APP下载

荧光碳量子点的绿色合成及高灵敏高选择性检测汞离子

2014-09-26胥月汤纯静黄宏孙超群张亚鲲叶群

分析化学 2014年9期
关键词:苹果汁

胥月 汤纯静 黄宏 孙超群 张亚鲲 叶群峰 王爱军

摘要本实验以苹果汁为原料,通过一步水热法合成得到了水溶性好及稳定性高的蓝色荧光碳量子点。研究发现Hg2+对碳量子点荧光有良好的猝灭作用,从而建立了一种快速检测Hg2+的新方法。实验发现在pH 7.0 磷酸盐缓冲介质中碳量子点荧光猝灭强度与Hg2+浓度在5~100 nmol/L和1~50 μmol/L范围内呈线性关系,检出限为2.3 nmol/L(S/N=3)。本方法可用于实际水样中Hg2+的测定。

关键词碳量子点; 绿色合成; 苹果汁; 汞离子检测

1引言

汞离子(Hg2+)是毒性较高的重金属离子之一。它能够通过食物链产生富集效果,最终在人体内积累,对人类的健康和生命造成严重威胁,如大脑及中枢神经的损伤、肾脏衰竭、DNA破坏等\[1\]。因此,对汞污染的研究逐渐成为各国环境工作者研究的热点。目前,Hg2+的检测方法有比色法\[2\]、电化学法\[3\]、荧光光谱法\[4\]及原子发射光谱法\[5\]等。相比于其它几种方法,荧光光谱法具有灵敏度高、选择性好、用样量少、方法简便、工作曲线线性范围宽等优点。

荧光碳量子点(CQDs)是一种尺寸小于10 nm的碳纳米颗粒[6]。与传统有机染料及半导体量子点相比,荧光碳量子点不仅具有光学性质稳定和易于实现表面功能化等优势,还具有生物相容性好和细胞毒性低等特性\[7,8\]。因此,荧光碳量子点有广泛的应用前景,包括生物成像\[9\]、传感\[10,11\]、药物传递\[12\]和光催化\[13\]等。目前,研究者建立了多种制备荧光碳量子点的方法,如电弧放电法\[14\]、激光刻蚀法\[15\]、电化学法\[16\]、化学氧化法\[17\]、水热法\[18\]、超声处理\[19\]和微波辐射法\[20\]。其中,水热法被认为是一种简单、高效制备荧光碳量子点的方法。Liu等\[21\]通过水热法处理草制备出氮掺杂碳量子点,并用于构建铜离子传感器。

本实验以苹果汁为原料,通过一步水热法获得有蓝色荧光的碳量子点。合成的碳量子点可以用于环境水样中Hg2+的快速检测。

2实验部分

2.1仪器与试剂

JEOL 2100F 场发射透射电镜(TEM,日本电子公司);Lambda 950 紫外可见分光光度计, LS45 荧光分光光度计(珀金埃尔默仪器有限公司);Nicolet NEXUS670 红外光谱仪(FTIR,美国热电尼高力公司);X射线光电子能谱仪(XPS,赛默飞世尔科技)。

2.2实验方法

量取35 mL苹果汁并转移至50 mL聚四氟乙烯反应釜中。将反应釜置于烘箱中于180 ℃下加热12 h。反应结束后,自然冷却至室温。用孔径为0.22 μm 微孔滤膜将反应液过滤后,将滤液在15000 r/min转速下离心30 min, 除去大颗粒杂质,以制得纯净的碳量子点溶液。将纯化后的溶液放在真空干燥箱中干燥72 h后,配制成浓度为1 g/L的溶液,4 ℃保存。

将5 μL碳量子点溶液(1 g/L)加入1 mL磷酸盐缓冲溶液(25 mmol/L, pH 7.0)中,混合均匀后测定其荧光强度。加入不同量的Hg2+ 室温下反应10 min后,测定相应的荧光光谱(图1)。

3结果与讨论

3.1碳量子点的表征及性质研究

如图2A,所制备的碳量子点呈圆球形,分散性好,且尺寸均一。高分辨TEM图(图2A插图)表明,碳量子点的晶格间距为0.205 nm,对应于石墨的(102)晶面\[22\]。通过测量100个碳量子点得到的粒径,得到相应的粒径分布图。由图2B可知,碳量子点的粒径为(2.8 ± 0.4)nm。

然而,鲜榨的苹果汁在262 nm处有吸收峰。碳量子点的最大发射峰位于428 nm,最大激发波长为340 nm,而苹果汁没有荧光现象。这说明在碳量子点的合成过程中水热处理至关重要。苹果汁的主要成分是碳水化合物,如葡萄糖、蔗糖、果糖和抗坏血酸等,因此,在碳量子点的合成中可能涉及到这些碳水化合物的脱水、聚合及碳化等过程\[24\]。与文献报道一致\[25,26\],该碳量子点的荧光发射峰位置和强度与激发波长相关。改变激发波长,发射峰也随之改变,并且强度亦发生变化。如图3B所示,当激发波长由330 nm增加到430 nm时,发射波长由426 nm红移至502 nm,同时强度逐渐降低。以硫酸奎宁(54%, 0.1 mol/L H2SO4)为参考物质,测得碳量子点的荧光量子产率为6.4%。利用FTIR和XPS等技术对碳量子点的结构和表面基团进行表征。图4A为碳量子点的XPS全谱图。在533.6和283.3 eV处有两个峰,分别为O1s和C1s。这表明碳量子点主要由O和C元素组成。对C1s进行分峰,得到4个峰(图4B):284.8,286.2,287.9和289.1 eV 分别对应于CC,CO,CO与OCO[23]。O1s分峰后得到532.7和531.9 eV两个峰(图4C),分别对应于COH/COC和CO[27]。Symbolm@@ 1处的吸收分别对应于CC和CO的伸缩振动\[28\]。这些含氧基团的存在说明碳量子点有很好的水溶性。FTIR和XPS两种实验所得的数据是一致的。[TS(][HT5”SS]图4(A)碳量子点的XPS全谱图;(B)C1s;(C)O1s;(D)FTIR图谱

Fig.4(A) Survey, highresolution (B) C1s, (C) O1s XPS spectra of CQDs and (D) corresponding FTIR spectra [HT5][TS)]

研究了碳量子点在不同条件下的稳定性。碳量子点在不同NaCl溶液中的稳定性实验结果见图5A,碳量子点的荧光强度与NaCl溶液浓度无关(高达1 mol/L)。当溶液pH值在3~11内变化时,碳量子点荧光强度变化甚微,表明碳量子点荧光强度不随pH 值变化(图5B)。此外,用氙灯(500 W)照射碳量子点溶液7 h,碳量子点荧光强度几乎不变(图5C)。在室温下放置3个月,碳量子点荧光强度也很稳定(图5D)。这些实验结果说明此碳量子点稳定性较好。

[TS(][HT5”SS]图5(A)不同浓度的NaCl 溶液;(B)pH;(C)光照时间及(D)放置时间对碳量子点溶液荧光强度的影响

Fig.5Effects of the concentration of NaCl solution (A), pH values (B), irradiation time (C), and storage time (D) on the fluorescence intensity of the CQDs[HT5][TS)]

3.2反应条件的优化

如图6A所示,加入Hg2+后体系荧光强度急剧下降,10 min后荧光强度趋于稳定,表明Hg2+与碳量子点之间反应快速。故在后续研究中反应时间为10 min。不同pH值下,Hg2+对体系荧光强度影响不同(图6B)。在pH=7.0时对体系荧光强度的影响最大,故本实验选择pH为7.0。如图6C所示,当碳量子点溶液浓度为5 μg/mL时,Hg2+ 对其荧光猝灭程度最大。

3.4碳量子点对Hg2+的响应曲线

考察了Hg2+浓度对碳量子点荧光的猝灭程度。如图8A所示,随着Hg2+浓度增加,体系的荧光强度逐渐降低。Hg2+浓度为5~100 nmol/L (F/F0=0.9827-0.8485C, R=0.9943)和1~50 μmol/L(F/F0=0.8565-0.0033C, R=0.9913)时与碳量子点荧光猝灭程度呈线性关系(图8B),检出限为2.3 nmol/L(S/N=3)。将构建的Hg2+传感器性能与基于其它荧光纳米材料的Hg2+传感器进行比较(表1),发现此传感器具有检出限低和线性范围较宽等优点。

4结论

以苹果汁为原料,通过一步水热法合成了水溶性好且稳定性高的荧光碳量子点。基于痕量Hg2+对碳量子点荧光的强猝灭作用建立了一种快速测定Hg2+的新方法。本方法可用于实际水样中Hg2+的测定,在环境监控与分析方面有广阔的应用前景。

References

1Clarkson T W, Magos L. Crit. Rev. Toxicol., 2006, 36(8): 609-662

2Li T, Dong S J, Wang E K. Anal. Chem., 2009, 81(6): 2144-2149

3Liu S J, Nie H G, Jiang J H, Shen G L, Yu R Q. Anal. Chem., 2009, 81(14): 5724-5730

4Li H L,Zhai J F, Tian J Q, Luo Y L, Sun X P. Biosens. Bioelectron., 2011, 26(12): 4656-4660

5Han F X, Patterson W D, Xia Y J, Sridhar B M, Su Y. Water Air Soil Pollut., 2006, 170(4): 161-171

6HU ShengLiang, BAI PeiKang, CAO ShiRui, SUN Jing. Chem. J. Chinese Universities, 2009, 30(8): 1497-1500

胡胜亮, 白培康, 曹士锐, 孙 景. 高等学校化学学报, 2009, 30(8): 1497-1500

7Baker S N, Baker G A. Angew. Chem. Int. Ed., 2010, 49(38): 6726-6744

8Li H T, Kang Z H, Liu Y, Lee S T. J. Mater. Chem., 2012, 22(46): 24230-24253

9Kong B, Zhu A W, Ding C Q, Zhao X M, Li B, Tian Y. Adv. Mater., 2012, 24(43): 5844-5848

10Zheng M, Xie Z, Qu D, Li D, Du P, Jing X, Sun Z. ACS Appl. Mater. Interfaces, 2013, 5(24): 13242-13247

11Jahan S, Mansoor F, Naz S, Lei J, Kanwal S. Anal. Chem., 2013, 85(21): 10232-10239

12Wang Q L, Huang X X, Long Y J, Wang X L, Zhang H J, Zhu R, Liang L P, Teng P, Zheng H Z. Carbon, 2013, 59: 192-199

13Li H T, He X D, Kang Z H, Huang H, Liu Yang, Liu J L, Lian S Y, Tsang C H, Yang X B, Lee S T. Angew. Chem. Int. Ed., 2010, 49(26): 4430-4434

14Xu X Y, Ray R, Gu Y L, Ploehn H J, Gearheart L, Raker K, Scrivens W A. J. Am. Chem. Soc., 2004, 126(40): 12736-12737

15Hu S L, Niu K Y, Sun J, Yang J, Zhao N Q, Du X W. J. Mater. Chem., 2009, 19(4): 484-488

16Qu Q, Zhu A W, Shao X L, Shi G Y, Tian Y. Chem. Commun., 2012, 48(44): 5473-5475

17Dong Y Q, Zhou N N, Lin X M, Lin J P, Chi Y W, Chen G N. Chem. Mater., 2010, 22(21): 5895-5899

18Sahu S, Behera B, Maiti T K, Mohapatra S. Chem. Commun., 2012, 48(70): 8835-8837

19Zhuo S J, Shao M W, Lee S T. ACS Nano, 2012, 6(2): 1059-1064

20Liu S, Wang L, Tian J Q, Zhai J F, Luo Y L, Lu W B, Sun X P. RSC Adv., 2011, 1(6): 951-953

21Liu S, Tian J Q, Wang L, Zhang Y W, Qin X Y, Luo Y L, Asiri A M, AlYoubi A O, Sun X P. Adv. Mater., 2012, 24(15): 2037-2041

22Huang H, Xu Y, Tang C J, Chen J R, Wang A J, Feng J J. New J. Chem., 2014, 38(2): 784-789

23Huang H, Lv J J, Zhou D L,Bao N, Xu Y, Wang A J, Feng J J. RSC Adv., 2013, 3(44): 21691-21696

24De B, Karak N. RSC Adv., 2013, 3(22): 8286-8290

25Liu S, Tian J Q, Wang L, Luo Y L, Zhai J F, Sun X P. J. Mater. Chem., 2011, 21(32): 11726-11729

26Li Y, Zhao Y, Cheng H H, Hu Y, Shi G Q, Dai L M, Qu L T. J. Am. Chem. Soc., 2012, 134(1): 15-18

27Lu W B, Qin X Y, Liu S, Chang G H, Zhang Y W, Luo Y L, Asiri A M, AlYoubi A O, Sun X P. Anal. Chem., 2012, 84(12): 5351-5357

28Wu Z L, Zhang P, Gao M X, Liu C F, Wang W, Leng F, Huang C Z. J. Mater. Chem. B, 2013, 1(22): 2868-2873

29Yang X, Zhu Y, Liu P, He L, Li Q, Wang Q, Wang K, Huang J, Liu J. Anal. Methods, 2012, 4(4): 895-897

30Hu D, Sheng Z, Gong P, Zhang P, Cai L. Analyst, 2010, 135(6): 1411-1416

31Zhou T, Huang Y, Cai Z, Luo F, Yang C J, Chen X. Nanoscale, 2012, 4(17): 5312-5315

32Liang A N, Wang L, Chen H Q, Qian B B, Ling B, Fu J. Talanta, 2010, 81(1): 438-443

33Duan J, Song L, Zhan J. Nano Res., 2009, 2(1): 61-68

34Paramanik B, Bhattacharyya S, Patra A. Chem. Eur. J., 2013, 19(19): 5980-5987

AbstractFluorescent carbon quantum dots (CQDs) were synthesized by onestep hydrothermal treatment of apple juice. Experiments showed that Hg2+ could quench the fluorescence of the CQDs with specificity. Based on this phenomenon, a selective and sensitive sensor was constructed for Hg2+ detection. In a NaH2PO4Na2HPO4 buffer solution (pH 7.0), their fluorescence intensity showed good linear relationship with the concentrations of Hg2+ from 5 to 100 nmol/L and 1 to 50 μmol/L, respectively, with the detection limit of 2.3 nmol/L (S/N=3). Its practical application was further demonstrated by the detection of Hg2+ in real water samples.

KeywordsCarbon quantum dots; Green synthesis; Apple juice; Mercury detection

17Dong Y Q, Zhou N N, Lin X M, Lin J P, Chi Y W, Chen G N. Chem. Mater., 2010, 22(21): 5895-5899

18Sahu S, Behera B, Maiti T K, Mohapatra S. Chem. Commun., 2012, 48(70): 8835-8837

19Zhuo S J, Shao M W, Lee S T. ACS Nano, 2012, 6(2): 1059-1064

20Liu S, Wang L, Tian J Q, Zhai J F, Luo Y L, Lu W B, Sun X P. RSC Adv., 2011, 1(6): 951-953

21Liu S, Tian J Q, Wang L, Zhang Y W, Qin X Y, Luo Y L, Asiri A M, AlYoubi A O, Sun X P. Adv. Mater., 2012, 24(15): 2037-2041

22Huang H, Xu Y, Tang C J, Chen J R, Wang A J, Feng J J. New J. Chem., 2014, 38(2): 784-789

23Huang H, Lv J J, Zhou D L,Bao N, Xu Y, Wang A J, Feng J J. RSC Adv., 2013, 3(44): 21691-21696

24De B, Karak N. RSC Adv., 2013, 3(22): 8286-8290

25Liu S, Tian J Q, Wang L, Luo Y L, Zhai J F, Sun X P. J. Mater. Chem., 2011, 21(32): 11726-11729

26Li Y, Zhao Y, Cheng H H, Hu Y, Shi G Q, Dai L M, Qu L T. J. Am. Chem. Soc., 2012, 134(1): 15-18

27Lu W B, Qin X Y, Liu S, Chang G H, Zhang Y W, Luo Y L, Asiri A M, AlYoubi A O, Sun X P. Anal. Chem., 2012, 84(12): 5351-5357

28Wu Z L, Zhang P, Gao M X, Liu C F, Wang W, Leng F, Huang C Z. J. Mater. Chem. B, 2013, 1(22): 2868-2873

29Yang X, Zhu Y, Liu P, He L, Li Q, Wang Q, Wang K, Huang J, Liu J. Anal. Methods, 2012, 4(4): 895-897

30Hu D, Sheng Z, Gong P, Zhang P, Cai L. Analyst, 2010, 135(6): 1411-1416

31Zhou T, Huang Y, Cai Z, Luo F, Yang C J, Chen X. Nanoscale, 2012, 4(17): 5312-5315

32Liang A N, Wang L, Chen H Q, Qian B B, Ling B, Fu J. Talanta, 2010, 81(1): 438-443

33Duan J, Song L, Zhan J. Nano Res., 2009, 2(1): 61-68

34Paramanik B, Bhattacharyya S, Patra A. Chem. Eur. J., 2013, 19(19): 5980-5987

AbstractFluorescent carbon quantum dots (CQDs) were synthesized by onestep hydrothermal treatment of apple juice. Experiments showed that Hg2+ could quench the fluorescence of the CQDs with specificity. Based on this phenomenon, a selective and sensitive sensor was constructed for Hg2+ detection. In a NaH2PO4Na2HPO4 buffer solution (pH 7.0), their fluorescence intensity showed good linear relationship with the concentrations of Hg2+ from 5 to 100 nmol/L and 1 to 50 μmol/L, respectively, with the detection limit of 2.3 nmol/L (S/N=3). Its practical application was further demonstrated by the detection of Hg2+ in real water samples.

KeywordsCarbon quantum dots; Green synthesis; Apple juice; Mercury detection

17Dong Y Q, Zhou N N, Lin X M, Lin J P, Chi Y W, Chen G N. Chem. Mater., 2010, 22(21): 5895-5899

18Sahu S, Behera B, Maiti T K, Mohapatra S. Chem. Commun., 2012, 48(70): 8835-8837

19Zhuo S J, Shao M W, Lee S T. ACS Nano, 2012, 6(2): 1059-1064

20Liu S, Wang L, Tian J Q, Zhai J F, Luo Y L, Lu W B, Sun X P. RSC Adv., 2011, 1(6): 951-953

21Liu S, Tian J Q, Wang L, Zhang Y W, Qin X Y, Luo Y L, Asiri A M, AlYoubi A O, Sun X P. Adv. Mater., 2012, 24(15): 2037-2041

22Huang H, Xu Y, Tang C J, Chen J R, Wang A J, Feng J J. New J. Chem., 2014, 38(2): 784-789

23Huang H, Lv J J, Zhou D L,Bao N, Xu Y, Wang A J, Feng J J. RSC Adv., 2013, 3(44): 21691-21696

24De B, Karak N. RSC Adv., 2013, 3(22): 8286-8290

25Liu S, Tian J Q, Wang L, Luo Y L, Zhai J F, Sun X P. J. Mater. Chem., 2011, 21(32): 11726-11729

26Li Y, Zhao Y, Cheng H H, Hu Y, Shi G Q, Dai L M, Qu L T. J. Am. Chem. Soc., 2012, 134(1): 15-18

27Lu W B, Qin X Y, Liu S, Chang G H, Zhang Y W, Luo Y L, Asiri A M, AlYoubi A O, Sun X P. Anal. Chem., 2012, 84(12): 5351-5357

28Wu Z L, Zhang P, Gao M X, Liu C F, Wang W, Leng F, Huang C Z. J. Mater. Chem. B, 2013, 1(22): 2868-2873

29Yang X, Zhu Y, Liu P, He L, Li Q, Wang Q, Wang K, Huang J, Liu J. Anal. Methods, 2012, 4(4): 895-897

30Hu D, Sheng Z, Gong P, Zhang P, Cai L. Analyst, 2010, 135(6): 1411-1416

31Zhou T, Huang Y, Cai Z, Luo F, Yang C J, Chen X. Nanoscale, 2012, 4(17): 5312-5315

32Liang A N, Wang L, Chen H Q, Qian B B, Ling B, Fu J. Talanta, 2010, 81(1): 438-443

33Duan J, Song L, Zhan J. Nano Res., 2009, 2(1): 61-68

34Paramanik B, Bhattacharyya S, Patra A. Chem. Eur. J., 2013, 19(19): 5980-5987

AbstractFluorescent carbon quantum dots (CQDs) were synthesized by onestep hydrothermal treatment of apple juice. Experiments showed that Hg2+ could quench the fluorescence of the CQDs with specificity. Based on this phenomenon, a selective and sensitive sensor was constructed for Hg2+ detection. In a NaH2PO4Na2HPO4 buffer solution (pH 7.0), their fluorescence intensity showed good linear relationship with the concentrations of Hg2+ from 5 to 100 nmol/L and 1 to 50 μmol/L, respectively, with the detection limit of 2.3 nmol/L (S/N=3). Its practical application was further demonstrated by the detection of Hg2+ in real water samples.

KeywordsCarbon quantum dots; Green synthesis; Apple juice; Mercury detection

猜你喜欢

苹果汁
基于苹果DNA的NFC苹果汁鉴伪方法的建立
苹果汁中多菌灵的高效液相色谱法研究
一株乳酸菌的分离鉴定及在苹果汁发酵中的应用
超高压处理对苹果-黑果腺肋花楸复合果汁品质影响研究
办卡
变性淀粉在苹果汁中的开发工艺
不同杀菌技术对鲜榨苹果汁贮藏品质的影响
固定化乳酸菌发酵苹果汁梨汁复合饮料工艺初步研究
苹果汁治疗儿童胃肠炎治愈率高
芦荟苹果保健醋饮料的研制