Technology, 2004, 6(1/2): 11-19.

[11] Figueroa J D C, Hernandez Z J E, Veles M J J, et al. Evaluation of degree of elasticity and other mechanical properties of wheat kernels[J]. Cereal Chemistry, 2011, 88(1): 12-18.

[12] 张克平,黄建龙,杨敏,等. 冬小麦籽粒受挤压特性的有限元分析及试验验证[J]. 农业工程学报,2010,26(6):352-356. Zhang Keping, Huang Jianlong, Yang Min, et al. Finite element analysis and experimental verification of wheat grain under compression loads[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2010, 26(6): 352-356. (in Chinese with English abstract)

[13] 程绪铎,严晓婕,黄之斌. 储藏条件对大豆籽粒力学特性的影响[J]. 中国粮油学报,2014,29(2):67-71. Cheng Xuduo, Yan Xiaojie, Huang Zhibin. Effects of storage conditions on mechanical properties of soybean[J]. Journal of the Chinese Cereals and Oils Association, 2014, 29(2): 67-71. (in Chinese with English abstract)

[14] 周显青,张玉荣,褚洪强,等. 糙米机械破碎力学特性试验与分析[J]. 农业工程学报,2012,28(18):255-262. Zhou Xianqing, Zhang Yurong, Chu Hongqiang, et al. Experiment and analysis of mechanical properties of mechanical crushing brown rice[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(18): 255-262. (in Chinese with English abstract)

[15] 丁林峰,李耀明,徐立章. 稻谷压缩试验的接触力学分析[J].农机化研究,2007(12):112-115. Ding Linfeng, Li Yaoming, Xu Lizhang. Research and analysis in the compressing experimentation about corn with contact mechanicals[J]. Journal of Agricultural Mechanization Research, 2007(12): 112-115. (in Chinese with English abstract)

[16] 严晓婕,程绪铎,冯家畅. 稻谷籽粒的压缩特性与储藏压力关系的研究[J]. 中国粮油学报,2015,30(10):78-82.

Yan Xiaojie, Cheng Xuduo, Feng Jiachang. The experimental research on the relationship of compressional properties of paddy grains and storage pressure[J]. Journal of the Chinese Cereals and Oils Association, 2015, 30(10): 78-82. (in Chinese with English abstract)

[17] 杨作梅,孙静鑫,郭玉明. 不同含水率对谷子籽粒压缩力学性质与摩擦特性的影响[J]. 农业工程学报,2015,31(23):253-260.

Yang Zuomei, Sun Jingxin, Guo Yuming. Effect of moisture content on compression mechanical properties and frictional characteristics of millet grain[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(23): 253-260. (in Chinese with English abstract)

[18] Moya M, Ayuga F, Guaita M, et al. Mechanical properties of granular agricultural materials[J]. Transactions of the ASAE, 2002, 45(5): 1569-1577.

[19] 程绪铎,陆琳琳,石翠霞. 小麦摩擦特性的试验研究[J]. 中国粮油学报,2012,27(4):15-19. Cheng Xuduo, Lu Linlin, Shi Cuixia. The experimental research on friction properties of wheat[J]. Journal of the Chinese Cereals and Oils Association, 2012, 27(4): 15-19. (in Chinese with English abstract)

[20] Afzalinia1 S, Roberge M. Physical and mechanical properties of selected forage materials[J]. Canadian Biosystems Engineering, 2007, 49(2): 23-27.

[21] 许启铿,陈家豪,王录民. 小麦力学参数的三轴压缩试验研究[J]. 河南工业大学学报,2015,36(5):101-105. Xu Qikeng, Chen Jiahao, Wang Lumin. Mechanical properties of wheat in triaxial compression tests[J]. Journal of Henan University of Technology, 2015, 36(5): 101-105. (in Chinese with English abstract)

[22] 陈家豪,韩阳,任杰,等. 小麦堆压缩模量的三轴试验研究[J]. 河南工业大学学报,2016,37(1):23-28. Chen Jiahao, Han Yang, Ren Jie,et al. Research on triaxial tests on compression modulus of wheat piles[J]. Journal of Henan University of Technology, 2016, 37(1): 23-28. (in Chinese with English abstract)

[23] 曾长女,冯伟娜. 小麦强度特性的三轴试验研究[J]. 中国粮油学报,2015,30(5):96-101. Zeng Changnü, Feng Weina. Strength properties of wheat in triaxial tests[J]. Journal of the Chinese Cereals and Oils Association, 2015, 30(5): 96-101. (in Chinese with English abstract)

[24] 曾长女,于航. 基于线性接触模型的小麦三轴试验细观模拟[J]. 河南工业大学学报,2015,36(2):66-70.

Zeng Changnü, Yu Hang. Meso-simulation of triaxial test of wheat based on linear contact model[J]. Journal of Henan University of Technology, 2015, 36(2): 66-70. (in Chinese with English abstract)

[25] 蔡正银,茅加峰,傅华,等. NHRI-4000型高性能大接触面直剪仪的研制[J]. 岩土工程学报,2010,32(9):1319-1322. Cai Zhengyin, Mao Jiafeng, Fu Hua, et al. Development of NHRI-4000 high performance with large contact surface direct shear apparatus[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(9): 1319-1322. (in Chinese with English abstract)

[26] 徐肖峰,魏厚振,孟庆山. 直剪剪切速率对粗粒土强度与变形特性的影响[J]. 岩土工程学报,2013,35(4):728-733.

Xu Xiaofeng, Wei Houzhen, Meng Qingshan. Effects of shear rate on shear strength and deformation characteristics of coarse-grained soils in large-scale direct shear tests[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(4): 728-733. (in Chinese with English abstract)

[27] 邵龙潭,郭晓霞,郑国锋. 粒间应力、土骨架应力和有效应力[J]. 岩土工程学报,2015,37(8):1478-1483. Shao Longtan, Guo Xiaoxia, Zheng Guofeng. Intergranular stress, soil skeleton stress and effective stress[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(8): 1478-1483. (in Chinese with English abstract)

[28] 徐志伟,周国庆,刘志强,等. 直剪试验的面积校正方法及误差分析[J]. 中国矿业大学学报,2007,36(5):658-662. Xu Zhiwei , Zhou Guoqing , Liu Zhiqiang, et al. Correcting method and error analysis for sample area in direct shear test[J]. Journal of China University of Mining & Technology, 2007, 36(5): 658-662. (in Chinese with English abstract)

[29] 余凯,姚鑫,张永双,等. 基于面积和应力修正的直剪试验数据分析[J]. 岩石力学与工程学报,2014,33(1):118-124. Yu Kai, Yao Xin, Zhang Yongshuang, et al. Analysis of direct shear test data based on area and stress correction[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(1): 118-124. (in Chinese with English abstract)

[30] Simoni A, Houlsby G T. The direct shear strength and dilatancy of sand–gravel mixtures[J]. Geotechnical and Geological Engineering, 2006, 24(3): 523-549.

[31] 史旦达,周健,刘文白. 砂土直剪力学性状的非圆颗粒模拟与宏细观机理研究[J]. 岩土工程学报,2010,32(12):1557-1565. Shi Danda, Zhou Jian, Liu Wenbai. Exploring macro- and micro-scale responses of sand in direct shear tests by numerical simulations using non-circular particles[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(12): 1557-1565. (in Chinese with English abstract)

Effects of vertical pressure and shear velocity on direct shear strength and dilatancy properties of wheat

Jiang Minmin, Guo Zhuhui

(1.,,450001,; 2.,450001,)

Grain storage facility is an important infrastructure of guaranteeing food security and concerning people’s livelihood as well. Grain heap in bins will undergo filling and discharging process after a certain period. During the process, change of vertical and horizontal load will lead to generation of shear stress and slip band in heap, which then acts on grain bin wall, and will finally influence the stability of bin structure. Therefore, shear strength and dilatancy properties of wheat grain heap are important indicators in design of grain bins. A series of researches were conducted with Henan wheat (variety is Zhengmai 113) through direct shear tests on the strength and dilatancy characteristics under different vertical pressure and shear rate. According to grain heap parameters in bins, vertical pressure was set at 6 levels: 50, 100, 150, 200, 250 and 300 kPa; shear rate was set at 3 levels: 0.78, 1.55 and 2.33 mm/min. Direct shear test terminated at displacement-diameter ratio of about 0.2, and in the process, shear area decreased by 14%. By revising shear area, the research tried to improve the veracity of shear stress result. Research results revealed that, according to the relation between shear stress and shear displacement, volumetric strain and shear displacement, the shear deformation of wheat grain bulk could be divided into 3 stages: elastic stage, plastic deformation stage and kernel compression stage. In elastic stage, shear stress and shear displacement were small; grain skeleton was in elastic state, and with grain skeleton contracting, grain volume contracted as well; the relationship between shear stress and shear displacement was linear. In plastic deformation stage, large plastic deformation was generated in grain skeleton, and the relation between shear stress and shear displacement was nonlinear; as shear stress increased, huge plastic deformation occurred in grain skeleton, and grain was upraised on shear band, which thus led to the volume expansion. In kernel compression stage, grain kernel was compressed and volume contracted to a certain extent, and as the shear displacement rose, shear strength kept stable or decreased slightly. Wheat heap shear strength included 2 components: dilatancy and frication. Shear strength of wheat grain stack accorded with the Mohr-Coulomb strength principle. Results showed that shear rate influenced interlock stress, and as shear rate increased from 0.78 to 2.33 mm/min, interlock stress increased from 7.5 to 12.9 kPa, and internal friction angle varied from 38.2° to 35.0°, and dilatancy angle ranged from 5.1° to 4.8°. Volume of grain heap contracted in elastic stage, and the maximum contracted volumetric strain was less than 0.4%. Volume of grain heap dilated in plastic deformation stage, and the maximum dilated volumetric strain was generally greater than the maximum contracted volumetric strain. In plastic deformation stage, the maximum dilated volumetric strain decreased with the increase of vertical pressure, and the maximum volumetric strain rate decreased with the increase of the shear rate. This study provides a scientific basis for stress and strain calculation of grain heap and grain bin design.

grain; shear test; shear strength; wheat heap; dilatancy

10.11975/j.issn.1002-6819.2017.06.035

TS210

A

1002-6819(2017)-06-0275-06

2016-09-30

2017-02-13

国家自然科学基金项目(51408197);河南省科技攻关项目(162102210188);河南省属高校基本科研业务费专项资金(2015RCJH16)

蒋敏敏,男,江苏盐城人,博士,副教授,主要从事粮食仓储结构研究。郑州 河南工业大学土木建筑学院,450001。Email:jiangmmhaut@126.com

猜你喜欢

粮堆剪应力剪切
变截面波形钢腹板组合箱梁的剪应力计算分析
东天山中段晚古生代剪切带叠加特征及构造控矿作用
TC4钛合金扩散焊接头剪切疲劳性能研究
储料竖向压力对粮仓中小麦粮堆湿热传递的影响
储粮压力对玉米粮堆温度场影响的实验与模拟研究
考虑剪力滞效应影响的箱形梁弯曲剪应力分析
不锈钢管坯热扩孔用剪切环形状研究
温湿度对稻谷粮堆结露的影响及实仓结露预警
基于有限元的路面剪应力分析
Ⅱ型裂纹扩展与绝热剪切带传播的数值对比