APP下载

颅内动脉粥样硬化斑块高分辨率磁共振成像研究进展

2017-01-11

中国卒中杂志 2017年3期
关键词:管壁高分辨率硬化

颅内动脉粥样硬化是缺血性卒中的主要原因[1]。亚洲人群,特别是中国人动脉粥样硬化更易累及颅内动脉,尤其以大脑中动脉受累最常见[2]。脑缺血事件的发生主要取决于颅内动脉粥样硬化斑块的稳定性。目前对于颅内动脉粥样硬化斑块的评价正逐渐成为研究热点。本文重点论述基于高分辨率磁共振成像(magnetic resonance imaging,MRI)的颅内动脉粥样硬化斑块成像的研究进展。

1 高分辨率磁共振成像历史展望

最初利用MRI对血管成像是取自于手术切除下来的髂动脉粥样硬化段,这些研究提供了动脉粥样硬化斑块组成和MRI信号特点间的关系[3-4]。随后,Naghavi等通过血管壁成像研究了胸主动脉夹层动脉瘤的管壁厚度[5]。1990年,Edelman等分析了颈动脉粥样硬化性疾病的黑血和亮血成像技术,发现黑血成像在评估血管狭窄上精确性更高,更有优势。自此以后,研究多重点关注斑块组成特点及MRI信号表现,对动脉粥样硬化的评价不再仅局限于动脉狭窄[6]。

1995年,Aoki团队进行了通过MRI评价颅内血管管壁的第一项研究,该团队研究了颅内动脉颈内段和椎动脉的管壁强化和年龄的关系,结果显示,随着年龄增加,血管壁强化的程度有增加的趋势[7],这种关联被认为与动脉粥样硬化进展有关[8]。2003年,Naghavi等介绍了主要针对颈动脉不稳定斑块的模型,证明特定的斑块成分可以导致患者的临床症状进展,结局表现为血栓形成和栓塞[9]。

目前研究认为,除血管管腔狭窄外,动脉粥样硬化斑块组成,包括纤维帽的存在与状态、斑块内出血、脂质核心的存在与体积、新生血管、斑块溃疡、斑块破裂等均可能是目前或未来血管事件的标志[10-12]。但目前这些因素在颅内动脉粥样硬化斑块的研究中尚显不足,缺乏足够的病理标本对照[13]。血管并不会狭窄,传统血管成像也很难发现这种病变[18]。因此,近年来关于血管管腔的研究正逐渐成为热点,高分辨率MRI黑血成像目前发展迅速,已经广泛用于颈动脉不稳定斑块的鉴定[19-23]。颅内血管高分辨率MRI已经在探测病变区域斑块特点上显示出了初步可行性。该技术通过抑制血管内血液和血管外脑脊液信号,形成足够的信号噪声比(signal-to-noise ratio,SNR),提高空间分辨率,可以使血管壁结构得到清晰显示[24]。相较于传统的2维MRI,3维血管壁成像的应用正逐渐增多。3维成像可增加扫描的覆盖面积,可以在各个方向重复扫描,进而能更加清楚地显示血管壁病变[25]。杨万群、张雪锋等的研究均证明了在判断大脑中动脉病变区域管壁面积、斑块体积及斑块成分上,高分辨率MRI已经显示出了良好的可行性[26-27]。

2 颅内动脉粥样硬化斑块成像技术的可行性

目前评估血管病变最常用的检查方式包括计算机断层扫描血管造影(computed tomography angiography,CTA)、磁共振血管成像(magnetic resonance angiography,MRA)和数字减影血管造影(digital subtraction angiography,DSA),但这些检查方式在血管管腔的评价上均存在局限性,如在鉴别颅内动脉粥样硬化与血管炎、动脉夹层、烟雾病等病变方面困难较大[14-17]。此外,由于血管阳性重构的存在,部分患者动脉粥样硬化的

3 斑块成像研究进展

3.1 磁共振成像常用序列对斑块成分的识别目前高分辨率MRI图像有多个序列,不同序列对管壁显像重点不同。多个图像序列对比可以更全面地评估血管壁信号特点,增加诊断的准确性[28]。常用序列包括利用白血技术的3维时间飞跃序列(3D time of flight,3D-TOF)及黑血的T1序列(T1-weighted imaging,T1WI)、T2序列(T2-weighted imaging,T2WI)、质子序列(proton density weighted imaging,PDWI)、磁化准备快速梯度回波序列(magnetization prepared rapid gradient echo,MP-RAGE)、T1强化序列(T1contrast enhanced weighted imaging,T1+C)[29]。

TOF序列通过增强血流的信号强度,提高了血流与周围血管壁的信号对比强度,可较好地分辨颈动脉斑块表面钙化与纤维帽[30]。颅内动脉由于管腔更细,纤维帽难以显示,此序列多用于观察颅内动脉有无狭窄。

有研究认为T1WI适合判断斑块内出血,斑块高信号提示斑块内出血的特异性为84%,敏感性为84%[13]。PDWI序列上管壁和管腔形成很高的对比,更适合对粥样硬化斑块进行量化分析[31]。目前认为,T2WI序列中斑块边缘高信号代表纤维帽,在斑块外高信号区域代表富含泡沫状巨噬细胞和黏多糖的组织。脂质核心在T1WI多表现为不同的中到高信号区域,低信号多位于斑块周围非脂质核心区域;脂质在T2WI序列多为低到中等信号强度,高信号多出现在斑块近心端及血管分叉处,但仍缺乏病理研究对其进行验证[32]。T2WI可以看作是T1WI的补充序列,两个序列联合分析可以增加病变诊断的敏感性和特异性[21]。T1WI、T2WI和PDWI这3个序列是目前高分辨率MRI最常用的序列。

MP-RAGE序列对斑块内出血较为敏感,目前认为出血在此序列上表现为高信号,此序列可以清楚地区分斑块内出血与脂质核心[33]。T1+C序列主要用于分析斑块内炎症、新生血管和厚纤维帽成分,目前认为上述病变在该序列表现为高信号,斑块在该序列的高信号表明斑块不稳定,有较大的破裂风险,尚需病理研究进一步检验[34-36],目前认为钙化在各序列均呈信号[37]。

3.2 斑块分布 最近研究表明,穿支动脉闭塞所致脑梗死在血管造影未见狭窄时,高分辨率MRI更容易发现动脉粥样硬化斑块,多见于大脑中动脉及基底动脉[38]。大脑中动脉的斑块分布在预测症状严重性及卒中类型上非常重要,Yoon认为大脑中动脉上壁斑块与深部梗死灶有关,可能是与上壁斑块容易阻塞豆纹动脉开口有关[39]。多数大脑中动脉斑块位于穿支开口对侧。基底动脉斑块多位于腹侧壁。通过高分辨率MRI可以明确斑块的分布,可以更好地指导介入手术,降低术后并发症[40]。颅内其他动脉斑块分布规律仍有待更多研究证实。斑块分布可能是预测卒中症状出现的重要因素,但尚需更多研究证实[41]。

3.3 斑块强化 动脉粥样硬化斑块强化被认为与斑块内新生血管生成有关,许多研究认为斑块强化与急性缺血性卒中密切相关,是斑块稳定性的标志[7,14,42]。然而实际上斑块强化与急性缺血性卒中的关系受多种因素的影响。Ryu等的研究认为狭窄程度而非斑块强化是缺血事件的独立预测因素[43]。此外,Kim等的研究认为斑块强化与症状性颅内动脉硬化患者卒中复发相关[44]。

3.4 斑块钙化 钙化对颅内动脉粥样硬化斑块的影响仍存在争议。冠状动脉斑块和颈动脉斑块的研究显示斑块钙化可以促进斑块稳定[45-46]。关于颅内动脉粥样硬化性斑块,Chen等人的尸检研究并未发现颅内动脉斑块钙化与缺血性卒中之间存在关系[47]。由于缺乏充足的客观证据,目前仍不能确定斑块钙化与斑块稳定性之间的关系。

3.5 颅内动脉粥样硬化斑块定量评价

3.5.1 斑块负荷 斑块负荷被认为是与斑块易损性有关的重要因素之一,因为它可直接反映动脉粥样硬化病变的演变,斑块负荷越大,斑块越不稳定。管壁厚度、管壁面积(体积)是斑块负荷常用的评价指标[48]。

3.5.2 斑块形态 目前,对于斑块形态进行量化的指标主要包括:斑块面积、斑块体积、管腔面积、管壁面积、最大管壁厚度及重构指数等[49-51]。徐蔚海认为症状性大脑中动脉狭窄病变区域有更大的管壁面积,更高的血管重构指数;有研究[52-53]认为症状性大脑中动脉狭窄病变区域血管重构指数更高,斑块表面更不规则。此外,杨文杰[54]认为斑块向心性和偏心性或许与斑块破裂无关,仍需要更多影像数据去验证。

3.5.3 血管重构 高分辨率MRI加深了对颅内动脉粥样硬化的认识,通过高分辨率MRI可以看到有的严重的颅内动脉粥样硬化可能不会导致管腔狭窄。一项法国的尸检研究显示,62%死于缺血性卒中的患者患有颅内动脉粥样硬化,但其中只有约半数患者可以发现明显的影像学狭窄[55]。粥样硬化病变初期,通过血管重构可以保持管腔在正常范围,但是管壁却急剧增厚,这增加了颅内动脉粥样硬化斑块的破裂风险;阳性重构血管较之阴性重构血管更可能发生血管事件[4]。症状性狭窄处血管阳性重构明显多于阴性重构[52-53]。

4 局限性及未来发展趋势

高分辨率MRI可以作为颅内动脉病变诊断和鉴别方面的良好补充,该技术凭借对血管壁的显示可以提高疾病诊断的特异性,也可以诊断普通血管成像难以发现的非血管狭窄疾病和脑小血管病,还可以用来评价治疗的远期疗效。

目前颅内血管高分辨率MRI多集中在颈内动脉末端,大脑中动脉M1段和基底动脉,由于扫描线圈的限制,一次扫描难以确定颅内所有大血管病变的情况。此外,由于颅内血管迂曲,重建高分辨率图像显示斑块时可能会导致测量误差。此外,高分辨率MRI扫描时间较长,花费较高,也限制了其广泛应用。斑块的成像依赖于血管壁的成像,目前发展迅速。一些研究机构目前已经将血管壁成像评估纳入临床检查常规成像方案里,但是目前血管壁成像研究虽有广泛应用的趋势,但未得以规范。未来图像质量还需要进一步优化。目前的研究表明,特定人群中,血管壁成像可以提供比普通检查更高的价值,但是量化这些检查信息仍然需要更多深入的研究。未来研究重点在评价斑块的易损性,从而使斑块成像更好地指导治疗及随访。这将大大地有利于患者的个体化治疗,同时也更有助于阐述颅内动脉粥样硬化疾病的病理、生理学机制。

1 Wong LK. Global burden of intracranial atherosclerosis[J]. Int J Stroke,2006,1:158-159.

2 黄俊,刘崎. 3.0 T 高分辨力MR大脑中动脉管壁成像研究[J]. 放射学实践,2012,27:556-559.

3 Kaufman L,Crooks LE,Sheldon PE,et al.

Evaluation of NMR imaging for detection with highresolution MR imaging at 3T[J]. Atherosclerosis,2009,204:447-452.

4 Huang B,Yang WQ,Liu XT,et al. Basilar artery atherosclerotic plaques distribution in symptomatic patients:A 3.0 T high-resolution MRI study[J]. Eur J Radiol,2013,82:e199-203.

5 Naghavi M,Libby P,Falk E,et al. From vulnerable plaque to vulnerable patient:a call for new definitions and risk assessment strategies:part II[J]. Circulation,2003,108:1772-1778.

6 Edelman RR,Mattle HP,Wallner B,et al. Extracranial carotid arteries:evaluation with "black blood" MR angiography [J]. Radiology,1990,177:45-50.

7 Aoki S,Shirouzu I,Sasaki Y,et al. Enhancement of the intracranial arterial wall at MR imaging:relationship to cerebral atherosclerosis[J]. Radiology,1995,194:477-481.

8 Küker W,Gaertner S,Nagele T,et al. Vessel wall contrast enhancement:a diagnostic sign of cerebral vasculitis[J]. Cerebrovasc Dis,2008,26:23-29.

9 Naghavi M,Libby P,Falk E,et al. From vulnerable plaque to vulnerable patient:a call for new definitions and risk assessment strategies:part I[J]. Circulation,2003,108:1664-1672.

10 Saam T,Cai J,Ma L,et al. Comparison of symptomatic and asymptomatic atherosclerotic carotid plaque features with in vivo MR imaging[J]. Radiology,2006,240:464-472.

11 Saba L,Anzidei M,Sanfilippo R,et al. Imaging of the carotid artery[J]. Atherosclerosis,2012,220:294-309.

12 Turan TN,LeMatty T,Martin R et al. Characterization of intracranial atherosclerotic stenosis using highresolution MRI study-rationale and design[J]. Brain Behav,2015,12:e00397.

13 Turan TN,Bonilha L,Morgan PS,et al. Intraplaque hemorrhage in symptomatic intracranial atherosclerotic disease[J]. J Neuroimaging,2011,21:e159-e161.

14 Swartz RH,Bhuta SS,Farb RI,et al. Intracranial arterial wall imaging using high-resolution 3-Tesla contrast-enhanced MRI[J]. Neurology,2009,72:627-634.

15 Kim YJ,Lee DH,Kwon JY,et al. High resolution MRI difference between moyamoya disease and intracranial atherosclerosis[J]. Eur J Neurol,2013,20:1311-1318.

16 Natori T,Sasaki M,Miyoshi M,et al. Evaluating middle cerebral artery atherosclerotic lesions in acute ischemic stroke using magnetic resonance T1-weighted 3-dimensional vessel wall imaging[J]. J Stroke Cerebrovasc Dis,2014,23:706-711.

17 Pfefferkorn T,Linn J,Habs M,et al. Black blood MRI in suspected large artery primary angiitis of the central nervous system[J]. J Neuroimaging,2013,23:379-383.

18 Qiao Y,Steinman DA,Qin Q,et al. Intracranial arterial wall imaging using three-dimensional high isotropic resolution black blood MRI at 3.0 Tesla[J]. J Magn Reson Imaging,2011,34:22-30.

19 Cai J,Hatsukami TS,Ferguson MS,et al. In vivo quantitative measurement of intact fibrous cap and lipid rich necrotic core size in atherosclerotic carotid plaque:comparison of high resolution,contrast enhanced magnetic resonance imaging and histology[J]. Circulation,2005,112:3437-3444.

20 Yuan C,Mitsumori LM,Ferguson MS,et al. In vivo accuracy of multispectral magnetic resonance imaging for identifying lipid rich necrotic cores and intraplaque hemorrhage in advanced human carotid plaques[J]. Circulation,2001,104:2051-2056.

21 Trivedi RA,U-King-Im J,Graves MJ,et al. Multi sequence in vivo MRI can quantify fibrous cap and lipid core components in human carotid atherosclerotic plaques[J]. Eur J Vasc Endovasc Surg,2004,28:207-213.

22 Kampschulte A,Ferguson MS,Kerwin WS,et al. Differentiation of intraplaque versus juxtaluminal hemorrhage/ thrombus in advanced human carotid atherosclerotic lesions by in vivo magnetic resonance imaging[J]. Circulation,2004,110:3239-3244.

23 Moody AR,Murphy RE,Morgan PS,et al. Characterization of complicated carotid plaque with magnetic resonance direct thrombus imaging in patients with cerebral ischemia[J]. Circulation,2003,107:3047-3052.

24 Dieleman N,van der Kolk AG,Zwanenburg JJ,et al. Imaging intracranial vessel wall pathology with magnetic resonance imaging[J]. Circulation,2014,130:192-201.

25 Mossa-Basha M,Alexander M,Gaddikeri S,et al. Vessel wall imaging for intracranial vascular disease evaluation[J]. J Neurointerv Surg,2016,8:1154-1159.

26 Zhang X,Zhu C,Peng W,et al. Scan-rescan reproducibility of high resolution magnetic resonance imaging of atherosclerotic plaque in the middle cerebral artery[J]. PLoS One,2015,10:e0134913.

27 Yang WQ,Huang B,Liu XT,et al. Reproducibility of high-resolution MRI for the middle cerebral artery plaque at 3T[J]. Eur J Radiol,2014,83:e49-55.

28 Mossa-Basha M,Hwang WD,De Havenon A,et al. Multicontrast high-resolution vessel wall magnetic resonance imaging and its value in differentiating intracranial vasculopathic processes[J]. Stroke,2015,46:1567-1573.

29 付希英,杨薇. 颈动脉粥样硬化斑块易损性的影像评价研究进展[J],中风与神经疾病杂志,2013,30:380-382.

30 王庆军,蔡剑鸣,蔡幼铨,等. 高分辨颈动脉粥样硬化斑块磁共振成像[J]. 中国医学影像学杂志,2011,19:168-173.

31 许玉园,徐蔚海. 高分辨磁共振血管壁成像在大脑中动脉粥样硬化疾病诊断中的应用[J],中国实用内科杂志,2016,36:322-324.

32 Degnan AJ,Gallagher G,Teng Z,et al. MR angiography and imaging for the evaluation of middle cerebral artery atherosclerotic disease[J]. Am J Neuroradiol,2012,33:1427-1435.

33 宋燕. 颈动脉粥样硬化不稳定斑块的高分辨磁共振特点及应用[J]. 中国实用神经疾病杂志,2012,15:59-60.

34 Von Ingersleben G,Schmiedl UP,Hatsukami TS,et al. Characterization of atherosclerotic plaques at the carotid bifurcation:correlation of high-resolution MR imaging with histologic analysis--preliminary study[J]. Radiographics,1997,17:1417-1423.

35 Qiao Y,Etesami M,Astor BC,et al. Carotid plaque neovascularization and hemorrhage detected by MR imaging are associated with recent cerebrovascular ischemic events[J]. Am J Neuroradiol,2012,33:755-760.

36 Turan TN,LeMatty T,Martin R,et al. Characterization of intracranial atherosclerotic stenosis using high-resolution MRI study-rationale and design[J]. Brain Behav,2015,5:e00397.

37 Skarpathiotakis M,Mandell DM,Swartz RH,et al. Intracranial atherosclerotic plaque[J]. Am J Neuroradiol,2013,34:299-304.

38 Klein IF,Lavallee PC,Mazighi M,et al. Basilar artery atherosclerotic plaques in paramedian and lacunar pontine infarctions:a high-resolution MRI study[J]. Stroke,2010,41:1405-1409.

39 Yoon Y,Lee DH,Kang DW,et al. Single subcortical infarction and atherosclerotic plaques in the middle cerebral artery:high-resolution magnetic resonance imaging findings[J]. Stroke,2013,44:2462-2467.

40 Chung GH,Kwak HS,Hwang SB,et al. High resolution MR imaging in patients with symptomatic middle cerebral artery stenosis[J]. Eur J Radiol,2012,81:4069-4074.

41 Xu WH,Li ML,Gao S,et al. Plaque distribution of stenotic middle cerebral artery and its clinical relevance[J]. Stroke,2011,42:2957-2959.

42 Vergouwen MD,Silver FL,Mandell DM,et al. Fibrous cap enhancement in symptomatic atherosclerotic basilar artery stenosis[J]. Arch Neurol,2011,68:676.

43 Ryu CW,Jahng GH,Shin HS,et al. Gadolinium enhancement of atherosclerotic plaque in the middle cerebral artery:Relation to symptoms and degree of stenosis[J]. Am J Neuroradiol,2014,35:2306-2310.

44 Kim JM,Jung KH,Sohn CH,et al. Intracranial plaque enhancement from high resolution vessel wall magnetic resonance imaging predicts stroke recurrence[J]. Int J Stroke,2016,11:171-179.

45 Kitagawa T,Yamamoto H,Horiguchi J,et al. Characterization of noncalcifed coronary plaques and identifcation of culprit lesions in patients with acute coronary syndrome by 64-slice computed tomography[J]. JACC Cardiovasc Imaging,2009,2:153-160.

46 Shaalan WE,Cheng H,Gewertz B,et al. Degree of carotid plaque calcifcation in relation to symptomatic outcome and plaque inæammation[J]. J Vasc Surg,2004,40:262-269.

47 Chen XY,Wong KS,Lam WW,et al. Middle cerebral artery atherosclerosis:histological comparison between plaques associated with and not associated with infarct in a postmortem study[J]. Cerebrovasc Dis,2008,25:74-80.

48 Li F,Chen QX,Chen ZB,et al. Magnetic resonance imaging of plaque burden in vascular walls of the middle cerebral artery correlates with cerebral infarction[J]. Curr Neurovasc Res,2016,13:263-270.

49 Teng Z,Peng W,Zhan Q,et al. An assessment on the incremental value of high-resolution magnetic resonance imaging to identify culprit plaques in atherosclerotic disease of the middle cerebral artery[J]. Eur Radiol,2016,26:2206-2214.

50 Shi MC,Wang SC,Zhou HW,et al. Compensatory remodeling in symptomatic middle cerebral artery atherosclerotic stenosis:a high-resolution MRI and microemboli monitoring study[J]. Neurol Res,2012,34:153-158.

51 Dieleman N,Yang W,Abrigo JM,et al. Magnetic resonance imaging of plaque morphology,burden,and distribution in patients with symptomatic middle cerebral artery stenosis[J]. Stroke,2016,47:1797-1802.

52 Xu WH,Li ML,Gao S,et al. In vivo high-resolution MR imaging of symptomatic and asymptomatic middle cerebral artery atherosclerotic stenosis[J]. Atherosclerosis,2010,212:507-511.

53 Chung GH,Kwak HS,Hwang SB,et al. High resolution MR imaging in patients with symptomatic middle cerebral artery stenosis[J]. Eur J Radiol,2012,81:4069-4074.

54 Yang WJ,Chen XY,Zhao HL,et al. In vitro assessment of histology verifed intracranial atherosclerotic disease by 1.5T magnetic resonance imaging concentric or eccentric?[J]. Stroke,2016,47:527-530.

55 Mazighi M,Labreuche J,Gongora-Rivera F,et al. Autopsy prevalence of intracranial atherosclerosis in patients with fatal stroke[J]. Stroke,2008,39:1142-1147.

【点睛】本文对高分辨率磁共振成像在颅内动脉粥样硬化斑块成分、管壁重构等对缺血性卒中有重要影响的特点方面的研究进行了概述。

猜你喜欢

管壁高分辨率硬化
山东:2025年底硬化路铺到每个自然村
双源CT对心脏周围脂肪组织与冠状动脉粥样硬化的相关性
基于深度学习的颈动脉粥样硬化斑块成分识别
低温工况下不锈钢管壁厚的脉冲涡流检测
高分辨率合成孔径雷达图像解译系统
LN17模具钢预硬化热处理正交试验
大唐鲁北厂2号炉壁温超限及措施的探讨
关于为“一带一路”提供高分辨率遥感星座的设想
高分辨率对地观测系统
电厂锅炉水冷管路泄漏的主要原因与相关措施