APP下载

小麦粒重主效QTL近等基因系的构建和效应评价

2017-04-24孔忠新程瑞如张利伟卢济康黄玉龙马正强

麦类作物学报 2017年3期
关键词:粒重背景小麦

孔忠新,程瑞如,张利伟,卢济康,黄玉龙,虞 东,马正强

(南京农业大学农学院应用植物基因组学实验室,江苏南京 210095)

小麦粒重主效QTL近等基因系的构建和效应评价

孔忠新,程瑞如,张利伟,卢济康,黄玉龙,虞 东,马正强

(南京农业大学农学院应用植物基因组学实验室,江苏南京 210095)

粒重是影响小麦产量的主要因素之一。 QGw.nau-5A是一个从我国小麦骨干亲本南大2419中鉴定的粒重主效QTL。为评价该QTL不同等位基因对粒重的效应及在育种中的应用潜力,利用分子标记辅助选择技术,分别将南大2419和早洋麦的 QGw.nau-5A区段导入望水白和川麦42,构建了不同背景的近等基因系,并比较了不同背景下粒重QTL的效应。结果表明, QGw.nau-5A能在不同背景下显著提高小麦粒重,与轮回亲本相比,近等基因系的百粒重显著增加0.2~0.6 g。 QGw.nau-5A等位变异对粒重的贡献存在差异,与川麦42的等位变异相比,南大2419和早洋麦的等位变异均能增加粒重,但后者效应更大。

小麦;粒重; QGw.nau-5A;近等基因系;分子育种

小麦是我国最主要的粮食作物之一。在小麦育种中,高产一直是最主要的选育目标。小麦产量最终是由穗数、单穗粒数以及粒重决定。在高产栽培条件下,由于穗数和单穗粒数受到限制,粒重是影响产量的最主要因素,增加粒重成为提高小麦产量潜力的关键。近年来,不管是在中国还是其他国家,在新培育的品种中粒重都得到了显著的增加[1-3]。小麦粒重属于数量性状,是产量构成要素中受遗传特性影响最大的性状,广义遗传率高达59%~80%,同时粒重主要受加性效应基因控制,因而对粒重可以进行比较有效地遗传选择[4]。了解粒重的遗传基础可以帮助我们进一步提高小麦产量。

目前,对小麦粒重的研究主要集中在QTL定位及精细定位阶段。利用重组自交系、双单倍体及回交群体等不同定位群体,在小麦21条染色体上已经检测到超过100个控制粒重的QTL,其中15个QTL在多个种质中都能被检测到[5-18]。5A染色体上的Xmag1281-Xbarc56区间存在一个控制粒重的QTL,Jia等[17]在我国小麦骨干亲本南大2419中鉴定到该粒重主效QTL,该位点可以解释的表型变异达到30.5%。多个研究也表明5A染色体上的粒重QTL存在于多种种质中,效应较强,并且在多个环境下表现较稳定[13-14]。此外,通过关联分析在自然群体中也检测到了5A染色体上的粒重QTL[19-20]。在产量三因素中,粒重遗传力最高,所受环境影响相对于其他二者较小,但在实际生产中,即使是同一品种,在不同年份、不同环境条件下,千粒重也会出现较大差异。进一步验证粒重QTL的效应对育种实践非常关键。截至目前,利用导入系和近等基因系已经分别验证了粒重QTL QTgw.ipk-7D和 Qtgw-jic.6A的效应[21-22]。由于遗传背景高度一致并可最大限度降低遗传背景的干扰,近等基因系已经被广泛应用于不同QTL的验证和精细定位[23-25]。

在前期研究中,万洪深[26]利用中国小麦微核心种质群体进行了关联分析,发现5A染色体上的Xgwm415与粒重显著相关。在该位点鉴定了五种等位变异,其中,南大2419型和早洋麦型等位变异的粒重处于较高水平,但未对不同种质中的等位变异的效应进行验证和比较分析。本研究借助于分子标记辅助选择技术,培育望水白和川麦42背景的粒重QTL近等基因系,验证目标QTL对粒重的遗传效应,以期发掘优异等位变异,为利用分子标记辅助选择培育高产小麦品种提供可利用的信息。

1 材料与方法

1.1 供试材料

本研究所使用的材料包括Huang等[27]以南大2419×望水白重组自交系中携带 QGw.nau-5A的株系SSD035为供体构建的具有望水白背景的近等基因系;供体亲本南大2419和早洋麦;以及轮回亲本望水白和川麦42。

1.2 近等基因系的构建

针对 QGw.nau-5A,选取位于目标区段内的标记对4个亲本进行多态性筛选,选择在亲本间具有清晰多态的2对标记进行前景选择,同时从小麦21条染色体上分别随机选择7对标记对4个亲本进行多态性筛选,选择在亲本间具有清晰多态的SSR标记进行背景选择,并计算背景回复率。利用分子标记辅助选择将目标片段导入到受体亲本中,筛选目标区段杂合且背景回复率高的单株自交,在获得纯合近等基因系株系后,对各株系混合取样,提取DNA,利用目标区间标记和背景选择标记进一步检测背景回复率。背景回复率(RGC)=(1-n/m)× 100%(n:在中选回交单株与轮回亲本间检测到多态的标记数目;m:在供体亲本与轮回亲本间检测到多态的背景选择标记总数)。

1.3 试验设计和农艺性状调查

共设置5个田间试验,2015年在南京农业大学江浦试验基地、江苏淮安和安徽凤阳进行,2016年在南京农业大学江浦试验基地和江苏淮安进行。每个试验设置2个重复,每个重复内材料按完全随机排列种植。每个材料种植2行,每行播种25粒种子,行长1.5 m,宽25 cm。

在籽粒灌浆后期,每小区选择中间10株进行穗数(spike number,SN)、穗粒数(grain number,GN)、株高(plant height,PH)、穗长(spike length,SPL)、小穗数(spikelet number,SPN)和旗叶宽(flag leaf width,FLW)等农艺性状的调查,然后取平均值。株高测量从地上部至穗顶端,不包括芒;穗长为穗轴基部至顶端小穗的长度,不包括芒;小穗数包括不育小穗和可育小穗;旗叶宽选取旗叶最宽处测量。待籽粒成熟后,将从各小区收获的籽粒混合晒干,随机取样3次,每次数100粒,称重,将平均数作为该株系的百粒重(hundred grain weight,HGW)。

1.4 标记分析

采用改良的SDS法提取基因组DNA[28],用1%的琼脂糖凝胶电泳测定DNA浓度。PCR反应体系为12.5 μL,包括1 mmol·L-11×PCR buffer、0.1 mmol·L-1dNTPs、0.9~1.5 mmol·L-1MgCl2、0.2 μmol·L-1引物和0.5 UTaqDNA聚合酶。PCR扩增程序:94 ℃预变性5 min;94 ℃变性30 s,适温退火30 s,72 ℃延伸45 s,共35个循环;72 ℃延伸5 min。扩增产物在8%的非变性聚丙烯酰胺凝胶上电泳,银染,在凝胶成像仪上观察、照相。

1.5 数据分析

使用软件Excel以及SPSS v17.0进行数据分析。

2 结果与分析

2.1 QGw.nau-5A近等基因系的构建

根据Jia等[17]对小麦骨干亲本南大2419产量构成因子的QTL定位结果,以及万洪深[26]利用我国小麦微核心种质进行关联分析的结果,参考实验室前期构建的南大2419×望水白图谱[29],选择了 QGw.nau-5A区间内与粒重最相关的分子标记GWM415以及旁侧标记BARC56和BARC180对南大2419、望水白、川麦42和早洋麦进行多态性筛选。结果(表1、图1)发现,在目标区间,望水白与川麦42的单倍型一致;早洋麦和南大2419的单倍型与望水白和川麦42不同。据此,配制了南大2419×川麦42和早洋麦×川麦42组合,用于选育 QGw.nau-5A的近等基因系。

表1 4个亲本材料在目标QTL区间内标记位点上的多态性

Table 1 Marker polymorphisms detected in the target QTL intervals among four parents

标记Marker南大2419Nanda2419望水白Wangshuibai川麦42Chuanmai42早洋麦EarlyPremiumBARC560110GWM4150110BARC1800112

在每个标记位点上,南大2419的带型读为0,望水白的带型读为1,与二者不同的带型读为2。

For each locus,0 represents Nanda 2419 genotype,1 represents Wangshuibai,2 represent the genotypes different from Nanda 2419 and Wangshuibai.

M:分子量标准 pUC19/MspI;1:望水白;2:南大2419;3:川麦42;4:早洋麦;箭头指多态带位置。

M:Molecular size standard pUC19/MspI; 1:Wangshuibai; 2:Nanda 2419; 3:Chuanmai 42; 4:Early Premium; Arrows indicate the polymorphic bands.

图1 标记BARC56(A)、BARC180(B)和GWM415(C)在亲本中的多态性带型

Fig.1 Polymorphic patterns detected with markers BARC56(A),BARC180(B) and GWM415(C) in the parents

表2 近等基因系的背景回复率

Table 2 Recipient genome composition(RGC) for the NILs

杂交组合Cross回交世代Backcrossgeneration标记数Numberofmarkers背景回复率RGC/%SSD035×望水白 SSD035×WangshuibaiBC3F258100.0南大2419×川麦42 Nanda2419×Chuanmai42BC3F27890.4早洋麦×川麦42 EarlyPremium×Chuanmai42BC3F27892.2

在利用川麦42不断回交的过程中,采用 QGw.nau-5A区段的双侧分子标记BARC56和BARC180进行辅助筛选,同时用分布于全基因组的78对分子标记对材料进行背景选择,最终获得了相应QTL的近等基因系。各近等基因系的背景回复情况如表2所示,以早洋麦和南大2419为供体,川麦42背景的近等基因系背景回复率分别为90.4%和92.2%;望水白背景的近等基因系背景回复率达到100.0%。

2.2 QGw.nau-5A近等基因系的粒重效应评价

为了检测目标QTL对粒重的效应,在多个试验环境中对 QGw.nau-5A近等基因系进行评价。2015-2016两个年份中,与轮回亲本望水白相比,望水白背景的近等基因系百粒重显著增加,平均增加0.2~0.4 g,增幅为4.32%~9.11%(表3)。川麦42背景的近等基因系粒重与轮回亲本之间差异都达到了极显著水平,南大2419为供体的近等基因系百粒重平均增加4.24%,早洋麦为供体的近等基因系百粒重平均增加8.73%(表3)。这些结果表明,利用分子标记辅助选择将5A粒重优异等位变异导入到不同背景中,均可以显著提高受体品种的粒重。

2.3 QGw.nau-5A近等基因系的农艺性状评价

对 QGw.nau-5A近等基因系及轮回亲本的农艺性状进行调查分析发现,望水白背景的近等基因系在穗数、穗粒数、株高、穗长和小穗数5个性状上与望水白没有显著差异,但近等基因系旗叶宽显著高于轮回亲本;川麦42背景的近等基因系与轮回亲本相比,穗粒数显著降低,导入南大2419目标区段还导致了株高增加和穗长降低,导入早洋麦目标区段只引起穗长的降低(表4)。进一步分析了粒重与株高、穗粒数、穗数、小穗数、旗叶宽和穗长等农艺性状间的相关性,结果(表5)发现,粒重与旗叶宽和穗粒数呈极显著正相关,但粒重与旗叶宽的相关系数较大;粒重与株高和穗数呈极显著负相关,与穗长呈显著负相关,与小穗数没有显著相关性。

表3 近等基因系和轮回亲本的百粒重

Table 3 Hundred grain weight of the QTL NILs and their recurrent parents

近等基因系与轮回亲本NILsandtheirrecurrentparents2015凤阳Fengyang江浦Jiangpu淮安Huai’an2016江浦Jiangpu淮安Huai’an望水白Wangshuibai4.61±0.023.47±0.014.17±0.023.74±0.034.64±0.04A5.03±0.03∗∗3.70±0.02∗∗4.35±0.02∗∗4.02±0.04∗∗5.02±0.01∗∗川麦42Chuanmai424.79±0.045.02±0.045.42±0.055.29±0.015.35±0.02B5.20±0.05∗∗5.19±0.03∗∗5.88±0.04∗∗5.88±0.03∗∗5.99±0.05∗∗C4.89±0.02∗∗5.16±0.03∗∗5.64±0.05∗∗5.76±0.02∗∗5.53±0.08∗∗

*和**分别表示在0.05和0.01水平上差异显著;A:以南大2419为供体的望水白背景近等基因系;B和C分别为以早洋麦和南大2419为供体的川麦42背景近等基因系。下同。

* and ** indicate significant differences between the NILs and the recurrent parents at 0.05 and 0.01 levels,respectively; A:Wangshuibai background NIL carrying QGw.nau-5A allele from Nanda 2419;B and C:Chuanmai 42 background NILs carrying QGw.nau-5A allele from Early Premium and Nanda 2419,respectively.The same as in the following tables.

表4 近等基因系和轮回亲本农艺性状比较

Table 4 Agronomic trait of the QTL NILs compared with the recurrent parents

近等基因系与轮回亲本NILsandtheirrecurrentparents年份Year地点Location株高PH穗粒数GN穗数SN小穗数SPN旗叶宽FLW穗长SPL望水白2015南京Nanjing145.4±0.6-12.5±0.620.2±0.31.6±0.0212.9±0.1Wangshuibai凤阳Fengyang129.2±1.6-13.8±0.820.0±0.41.5±0.0212.7±0.2淮安Huai’an132.5±1.3-13.7±1.020.0±0.41.5±0.0213.5±0.22016南京Nanjing148.3±0.849.1±1.014.9±0.522.1±0.21.6±0.0313.2±0.2淮安Huai’an138.1±1.350.4±0.614.3±0.521.7±0.2-13.5±0.1A2015南京Nanjing143.4±0.7-12.2±0.620.9±0.41.8±0.03∗∗12.7±0.1凤阳Fengyang131.6±1.1-13.7±0.620.0±0.41.8±0.02∗∗12.5±0.2淮安Huai’an131.4±1.1-13.8±1.220.0±0.41.7±0.03∗∗13.0±0.22016南京Nanjing149.2±1.152.6±3.414.9±0.321.9±1.31.7±0.02∗∗13.6±0.8淮安Huai’an141.0±1.146.7±0.9∗∗14.6±0.622.0±0.2-13.2±0.1川麦422015南京Nanjing84.9±0.969.1±1.011.4±0.422.9±0.22.6±0.0312.6±0.1Chuanmai42凤阳Fengyang80.9±1.466.3±1.09.9±0.517.4±0.52.2±0.0410.9±0.2淮安Huai’an84.0±0.671.7±0.810.6±0.421.4±0.22.6±0.0313.0±0.22016南京Nanjing92.1±0.463.7±0.912.2±0.622.7±0.32.4±0.0113.3±0.2淮安Huai’an96.6±0.969.9±1.411.1±0.521.3±0.2-13.4±0.1B2015南京Nanjing84.6±0.666.5±0.7∗∗12.9±0.522.2±0.22.7±0.0312.9±0.2凤阳Fengyang83.2±1.463.2±1.2∗10.5±0.618.1±0.22.3±0.05∗10.8±0.1淮安Huai’an82.2±0.667.2±0.8∗∗11.3±0.422.4±0.32.6±0.0311.8±0.1∗∗2016南京Nanjing94.1±0.8∗60.6±1.2∗12.1±0.620.4±0.2∗∗2.5±0.0212.9±0.2∗淮安Huai’an91.1±1.464.8±1.1∗∗9.3±0.4∗20.7±0.2∗∗-12.3±0.1∗∗C2015南京Nanjing93.2±0.5∗∗66.3±1.2∗11.2±0.622.4±0.12.7±0.0411.6±0.1∗∗凤阳Fengyang85.8±0.7∗∗64.5±1.110.1±0.418.0±0.62.2±0.0711.1±0.1淮安Huai’an111.8±0.8∗∗67.2±0.8∗∗8.9±0.4∗∗21.4±0.22.6±0.0411.8±0.1∗∗2016南京Nanjing122.8±1.1∗∗56.0±1.4∗∗10.1±0.4∗∗22.1±0.42.5±0.0211.9±0.3∗∗淮安Huai’an99.3±1.3∗∗66.1±1.1∗11.1±0.521.6±0.2-12.5±0.2∗∗

表5 粒重与其他农艺性状之间的相关性

Table 5 Correlations of grain weight with other agronomic traits

性状 Trait穗粒数GN穗数SN株高PH小穗数SPN旗叶宽FLW穗长SPL百粒重HGW0.59∗∗-0.65∗∗-0.77∗∗0.160.82∗∗-0.46∗

3 讨 论

南大2419的 QGw.nau-5A区段导入望水白和川麦42两个背景中,都能显著增加粒重,效应稳定。在望水白背景中, QGw.nau-5A对粒重的最大增幅为9.11%;在川麦42背景中,粒重的最大增幅为8.88%,进一步验证了来自南大2419的粒重QTL的效应[17,27]。这些结果表明,南大2419的 QGw.nau-5A不受背景影响,在不同的背景中均能表现出增重效应,在育种改良中具有应用价值。同时,来自早洋麦的 QGw.nau-5A区段被导入川麦42背景后,也显著增加了近等基因系的百粒重,本试验验证了前期QTL定位的结果[8-9,13-14,17,19-20],证明 QGw.nau-5A对粒重具有真实效应。

对川麦42背景的近等基因系,来自早洋麦的 QGw.nau-5A区段被导入后,近等基因系百粒重显著增加,平均增幅为8.73%;来自南大2419的 QGw.nau-5A区段导入后,近等基因系百粒重也显著增加,平均增幅为4.24%。在相同的川麦42背景下,粒重的变化主要归因于导入区间的差异, QGw.nau-5A等位变异对粒重的贡献存在差异。与川麦42的等位变异相比,早洋麦和南大2419的等位变异均能增加粒重,但前者效应更大。Guo等[30]利用小麦微核心种质分析了 Ppd-D1基因5种单倍型的表型效应,发现I型单倍型促进开花的效应最大;以及Su等[31]对 TaGW2等位基因效应的研究,只有大小为167 bp的单倍型Hap-6A-A才能增加粒重。这也表明不同等位变异往往引起不同的表型效应,增加粒重的优异等位基因对于分子标记辅助选择育种和提高小麦产量是非常重要的。

本研究中,除粒重外,还对近等基因系和轮回亲本的其他6个农艺性状进行了调查。与轮回亲本相比, QGw.nau-5A近等基因系的农艺性状表现出一定差异,来源于南大2419的 QGw.nau-5A导入望水白后还引起了旗叶宽的变化;导入川麦42后引起株高的增加和穗长的降低;来源于早洋麦的 QGw.nau-5A导入川麦42后只引起穗长的降低。相关性分析表明,粒重与旗叶宽呈极显著正相关,而与株高、穗数和穗长间都存在显著负相关。但望水白株高和穗长都较大,川麦42旗叶宽度较大,这些背景特点可能影响近等基因系中这些农艺性状的表现。粒重和旗叶宽、株高、穗粒数和穗长等农艺性状是否受紧密连锁的基因控制或存在一因多效,还需要进一步的试验予以证明。有研究表明,在小麦和水稻中旗叶宽与粒重之间存在正相关[17,32-33]。 QGw.nau-5A来自南大2419,该QTL位于5A染色体的着丝粒处,是一个QTL热点区。本课题组利用南大2419 × 望水白重组自交系群体,在该区域定位到抗赤霉病、穗长、穗密度、旗叶宽、叶绿素含量、百粒重和有效穗数的QTL[17,34-35],Xue等[24]在该区间内精细定位了旗叶宽QTL TaFLW1。Huang等[9]在该区域定位到株高和产量的QTL。本研究中, QGw.nau-5A位于着丝粒区域,所覆盖的区间相对较大,可能存在一定的遗传累赘,这些连锁遗传的基因在不同的背景下导致了其他性状上的差异。随着小麦基因组序列的陆续公布,分子标记数量的增加为分子标记辅助选择提供了便利。进一步的回交或与其他品种杂交,并扩大筛选群体,将分子标记辅助选择与表型筛选相结合来打破这种连锁,可以筛选到更小导入区段的近等基因系,为小麦高产育种提供重要的材料。

[1] CALDERINI D F,DRECCER M F,SLAFER G A.Genetic improvement in wheat yield and associated traits.A re-examination of previous results and the latest trends [J].PlantBreeding, 1995,114(2):108.

[2] ZHOU Y,ZHU H Z,CAI S B,etal.Genetic improvement of grain yield and associated traits in the southern China winter wheat region:1949 to 2000 [J].Euphytica,2007,157(3):465.

[3] UNDERDAHL J L,MERGOUM M,RANSOM J K,etal.Agronomic traits improvement and associations in hard red spring wheat cultivars released in North Dakota from 1968 to 2006 [J].CropScience,2008,48(1):158.

[4] MCCARTNEY C A,SOMERS D J,HUMPHREYS D G,etal.Mapping quantitative trait loci controlling agronomic traits in the spring wheat cross RL4452 × 'AC Domain' [J].Genome,2005,48(5):870.

[5] 吴秋红,陈娇娇,陈永兴,等.燕大1817/北农6号重组自交系群体穗部性状的QTL定位[J].作物学报,2015,41(3):349.

WU Q H,CHEN J J,CHEN Y X,etal.Mapping quantitative trait loci related to spike traits using a RILs population of Yanda 1817 × Beinong 6 in wheat(TriticumaestivumL.)[J].ActaAgronomicaSinica,2015,41(3):349.

[6] 程啸天,萧 峰,丰宇凯,等.野生二粒小麦粒重QTLs位点分析[J].麦类作物学报,2014,34(3):298.

CHENG X T,XIAO F,FENG Y K,etal.Analysis on QTLs controlling grain weight inTriticumdicocoides[J].JournalofTriticeaeCrops,2014,34(3):298.

[7] 李文福,刘 宾,彭 涛,等.利用DH和IF2两个群体进行小麦粒重、粒型和硬度的QTL分析[J].中国农业科学,2012,45(17):3453.

LI W F,LIU B,PENG T,etal.Detection of QTL for kernel weight,grain size,and grain hardness in wheat using DH and immortalized F2population [J].ScientiaAgriculturaSinica,2012,45(17):3453.

[8] GROOS C,ROBERT N,BERVAS E,etal.Genetic analysis of grain protein-content,grain yield and thousand-kernel weight in bread wheat [J].TheoreticalandAppliedGenetics,2003,106(6):1032.

[9] HUANG X Q,CLOUTIER S,LYCAR L,etal.Molecular detection of QTLs for agronomic and quality traits in a doubled haploid population derived from two Canadian wheats(TriticumaestivumL.) [J].TheoreticalandAppliedGenetics,2006,113(4):762.

[10] QUARRIE S A,STEED A,CALESTANI C,etal.A high-density genetic map of hexaploid wheat(TriticumaestivumL.) from the cross Chinese Spring × SQ1 and its use to compare QTLs for grain yield across a range of environments [J].TheoreticalandAppliedGenetics,2005,110(5):865.

[11] KUMAR N,KULWAL P L,GAUR A,etal.QTL analysis for grain weight in common wheat [J].Euphytica,2006,151(2):135.

[12] KUMAR N,KULWAL P L,BALYAN H S,etal.QTL mapping for yield and yield contributing traits in two mapping populations of bread wheat [J].MolecularBreeding,2007,19:163.

[13] CUTHBERT J L,SOMERS D J,BRULErlé-Babel A L,etal.Molecular mapping of quantitative trait loci for yield and yield components in spring wheat(TriticumaestivumL.) [J].TheoreticalandAppliedGenetics,2008,117(4):595.

[14] SUN X Y,WU K,ZHAO Y,etal.QTL analysis of kernel shape and weight using recombinant inbred lines in wheat [J].Euphytica,2009,165(3):615.

[15] SUN X C,MARZA F,MA H X,etal.Mapping quantitative trait loci for quality factors in an inter class cross of US and Chinese wheat [J].TheoreticalandAppliedGenetics,2010,120(5):1041.

[16] RUSTGI S,SHAFQAT M N,KUMAR N,etal.Genetic dissection of yield and its component traits using high-density composite map of wheat chromosome 3A:Bridging gaps between QTLs and underlying genes [J].PloSOne,2013,8(7):e70526.

[17] JIA H Y,WAN H S,YANG S H,etal.Genetic dissection of yield-related traits in a recombinant inbred line population created using a key breeding parent in China's wheat breeding [J].TheoreticalandAppliedGenetics,2013,126(8):2123.

[18] XIE Q,MAYES S,SPARKES D L.Spelt as a genetic resource for yield component improvement in bread wheat [J].CropScience,2015,55:2761.

[19] BRESEGHELLO F,SORRELLS M E.Association mapping of kernel size and milling quality in wheat cultivars(TriticumaestivumL.) [J].Genetics,2006,172(172):1165.

[20] WANG L F,GE H M,HAO C Y,etal.Identifying loci influencing 1,000-kernel weight in wheat by microsatellite screening for evidence of selection during breeding [J].PloSOne,2012,7(2):e29432.

[21] RÖDER M S,HUANG X Q,BÖRNER A.Fine mapping of the region on wheat chromosome 7D controlling grain weight [J].Functional&IntergrativeGenomics,2008,8(1):79.

[22] SIMMONDS J,SCOTT P,LEVERINGTON-WAITE M,etal.Identification and independent validation of a stable yield and thousand grain weight QTL on chromosome 6A of hexaploid wheat(TriticumaestivumL.) [J].BMCPlantBiology,2014,14(1):191.

[23] 于春花,别同德,王 成,等.小麦Wx基因近等基因系的创制及其对直链淀粉含量、面条感官品质的影响[J].作物学报,2012,38(3):454.

YU C H,BIE T D,WANG C,etal.Development of near-isogenic lines with different wheatWxgenes and their effects on amylose content and noodle quality [J].ActaAgronomicaSinica,2012,38(3):454.

[24] XUE S L,XU F,LI G Q,etal.Fine mapping TaFLW1,a major QTL controlling flag leaf width in bread wheat(TriticumaestivumL.) [J].TheoreticalandAppliedGenetics,2013,126(8):1941.

[25] WU X Y,CHENG R R,XUE S L,etal.Precise mapping of a quantitative trait locus interval for spike length and grain weight in bread wheat(TriticumaestivumL.) [J].MolecularBreeding,2014,33(1):129.

[26] 万洪深.小麦骨干亲本南大2419产量相关基因组区段的定位及其等位变异的效应[D].南京:南京农业大学,2013:80.

WAN H S.Yield-related genomic regions of founder wheat parent Nanda 2419 and the effects of their allelic variations [D].Nanjing:Nanjing Agriculture University,2013:80.

[27] HUANG Y L,KONG Z X,WU X Y,etal.Characterization of three wheat grain weight QTLs that differentially affect kernel dimensions [J].TheoreticalandAppliedGenetics,2015,128(12):2439.

[28] MA Z Q,SORRELLS M E.Genetic analysis of fertility restoration in wheat using restriction fragment length polymorphisms [J].CropScience,1995,35(4):1138.

[29] XUE S L,ZHANG Z Z,LIN F,etal.A high-density intervarietal map of the wheat genome enriched with markers derived from expressed sequence tags [J].TheoreticalandAppliedGenetics,2008,117(2):181.

[30] GUO Z A,SONG Y X,ZHOU R H,etal.Discovery,evaluation and distribution of haplotypes of the wheat Ppd-D1 gene [J].NewPhytologist,2010,185(3):841.

[31] SU Z,HAO C,WANG L,etal.Identification and development of a functional marker of TaGW2 associated with grain weight in bread wheat(TriticumaestivumL.) [J].TheoreticalandAppliedGenetics,2011,122(1):211.

[32] CUI K H,PENG S B,XING Y Z,etal.Molecular dissection of the genetic relationships of source,sink and transport tissue with yield traits in rice [J].TheoreticalandAppliedGenetics,2003,106(4):649.

[33] WANG P,ZHOU G L,YU H H,etal.Fine mapping a major QTL for flag leaf size and yield-related traits in rice [J].TheoreticalandAppliedGenetics,2011,123(8):1319.

[34] LIN F,XUE S L,ZHANG Z Z,etal.Mapping QTL associated with resistance toFusariumhead blight in the Nanda 2419 x Wangshuibai population.II:Type I resistance [J].TheoreticalandAppliedGenetics,2006,112:528.

[35] MA Z Q,ZHAO D M,ZHANG C Q,etal.Molecular genetic analysis of five spike-related traits in wheat using RIL and immortalized F2populations [J].MolecularGeneticsandGenomics,2007,277(1):31.

Development and Evaluation of the Near-Isogenic Lines for a Major Grain Weight QTL in Wheat

KONG Zhongxin,CHENG Ruiru,ZHANG Liwei,LU Jikang,HUANG Yulong,YU Dong,MA Zhengqiang

(The Applied Plant Genomics Laboratory,College of Agriculture,Nanjing Agricultural University,Nanjing,Jiangsu 210095,China)

Grain weight,a quantitative trait controlled by multiple genes,is a major yield component in wheat. Understanding the genetic control of this trait could help to improve breeding efficiency for grain weight. QGw.nau-5A,a major quantitative trait locus(QTL) associated with grain weight,was previously identified in a recombinant inbred line mapping population derived from the cross between the Chinese elite cultivar Nanda 2419 and landrace Wangshuibai. To further evaluate the effects of different allelic variations in germplasm collection and in turn their breeding potential,in this study a number of near-isogenic lines(NILs) of QGw.nau-5A were developed through marker-assisted selection,with the Nanda 2419 and Early Premium(an American cultivar used widely as a founder parent in breeding) as donor parents,and Wangshuibai and cultivar Chuanmai 42 as the recurrent parents during backcrossing. The results showed that QGw.nau-5A indeed worked in different genetic backgrounds and different alleles contributed differently to grain weight. That is,the NILs carrying the alleles from Nanda 2419 and Early Premium constantly produced significantly larger grains(0.2-0.6 g per hundred grain) than the respective recurrent parents did:in the background of landrace Wangshuibai,the grain weight was increased by 9.11% while in the Chuanmai 42 background,introduction of Nanda 2419 and Early Premium alleles increased grain weight by 4.24% and 8.73%,respectively. The Nanda 2419 and Early Premium alleles therefore performed better than those of Chuanmai 42 and Wangshuibai.And the Early Premium allele performed better than that of Nanda 2419.

Wheat; Grain weight; QGw.nau-5A; Near-isogenic line; Marker-assisted selection

时间:2017-03-07

2016-11-23

2017-02-04

国家重点基础研究发展计划(973计划)子课题项目(2011CB100104);国家自然科学基金项目(31301308,31430064);江苏省自然科学基金项目(BK20130679)

E-mail:zhxkong@njau.edu.cn

S512.1;S330

A

1009-1041(2017)03-0312-07

网络出版地址:http://kns.cnki.net/kcms/detail/61.1359.S.20170307.1637.010.html

猜你喜欢

粒重背景小麦
主产区小麦收购进度过七成
“新四化”背景下汽车NVH的发展趋势
孔令让的“小麦育种梦”
叶面施肥实现小麦亩增产83.8千克
干热风对冬小麦不同穗粒位粒重的影响效应*
离体穗培养条件下C、N供给对小麦穗粒数、粒重及蛋白质含量的影响
《论持久战》的写作背景
黑洞背景知识
哭娃小麦
玉米自交系京92改良后代单穗粒重的杂种优势研究