APP下载

掺杂型Bi2WO6可见光光催化材料的最新研究进展*

2016-12-29郑化杰孟繁梅

功能材料 2016年12期
关键词:禁带空穴光催化

郑化杰,孟繁梅,关 毅,朱 娇

(天津大学 化工学院,天津 300072)

掺杂型Bi2WO6可见光光催化材料的最新研究进展*

郑化杰,孟繁梅,关 毅,朱 娇

(天津大学 化工学院,天津 300072)

Bi2WO6的禁带宽度窄(2.7 eV),能吸收紫外光和可见光,同时具有形貌可控,氧化性强,耐光腐蚀,无毒无污染等优点,是一类非常有前途的可见光光催化材料。近年来的相关研究,主要是通过改性来解决单质Bi2WO6的光量子效率一般和光生电子-空穴易复合问题。最为常用的是掺杂改性,其对Bi2WO6的电子结构、外观形貌、粒子尺寸、比表面积、表面特性的调控均有重要作用,能够提高该类催化剂的量子效率、缩小禁带宽度、降低电子-空穴复合率以提高其光催化性能。从金属掺杂、非金属掺杂、共掺杂等方面集中介绍了各种掺杂手段对Bi2WO6光催化性能的研究进展,阐明了光催化反应机理,并对其下一步的研究重点进行了展望。

Bi2WO6;可见光;光催化;掺杂;改性

0 引 言

Bi2WO6是最简单的Aurivillius型氧化物[1],由[Bi2O2]2+层状结构和[WO4]2-八面体构成(如图1(a))。其中,Bi6s轨道与O2p轨道杂化形成价带,W5d轨道作为导带,两者之间为禁带。Bi2WO6的禁带宽度仅有2.7 eV,能被紫外光和可见光激发,因此可以直接利用自然光(太阳光)。同时,Bi2WO6具有氧化能力强、形貌可控、耐光腐蚀等优点[2-5],是目前极具前途的新型可见光光催化剂之一。近年来,国内外研究工作者针对Bi2WO6存在的光量子效率不理想,光生电子-空穴易复合等问题,利用掺杂改性、负载改性[6-7]、复合改性[8-9]、控制形貌[10]、金属沉积[11]等手段进行了广泛深入的探索。其中,掺杂改性是最主要的改性方法,取得了大量研究成果。

本文从金属离子掺杂、非金属离子掺杂、共掺杂改性3个方面,集中介绍了国内外掺杂型Bi2WO6光催化剂性能和掺杂机理的最新研究进展。

1 掺杂改性机理

掺杂是指将杂质离子掺杂到Bi2WO6晶格内部,取代Bi、W、O中一种或两种元素的位置,从而改变原有的晶格结构、电子结构及光催化性能。如图1(a)所示,Bi2WO6的晶体构造中,氧存在3种不同状态,分别为Bi—O—W,W—O—W,Bi—O—Bi。离子掺杂时,O位置的取代,一般是指W—O—W键中的O被取代。

经多年研究,目前关于掺杂作用机理,现形成了如下几种有影响的观点:

(1) 如图1(b)所示,Bi2WO6晶体中引入晶格缺陷,生成光生电子、空穴的浅势捕获阱或者O2的吸附中心,从而降低电子-空穴的复合概率,有利于超氧自由基生成。Wang等[12]的研究表明,Zr掺入后生成的氧空位可作为电子和O2的捕获中心,促进了·O-产生,使光催化效率提高34.6%。

(2) 如图1(c)所示,掺入离子后,与原有离子轨道进行杂化,形成了新的能级,导致禁带宽度变窄。Huang等[13]通过掺入F,在Bi2WO6价带上部生成新的能级,使禁带宽度由2.77 eV降低到2.68 eV,在可见光照射下,光催化效率提高了约23%。

(3) 如图1(d)所示,掺杂在Bi2WO6的禁带中引入杂质能级(IL),光激发电子首先跃迁到杂质能级,再从杂质能级跃迁到导带,这种电子的跃迁途径的改变,拓宽了可见光吸收范围。Tan等[14]将Cu引入后,光激发电子先由Bi2WO6的禁带激发到Cu杂质能级,继而激发到导带,禁带宽度降低了0.09 eV,光催化效率提高20%。

2 金属掺杂

2.1 碱土金属掺杂

目前,常用于掺杂的碱土金属有Sr、Ba、Mg等。碱土金属最外层充满两个电子,特别容易失去而成为相应的离子,并且具有较强的导电性,常被用于半导体的改性研究[16]。

近期究结果表明,掺杂粒子的尺寸会直接影响催化剂的形貌、晶粒尺寸、比表面积、氧空位等,进而影响禁带宽度和电子空穴复合率,最终影响光催化活性。

图1 Bi2WO6结构 [15]与掺杂机理示意图

Song等[17]将Ba掺杂Bi2WO6后得到无定型的催化剂,Wang等[18]制备的Sr-Bi2WO6却是三维鸟巢状。另外,Ba的掺杂使比表面积由56.364 m2/g提高到63.756 m2/g,还作为电子捕获剂,降低了电子-空穴的复合率。Sr的掺杂使催化剂粒径减小8.6 nm,禁带宽度降低0.1 eV。二者光催化活性依次提高约46%和9%。Fung等[19]利用固态反应法将Mg掺杂到Bi2WO6形成固溶体,当Mg与W的原子比为1∶4时,700 ℃下导电性为1.12×10-1Ω/cm,表明引入氧空位使导电性大大提高。

离子的半径是能否成功掺杂的主要影响因素。而Be2+和Ra2+的离子半径分别为0.03和0.162 nm,离子半径太大或者太小均造成了掺杂困难,Ca2+的离子半径为0.114 nm,与Bi3+的离子半径0.103 nm相差不大,有望进行掺杂研究。

2.2 过渡金属掺杂

过渡金属一般具有多种价态、未充满的d电子层,能级低而密,可容纳较多的电子,结合能高[20],掺入后,常可改变Bi2WO6禁带宽度或形成浅势捕获阱,促进其光催化活性提高。

如表1所示,常用于掺杂的过渡金属有Cu、Ag、Zn、Ni、Zr、Nb、Mo、Cd等。金属离子掺杂受其半径等因素影响,一般都取代Bi2WO6的Bi位。而Mo6+[27]、Nb5+、Ta5+、Zr4+[12]离子半径分别为0.073,0.078, 0.078和0.08 nm,近似等于W6+的离子半径0.074 nm,又因为三者在元素周期表中位于W的邻位或对位,有相似的化学性质,因而主要取代W位。

Ag[2, 23]与Cu[14, 21]同属IB族,在降解罗丹明B(RhB)或苯酚的过程中,掺杂Ag的降解率略高于Cu,Ag具有SPR效应,在光照过程中可形成局部高温,利于光降解反应的进行。研究表明[26],Cd的掺入并未改变Bi2WO6可见光的吸收范围,但由于引入了浅势捕获阱,降低了电子-空穴的复合概率,使降解率由43.6%提高到了100%,优于其它金属。另外, Mo[27]、Ni[29]、Zr[12]的掺入,均可生成电子捕获阱、减小Bi2WO6的禁带宽度,可使催化效率提高30%以上,且对光降解物质没有明显的选择性。

2.3 稀土金属掺杂

稀土元素具有丰富的电子能级,其未充满的4f电子轨道,其作为掺杂离子可引入电子浅势捕获阱,降低电子空穴的复合率,引入杂质能级,使得光生电子可在f-f或f-d轨道之间发生跃迁,又因为稀土金属具有上转换发光功能,以稀土离子取代Bi3+位置,能明显提高的光催化活性。Blasse和Ksen[31]系统研究了Bi2WO6中掺杂La、Pr、Sm、Eu、Tb、 Dy、Er 等稀土离子,结果证明稀土离子的掺入有利于量子效率的提高。

目前用于掺杂的稀土离子还有Y、Gd、Ce、Eu等。表2总结了上述离子的掺杂方法及效果。

Y[32]和Eu[35]掺入后,它们的4f轨道插入在Bi2WO6的禁带中间,杂质能级引入降低了禁带宽度,作为子捕获剂的Y3+和Eu3+降低了电子-空穴复合率,从而提高了光催化效率,使得RhB的降解率提高超过40%。

Gd3+[34]具有半充满的4f轨道,当捕获光生电子后,变得不稳定,与O2相互作用生成·O-;类似的是,Ce3+[13]的4f轨道仅有1个电子,与O2相互作用失去该电子生成·O-,空的4f轨道更易接受新的光生电子,降低电子-空穴复合概率。这使掺入Gd和Ce后,Bi2WO6禁带宽度虽有所增加,但其RhB降解率仍有20%的增加。

表1 常见过渡金属掺杂Bi2WO6的方法及掺杂效果的比较

注:①元素下标表示的掺杂比例统一为掺杂原子与Bi原子的摩尔比,下同;②掺杂结果栏“()”内部为未掺杂时纯Bi2WO6的相关数据。

表2 稀土金属掺杂Bi2WO6的方法及掺杂效果的比较

2.4 其它金属掺杂

除了以上提到的各类金属离子以外,还有Sn、Sb等被用来作为掺杂离子。

有报道[36-37]表明,水热法制备的Sn-Bi2WO6,Sn的5s轨道与O的2p轨道进行杂化,可使禁带宽度从2.7eV降低到2.5 eV,并增加了可见光吸收范围。在可见光RhB降解研究中,90~120 min,降解率达98%~100%,而未掺杂时仅为81%。

利用固态反应法等方法[38-39]制备的光催化剂, Sb5+部分取代了W6+或Bi3+,提高催化剂表面氧空位数量和导电性。当Sb取代W达4%时,催化剂电导率可达0.02 S/cm。当Sb取代Bi达5%时,催化剂的可见光RhB降解率为70%,比未掺杂时提高了21%。

综合金属掺杂研究结果,离子半径和掺杂量是影响催化剂形貌和掺杂效果的重要因素,离子半径过大或过小都难以形成有效的取代。取代Bi位时,掺杂金属离子半径范围在0.08~0.13 nm之间,掺杂量不超过5%时,一般可保持原有形貌。

3 非金属掺杂

近年来,在非金属离子掺杂Bi2WO6的研究中,以N的掺杂为主,对B、F、I、S、C等离子的掺杂研究也有相当涉及。研究表明,非金属离子的掺杂不但能够减小Bi2WO6禁带宽度,增加对可见光的吸收,还能在Bi2WO6晶格中引入氧空位,有效避免电子-空穴的分离,从而增加光催化效率。

3.1 N掺杂

关于N的掺杂情况,详见表3,研究结果表明[40-42],N主要取代O位,由于N的粒子半径比O大,当N掺入后晶格尺寸会发岐变,从而影响催化剂的尺寸和形貌。

N掺杂可使Bi2WO6的光催化活性提高40%左右,禁带宽度也有不同程度的降低,约0.07~0.19 eV。

Wang等[41]认为这是由合适的禁带宽度、电子迁移率的提高、电子空穴复合率的降低导致;而Zhu等[40]认为,N的2p轨道提高了的价带位置,而对导带无影响,从而使得禁带宽度降低。虽然N的掺杂研究相对较多,但其掺杂机理并没有统一的认识,有待进一步探究。

3.2 其它非金属元素掺杂

用于掺杂Bi2WO6的非金属还有B、C、F、I等,掺杂效果如表4所示。

表3 N掺杂Bi2WO6的方法及掺杂效果的比较

表4 其它非金属掺杂Bi2WO6的方法及掺杂效果的比较

B[43]、C[44]可使光催化效率提高40%~60%,掺杂效果较好,掺杂后催化剂对RhB的降解率达90%以上。而F[13]、I[45]掺杂时,仅能提高20%~30%,催化剂催化效率低于90%。

B[43]具有亲电子和O2的性质,可作为电子捕获剂,促进电子空穴分离和·O-的生成,使得RhB的降解速率增加到原来的8.8倍,可达100%。C[44]、F[13]的加入,在价带顶部生成了新的能级,导致禁带宽度变窄,使得光吸收范围红移。

从已发表文章数量和取得的成果来看,与金属掺杂相比较,非金属掺杂无论从涉及的元素种类,还是研究深度都不够深入,因此有待于进一步探讨研究。

4 共掺杂

共掺杂是指两种以上(包含两种)金属、非金属离子掺杂到Bi2WO6晶格中,或者离子掺杂后与金属氧化物复合,提高其光催化活性的方法。研究表明,多种原子掺杂或复合可产生协同作用,在拓宽吸光范围、抑制载流子复合、提高催化剂表面羟基含量等方面有重要作用。

目前报道的共掺杂研究有Ce/F、N/Mo、Pt/Cl、Yb/Tm/Li、Er3+-Bi2WO6/TiO2、Bi2O3/Bi2WO6-xF2x、TiO2/N-Bi2WO6、S-Bi2WO6/Bi2O3等,其制备方法主要是水热法,掺杂效果如表5所示。

表5 未掺杂、单掺杂、共掺杂型Bi2WO6催化性能比较

多种元素掺杂时,离子的取代位置与单元素掺杂相同,如F-Ce-Bi2WO6[13],单掺杂时F取代W位,Ce取代Bi位,二者共掺杂时,取代位置不变。共掺杂催化剂禁带宽度位于各元素单独掺杂时所得禁带宽度范围之内,如N-Mo-Bi2WO6[46],N掺杂后禁带宽度为1.56 eV,Mo掺杂后为1.62 eV,共掺杂为1.59 eV。与单元素掺杂相比,共掺杂或与其它半导体复合具有更高的降解率、降解速率,如TiO2/N-Bi2WO6[42],N的掺杂,使其光催化效率提高了44%,TiO2复合后,其光催化效率进一步提高了5%,这是由于多种元素掺杂或复合,产生协同作用导致。通过掺杂或复合制备多元催化剂,将是今后的研究的热点之一。

5 结 语

综上所述,掺杂型Bi2WO6制备方法简单,制备条件(温度、pH值等)容易控制,在降解有机污染物领域尤其特有的优势,如催化效率高、能直接利用可见光、节约能源、无二次污染等。并且通过掺杂改性等手段,相关研究已经取得了较大的进展,使得Bi2WO6成为最具前景的可见光光催化材料之一。

然而,就目前研究来看,催化效果并不理想。制备方法以水热法为主,比较单一;在共掺杂和掺杂复合方面研究不足;催化机理大都从影响禁带宽度和电子空穴复合率的共性展开,针对性不强等。

因此,在今后的研究中应在以下3个方面寻求改进:第一,优化现有制备方法并寻求新的制备方法,如固态反应法[28]、低温燃烧法等[51],通过改进制备方法来提高光催化性能;第二,重视掺杂,包括多种金属掺杂、金属非金属共掺杂以及掺杂复合型多元催化剂研究,充分发挥多种元素掺杂复合的协同作用;第三,加强掺杂机理的研究,尤其是特定离子对光催化影响的机理研究,为以后的掺杂提供可靠的指导作用。

[1] Wu L, Bi J H, Li Z H, et al. Rapid preparation of Bi2WO6photocatalyst with nanosheet morphology via microwave-assisted solvothermal synthesis [J]. Catalysis Today, 2008, 131(1-4): 15-20.

[2] Zhang Z J, Wang W Z, Gao E P,et al. Photocatalysis coupled with thermal effect induced by SPR on Ag-Loaded Bi2WO6with enhanced photocatalytic activity [J]. J Phys Chem C, 2012, 116(49): 25898-25903.

[3] Bhattacharya C, Lee H C, Bard A J. Rapid screening by scanning electrochemical microscopy (SECM) of dopants for Bi2WO6improved photocatalytic water oxidation with Zn doping [J]. J Phys Chem C, 2013, 117 (19): 9633-9640.

[4] Zhang L S, Wang W Z, Zhou L, et al. Bi2WO6Nano-and microstructures: shape control and associated visible-light-driven photocatalytic activities [J]. Small, 2007, 3 (9): 1618-1625.

[5] Sun Z X, Li X F,Guo S, et al.One-step synthesis of Cl--doped Pt(IV)/Bi2WO6with advanced visible-light photocatalytic activity for toluene degradation in air [J]. Journal of Colloid and Interface Science, 2013, 412: 31-38.

[6] Sun Z H,Guo J J, Zhu S M, et al. A high-performance Bi2WO6-graphene photocatalyst for visible light-induced H2and O2generation [J]. Nanoscale, 2014, 6(4): 2186-2193.

[7] Guo Y D, Zhang G K, Gan H H. Synthesis, characterization and visible light photo- catalytic properties of Bi2WO6/rectorite composites[J]. Journal of Colloid and Interface Science, 2011, 369(1): 323-329.

[8] Guo Y D, Zhang G K, Liu J, et al. Hierarchically structured α-Fe2O3/Bi2WO6composite for photocatalytic degradation of organic contaminants under visible light irradiation [J]. RSC Advances, 2013, 3(9): 2963-2970.

[9] Guo Y D, Zhang G K, Gan H H, et al. Micro/nano-structured CaWO4/Bi2WO6composite: synthesis, characterization and photocatalytic properties for degradation of organic contaminants [J]. Dalton Transactions, 2012, (41): 12697-12703.

[10] Li X N, Huang R K, Hu Y H, et al. A templated method to Bi2WO6hollow microspheres and their conversion to double-shell Bi2O3/Bi2WO6hollow microspheres with improved photocatalytic performance [J]. Inorganic Chemistry, 2012, 51(11): 6245-6250.

[11] Low J X, Yu J G, Li Q,et al. Enhanced visible-light photocatalytic activity of plasmonic Ag and graphene co-modified Bi2WO6nanosheets [J]. Physical Chemistry Chemical Physics, 2014, 16(3):1111-1120.

[12] Zhang Z J, Wang W Z, Gao E P,et al. Enhanced photocatalytic activity of Bi2WO6with oxygen vacancies by zirconium doping [J]. Journal of Hazardous Materials, 2011, 196: 255-262.

[13] Huang H W, Liu K, Chen K,et al. Ce and F comodification on the crystal structure and enhanced photocatalytic activity of Bi2WO6photocatalyst under visible light irradiation[J]. J Phys Chem C, 2014, 118 (26): 14379-14387.

[14] Tan G Q, Huang J, Zhang L L, et al. An enhanced visible-light-driven photocatalyst: conduction band control of Bi2WO6crystallites by Cu ion modification [J]. Ceramics International, 2014, 40 (8): 11671-11679.

[15] Lai K R, Wei W, Zhu Y T,et al. Effects of oxygen vacancy and N-doping on the electronic and photocatalytic properties of Bi2MO6(M=Mo, W) [J]. Journal of Solid State Chemistry, 2012, 187:103-108.

[16] Zhou M J, Han D L, Liu X L,et al. Enhanced visible light photocatalytic activity of alkaline earth metal ions-doped CdSe/rGO photocatalysts synthesized by hydrothermal method [J]. Applied Catalysis B: Environmental, 2015, 172-173:174-184.

[17] Li W T, Huang W Z, Zhou H,et al. Synthesis and photoactivity enhancement of Ba doped Bi2WO6photocatalyst [J]. Materials Research Bulletin, 2015, 64:432-437.

[18] Liu Y, Wang W M, Fu Z Y, et al. Nest-like structures of Sr doped Bi2WO6: synthesis and enhanced photocatalytic properties [J]. Materials Science and Engineering B, 2011, 176(16): 1264-1270.

[19] Hsieh C Y, Fung K Z. Effect of divalent dopants on defect structure and electrical properties of Bi2WO6[J]. Journal of Physics and Chemistry of Solids, 2008, 69:302-306.

[20] Tang Y C, Huang X H, Yu H Q, et al. Nonmetal element doping mechanisms of titanium oxide photocatalyst [J]. Progress in Chemistry, 2007, 19(2/3): 225-233. 唐玉朝,黄显怀,俞汉青,等. 非金属掺杂改性TiO2光催化剂的机理[J]. 化学进展,2007,19(2/3): 225-233.

[21] Wu Y F, Gao X M, Fu F, et al. Cu-Bi2WO6catalyst which was synthesized by hydrothermal method is used to photocatalytic oxidation desulfurization [J]. Chemical Engineering of Oil and Gas, 2012, 41(4): 366-369. 武玉飞,高晓明,付 峰,等.水热合成Cu-Bi2W06催化剂及用于光催化氧化脱硫的研究[J]. 石油与天然气化工,2012,41(4):366-369.

[22] Gao X M, Fu F, Lv L, et al. Characterization of self-made Cu-Bi2WO6and its application to photocatalytical degradation of phenol [J]. Environmental Protection of Chemical Industry, 2012, 32(2):181-184. 高晓明,付 峰,吕 磊,等. 自制Cu-Bi2WO6的表征及其对苯酚的光催化降解[J]. 化工环保,2012,32(2):181-184.

[23] Dumrongrojthanath P, Thongtem T, Phuruangrat A, et al. Synthesis and characterization of hierarchical multilayered flower-like assemblies of Ag doped Bi2WO6and their photocatalytic activities [J]. Superlattices and Microstructures, 2013, 64:196-203.

[24] Chen R, Hu C H, Wei S, et al. Synthesis and activity of Ag doped Bi2WO6Photocatalysts [J]. Materials Science Forum, 2013, 743/744:560-566.

[25] Ren F Z, Zhang J H, Wang Y X.Enhanced photocatalytic activities of Bi2WO6by introducing Zn to replace Bi lattice sites: a first-principles study [J]. RSC Advances, 2015, 5: 29058-29065.

[26] Song X C, Li W T, Huang W Z,et al. Enhanced photocatalytic activity of cadmium-doped Bi2WO6nanoparticles under simulated solar light[J]. J Nanopart Res, 2015,17: 134.

[27] Song X C, Zheng Y F, Ma R,et al. Photocatalytic activities of Mo-doped Bi2WO6three-dimensional hierarchical microspheres [J]. Journal of Hazardous Materials, 2011, 192(1): 186-191.

[28] Rangel R,Bartolo-Pérez P, Martínez E, et al. atalytic activity and X-ray photoelectron spectroscopy performance of Bi2MoxW(1-x)O6solid-solutions [J]. Catal Sci Technol, 2012, 2(4): 847-852.

[29] Gao Y H, Chen Y. Effects of doping Ni2+on the structure and photocatalytic denitrification activity of Bi2WO6f Bi [J]. Journal of Chemical and Pharmaceutical Research, 2015, 7(3):716-721.

[30] Kharitonova E P, Voronkova V I, Gagor A B, et al. Phase transitions and electrical properties of Bi2W1-xNbxO6-yand Bi2W1-xTaxO6-y[J]. Journal of Alloys and Compounds, 2013, 573:90-95.

[31] Blasse G, Dirdsen J G. On the luminescence of rare-earth activated bismuth tungstates [J]. Journal of Solid State Chemistry, 1982, 42:163-169.

[32] Huang J, Tan G Q, Ren H J,et al. Multi-factors on photocatalytic properties of Y-doped Bi2WO6crystallites prepared by microwave-hydrothermal method [J]. Cryst Res Technol, 2014, 49 (7): 467-473.

[33] Cao R R, Huang H W, Tian N, et al. Novel Y doped Bi2WO6photocatalyst: Hydrothermal fabrication, characterization and enhanced visible-light-driven photocatalytic activity for Rhodamine B degradation and photocurrent generation [J]. Materials Characterization, 2015, 101: 166-172.

[34] Tian N, Zhang Y H, Huang H W, et al. Influences of Gd substitution on the crystal structure and visible light-driven photocatalytic performance of Bi2WO6[J]. J Phys Chem C, 2014, 118:15640-15648.

[35] Tian Y, Zhang L D, Zhang J X. A superior visible light-driven photocatalyst: europium-doped bismuth tungstate hierarchical microspheres [J]. Journal of Alloys and Compounds, 2012, 537:24-28.

[36] Kumar B V, Prasad M D, Vithal M. Enhanced visible light photocatalytic activity of Sn doped Bi2WO6nanocrystals [J]. Materials Letters, 2015, 152: 200-202.

[37] Song X C, Zhou H, Huang W Z,et al. Enhanced photocatalytic activity of nano-Bi2WO6by tin doping [J]. Current Nanoscience, 2015, 11:627-632.

[38] Kharitonova E P, Belov D A, Gagor A B, et al. Polymorphism and properties of Bi2WO6doped with pentavalent antimony [J]. Journal of Alloys and Compounds, 2014, 591: 308-314.

[39] Singh A, Dutta D P, Roy M, et al. Sonochemical synthesis, characterization, and photocatalytic properties of Bi2-xSbxWO6nanorods [J]. J Mater Sci, 2013, 49(5): 2085-2097.

[40] Zhu G Q, Liang J, Hojamberdiev M, et al.Ethylenediamine (EDA) - assisted hydrothermal synthesis of nitrogen-doped Bi2WO6powders [J]. Materials Letters, 2014, 122:216- 219.

[41] Shang M, Wang W Z, Zhang L,et al. Bi2WO6with significantly enhanced photocatalytic activities by nitrogen doping [J]. Materials Chemistry and Physics, 2010, 120(1): 155-159.

[42] Zhang J, Huang Z H, Xu Y,et al. Sol-gel-hydrothermal synthesis of the heterostructured TiO2/N-Bi2WO6composite with high-visible-light- and ultraviolet-light-induced photo- catalytic performances [J]. International Journal of Photoenergy, 2011, 2012: 1-12.

[43] Fu Y, Chang C, Chen P,et al. Enhanced photocatalytic performance of boron doped Bi2WO6nanosheets under simulated solar light irradiation [J]. Journal of Hazardous Materials, 2013, 254-255: 185-192.

[44] Cui Y M, Li H Q, Hong W S,et al. The effect of carbon content on the structure and photocatalytic activity of nano-Bi2WO6powder [J]. Powder Technology, 2013, 247:151-160.

[45] Zhang J, Huang Z H, Xu Y,et al. Hydrothermal synthesis of iodine-doped Bi2WO6nanoplates with enhanced visible and ultraviolet-induced photocatalytic activities[J]. International Journal of Photoenergy, 2012, 2012: 1-12.

[46] Lai K R, Zhu Y T, Lu J B, et al. N- and Mo-doping Bi2WO6in photocatalytic water splitting [J]. Computational Materials Science, 2013, 67: 88-92.

[47] Zhu N W, Huang S Q, Lou Z Y, et al. Yb3 +-Tm3 +-Li+doped Bi2WO6/CNTS transformation materials on photocatalytic applications [P]. Chinese Patent: 103301833 A, 2013-09-18. 朱南文,黄寿强,楼紫阳,等. Yb3+-Tm3+-Li+三掺杂Bi2WO6/CNTs上转换光催化材料[P].中国专利:103301833 A, 2013-09-18.

[48] Obregón S, Colón G. Erbium doped TiO2-Bi2WO6heterostructure with improved photocatalytic activity under sun-like irradiation [J]. Applied Catalysis B: Environmental, 2013, 140-141: 299-305.

[49] Huang J, Tan G Q, Ren H J,et al. Photoelectric activity of a Bi2O3/Bi2WO6-xF2xheterojunction prepared by a simple one-step microwave hydrothermal method [J]. ACS Appl Mater Interfaces, 2014, 6(23): 21041-21050.

[50] Wang T Y, Xiao G S, Li C Y,et al. One-step synthesis of a sulfur doped Bi2WO6/Bi2O3composite with enhanced visible-light photocatalytic activity [J]. Materials Letters, 2015, 138: 81-84.

[51] Yu Z X, Xiang L, Zhong F L, et al. Effects of solution pH on photocatalytic degradation of rhodamine B using bismuth tungstate prepared by low-temperature combustion method[J]. Journal of Inorganic Materials, 2015, 30(5): 535-541. 余忠雄,向 垒,钟方龙,等. pH对低温燃烧法合成钨酸铋光催化降解罗丹明B的影响[J]. 无机材料学报,2015,30(5):535-541.

Latest studies of doped Bi2WO6visible light photocatalyst materials

ZHENG Huajie, MENG Fanmei, GUAN Yi, ZHU Jiao

(School of Chemical Engineering, Tianjin University, Tianjin 300072, China)

The band gap of Bi2WO6is only 2.7 eV, which allows it absorb ultraviolet and visible light at the same time. With the characteristics of controllable morphology, strong oxidizing property, light corrosion resistance, non-toxic and non-polluting, Bi2WO6becomes an ideal material for visible light photocatalysis. However, the quantum efficiency of pure Bi2WO6is relatively low, photo generated electron-hole recombine easily. So, further modification of Bi2WO6has become a hot research topic in recent years. At present, the research method of Bi2WO6is mainly focused on the doping modification. The doping modification has important effects on the electronic structure, appearance, particle size and surface properties of the catalyst, so as to improve the quantum efficiency, reduce the width of the band gap and electron hole recombination rate, thus improve the photocatalytic capability. In this paper, we introduced the latest progress in the study of the doped Bi2WO6photocatalyst from mental doping, nonmetals doping, co-doping and so on. We also clarified the mechanism of photocatalytic reaction and prospected for its development.

Bi2WO6; visible light; photocatalyst; doping; modified

1001-9731(2016)12-12076-07

国家自然科学基金资助项目(21376170, 21576192)

2016-01-23

2016-04-18 通讯作者:关 毅,E-mail: guanyi@tju.edu.cn

郑化杰 (1989-),男,山东潍坊人,在读硕士,师承关毅副教授,从事光催化材料研究。

O643.3

A

10.3969/j.issn.1001-9731.2016.12.012

猜你喜欢

禁带空穴光催化
喷油嘴内部空穴流动试验研究
压电周期板中耦合禁带影响规律分析
C60与MoO3混合材料做空穴注入层的单层有机电致发光器件
单分散TiO2/SrTiO3亚微米球的制备及其光催化性能
声子晶体板中低频宽禁带的形成机理
宽绝对禁带的一维磁性光子晶体结构∗
柴油机缝隙式喷油器嘴内空穴流动的模拟分析
可见光光催化降解在有机污染防治中的应用
宽禁带固态功放在导航卫星中的应用
全空穴模型中柴油非冷凝气质量分数的选取