APP下载

根皮苷通过下调小肠NPC1L1和HMG-CoA还原酶表达降低血液胆固醇水平

2014-01-21申婷婷刘素稳汪名春常志勇

食品科学 2014年17期
关键词:皮苷固醇还原酶

申婷婷,刘素稳,赵 江,汪名春,常志勇,王 浩,*

根皮苷通过下调小肠NPC1L1和HMG-CoA还原酶表达降低血液胆固醇水平

申婷婷1,刘素稳2,赵 江3,汪名春4,常志勇3,王 浩3,*

(1.天津科技大学生物工程学院,天津 300457;2.河北科技师范学院食品科技学院,河北 秦皇岛 066604;3.天津科技大学食品工程与生物技术学院,天津 300457;4.安徽农业大学食品科学与工程系,安徽 合肥 230036)

以高脂高胆固醇膳食喂饲仓鼠为动物模型,研究根皮苷对仓鼠血脂水平及小肠胆固醇代谢相关基因的调控影响。36 只实验动物随机分成对照组和3 个不同剂量根皮苷干预组(3、6、9 g/kg),测定血清中总胆固醇(total cholesterol,TC)、甘油三酯(triglyceride,TG)及高密度脂蛋白胆固醇(high density lipoprotein cholesterol,HDL-C)水平,气相色谱法检测肝脏中胆固醇含量及粪便固醇排泄量,实时定量荧光聚合酶链式反应(real-time polymerase chain reaction,Real-Time PCR)分析小肠胆固醇合成、吸收、转化及排泄基因的表达水平。血脂测定结果显示,血清TC、TG水平随给予根皮苷添加量增加而降低,且高剂量组具有显著性(P<0.05或P<0.01);6、9 g/kg根皮苷剂量组,血清中HDL-C水平极显著升高(P<0.01)。气相色谱检测结果显示,根皮苷剂量组仓鼠肝脏中胆固醇含量较对照组随根皮苷剂量增加而降低,且6、9 g/kg组具有极显著差异(P<0.01);粪便中总中性固醇排泄量与根皮苷给予量正相关,且都具有显著性差异(P<0.05或P<0.01),总酸性固醇排泄量根皮苷剂量组 相比对照组增加,且6 g/kg组显著增加(P<0.05),9 g/kg组极显著增加(P<0.01)。Real-Time PCR检测结果显示,根皮苷剂量组小肠中胆固醇合成限速酶HMG-CoA还原酶、小肠胆固醇吸收关键蛋白NPC1L1、胆固醇酯化酶ACAT2、微粒体转运蛋白MTP的mRNA表达水平较对照组显著降低(P<0.05或P<0.01);给予根皮苷后,肠道中促进胆固醇向外排泄基因ABCG5/8表达水平显著升高(P<0.05或P<0.01)。因此,根皮苷对高脂高胆固醇膳食饲喂仓鼠胆固醇代谢平衡的调节可能是通过对小肠胆固醇吸收、转化等基因表达的抑制,上调胆固醇排泄基因的表达实现的。

根皮苷;仓鼠;小肠;血脂;基因表达

高胆固醇血症可以通过诱导局部炎症、氧化应激损伤、损坏血管内皮细胞代谢和功能等导致动脉粥样硬化,因此维持机体胆固醇代谢平衡,在预防心血管疾病中有重要意义[1]。流行病学研究表明,摄食苹果与心血管疾病[2]、糖尿病[3]及高胆固醇血症[4]等疾病的发生负相关。根皮苷属于植物类黄酮中的二氢查儿酮苷类,多存在于苹果和多穗柯甜茶嫩叶中,且在苹果多酚中含量较高。苹果具有降胆固醇的功效,但是大多数研究都是关注冻干苹果粉[5]、苹果果胶[6]和苹果纤维[4]降胆固醇的作用,本实验以苹果多酚中的一种特征多酚根皮苷为研究对象,以高脂高胆固醇饲喂仓鼠为动物模型,研究根皮苷对仓鼠机体内胆固醇代谢的影响。

1 材料与方法

1.1 材料与试剂

矿物质混合物(AIN-93)、维生素混合物(AIN-93)美国Harlan公司;苹果根皮苷(95%) 天津尖峰公司;血脂测定试剂盒(总胆固醇(total cholesterol,TC)、甘油三酯(triglyceride,TG)、高密度脂蛋白胆固醇(high density lipoprotein cholesterol,HDL-C))中生北控生物科技股份有限公司;Trizol试剂、cDNA合成试剂盒、SYBR Green染料 日本TaKaRa公司;TMS(六甲基二硅胺、三甲基氯硅烷、吡啶体积比3∶1∶9)衍生化试剂 美国Sigma公司。

1.2 仪器与设备

Myclcyer聚合酶链式反应(polymerase chain reaction,PCR)仪、MyiQ2实时(real-time)定量荧光PCR仪 美国Bio-Rad公司;UVmini-1240紫外-可见分光光度计 日本岛津公司;冷冻离心机 美国Thermo公司;Agilent 7890A气相色谱仪 美国安捷伦公司。

1.3 动物

仓鼠(黄金地鼠),雄性,(125±5)g,清洁级,购自北京维通利华实验动物技术有限公司。

1.4 方法

1.4.1 动物及分组

36 只仓鼠适应1 周后,随机分成4 组,每组9 只,分别为对照组,3 个不同添加量(3、6、9 g/kg)根皮苷组,饲养条件为室温(22±2) ℃,相对湿度40%~60%,控制照明(12 h/12 h昼夜循环)。实验6 周,期间动物自由摄食,每3 d更换新粮,收集粪便。饲喂鼠粮基础粮(1 kg)配方:玉米淀粉 408 g、酪蛋白242 g、蔗糖119 g、猪油150 g、矿物质混合物40 g、维生素混合物20 g、胆固醇1 g、明胶20 g,根皮苷剂量组在基础粮基础上分别添加3、6、9 g根皮苷,制备后-20 ℃保存。在饲喂的第0、6周末,动物禁食14 h后轻微麻醉(克他命、甲苯噻嗪等),眼底静脉丛采血,1 000×g离心10 min分离血清,-20 ℃保存待测。第6周末取血后,动物CO2麻醉处死,取肝、小肠,生理盐水清洗,-80 ℃保存待测。

1.4.2 血脂水平测定

血清中TC、TG、HDL-C的测定具体方法参照试剂盒说明书。

non-HDL-C含量/(mmol/L)=TC含量/(mmol/L)-HDL-C含量/(mmol/L)

1.4.3 肝脏胆固醇的测定

组织中胆固醇的测定采用气相色谱法(g a s chromatography,GC),具体参见实验室已有的方法[7]。具体为:组织经氯仿-甲醇(2∶1,V/V)溶液匀浆,提取出不皂化物。经N2吹干,TMS衍生化后N2吹干,正己烷溶解,GC检测,其中以豆甾醇为内标。

1.4.4 粪中中性固醇和酸性固醇的测定

粪样品冻干,磨粉,中性固醇萃取到环己烷层,TMS衍生化后GC检测;酸性固醇在下层水层,经皂化、提取后再转化为其TMS衍生物,其中中性固醇以豆甾醇内标,酸性固醇以猪去氧胆酸为内标。

1.4.5 Real-Time PCR检测小肠中相关蛋白mRNA的表达

运用Real-Time PCR检测仓鼠小肠中3-羟基-3-甲基戊二酰辅酶A还原酶(3-hydroxy-3-methyl glutaryl-CoA reductase,HMG-CoA还原酶)、固醇脂质吸收关键蛋白NPC1L1(niemann-pick C1-like1)、微粒体甘油三酯转运蛋白(microsomal triglyceride transfer protein,MTP)、ABCG5/8(ATP binding cassette transporter subfamily G members 5/8)、酰基辅酶A-胆固醇酰基转移酶(acyl coenzyme A-cholesterol acyltransferase 2,ACAT2)mRNA的表达。相关蛋白mRNA的相对表达量以GAPDH为内参基因计算而得。

Trizol法提取小肠中的总RNA,反转录得到cDNA,-80 ℃保存,SYBR Green法检测基因表达水平。基因引物信息见表1。

表1 仓鼠小肠中胆固醇代谢基因Real-Time PCR引物Table 1 Real-Time PCR primers used to measure small intestine mRNA levels

1.5 统计分析

实验数据以x±s表示,用t检验法检验,P<0.05表示有统计学意义。

2 结果与分析

2.1 根皮苷对血脂水平的影响

图1 不同剂量根皮苷对高脂高胆固醇膳食喂饲仓鼠血液TC、TG和HDL-C水平的影响Fig.1 Changes in serum TC, TG and HDL-C in hamsters fed the control diet and three experimental diets supplemented with 3, 6, and 9 g/kg phlorizin, respectively

如图1所示,0 周时,各组仓鼠血清TC、TG、HDL-C水平接近,无显著性差异(P>0.05)。饲喂仓鼠9 g/kg根皮苷6 周后,血清TC、TG与对照组相比显著降低(P<0.05或P<0.01);6、9 g/kg根皮苷剂量组血清HD L-C与对照组相比极显著升高(P<0.01);给予仓鼠根皮苷膳食干预后血清中non-HDL-C降低,且6、9 g/kg根皮苷剂量组极显著降低(P<0.01)。

2.2 根皮苷对仓鼠肝脏胆固醇含量的影响

图2 不同剂量根皮苷对高脂高胆固醇膳食喂饲仓鼠肝脏中胆固醇水平的影响Fig.2 Changes in hepatic cholesterol levels in hamsters fed the control diet and three experimental diets supplemented with 3, 6, and 9 g/kg phlorizin, respectively

如图2所示,随着根皮苷添加量增加,仓鼠肝脏中胆固醇含量逐渐减少,且6 g/kg和9 g/kg根皮苷剂量组具有极显著差异(P<0.01)。

2.3 根皮苷对仓鼠粪便中中性及酸性固醇排出水平的影响气相色谱分析粪便中固醇排泄量,如表2所示,3 g/kg根皮苷剂量组中性固醇排出量显著高于对照组(P<0.05),6、9 g/kg根皮苷剂量组排出量较对照组极显著升高(P<0.01)。6、9 g/kg根皮苷剂量组胆固醇排出量较对照组极显著升高(P<0.01);3、6 g/kg根皮苷剂量组二氢胆甾醇醇 和菜籽固醇排泄量较对照组显著增加(P<0.05),9 g/kg根皮苷剂量组排泄量较对照组极显著增加(P<0.01)。

表2 饲喂仓鼠不同剂量根皮苷对摄食量和粪便中中性、酸性固醇排泄量的影响Table 2 Food intake and fecal excretion of neutral sterols and acidic sterols in hamsters fed the control diet or three experimental diets supplemented with 3, 6, 9 g/kg phlorizin, respectively at week 6

酸性固醇排出量随根皮苷添加量增加而增加,且6 g/kg根皮苷剂量组较对照组显著升高(P<0.05),9 g/kg根皮苷剂量组较对照组极显著升高(P<0.01);其中,胆酸排出量与根皮苷添加量正相关,且6、9 g/kg根皮苷剂量组具有统计学差异性(P<0.05或P<0.01);熊去氧胆酸排出量根皮苷剂量组随根皮苷添加量增加逐渐增加,且都有统计学差异性(P<0.05)。

2.4 根皮苷对小鼠小肠中HMG-CoA还原酶、NPC1L1、ABCG5/8、ACAT2、MTP mRNA表达的影响

小肠是机体胆固醇内源合成、吸收转化和排泄的重要场所,其中小肠胆固醇合成占机体内源合成的10%。HMG-CoA还原酶是体内胆固醇合成的限速酶,主要调节体内胆固醇的内生合成[8],如图3所示,检测结果显示给予根皮苷后仓鼠小肠内HMG-CoA 还原酶mRNA的转录水平受到抑制,6、9 g/kg剂量具有统计学差异(P<0.05);NPC1L1是肠道胆固醇吸收的关键蛋白,在肠道中膳食来源胆固醇在NPC1L1的调控下进入小肠绒毛上皮细胞[9],并在ACAT2的调控下由胆固醇转化为胆固醇酯[10-11],后者被MTP转移至乳糜微粒[12],最终经由淋巴系统进入血液循环。结果显示给予根皮苷可以抑制NPC1L1和ACAT2转录,且3 g/kg剂量可以显著抑制其转录(P<0.05),6、9 g/kg剂量可以极显著降低其转录水平(P<0.01);实验结果显示根皮苷剂量组MTP mRNA表达水平极显著降低(P<0.01);另外,小肠上皮细胞中ABCG5/8负责将未吸收的少量胆固醇清除回肠道[13],给予仓鼠3 g/kg根皮苷可以显著升高ABCG5在小肠中的转录水平(P<0.05),6、9 g/kg根皮苷极显著升高其转录水平(P<0.01);3、6 g/kg根皮苷剂量组ABCG8 mRNA表达水平显著升高(P<0.05),9 g/kg根皮苷剂量组其表达水平极显著升高(P<0.01)。

图3 不同剂量根皮苷对高脂高胆固醇膳食喂饲仓鼠小肠HMG-CoA还原酶、NPC1L1、ACAT2、ABCG5/8和 MTP mRNA表达水平的影响(n=9)Fig.3 Effects of dietary 3, 6, and 9 g/kg phlorizin on mRNA levels of HMG-CoA reductase, NPC1L1, ACAT2, ABCG5/8 and MTP in hamstersfed a high fat and high cholesterol diet (n = 9)

3 讨 论

小肠作为胆固醇代谢的重要器官,在机体胆固醇代谢平衡中 起着重要作用。Thilakarathna等[14]报道,苹果皮提取物膳食干预高胆固醇仓鼠可以降低血液TC、TG及肝脏中胆固醇含量。本实验研究根皮苷膳食干预对高脂高胆固醇饲喂仓鼠机体内胆固醇代谢的影响,实 验结果显示,给予仓鼠根皮苷干预后,仓鼠血液中TC、TG水平降低,HDL-C含量升高,non-HDL-C水平降低。气相色谱分析肝脏中胆固醇含量及粪便中固醇的排泄结果显示,根皮苷干预后仓鼠肝脏中胆固醇含量降低、粪便中固醇排泄增加,这与Lam等[15]报道的苹果多酚可以增加仓鼠固醇排泄调节胆固醇的代谢平衡结果一致。

他汀类药物通过抑制胆固醇内源合成酶HMG-CoA还原酶活性降低血液胆固醇水平[16],依泽替米贝类药物通过抑制NPC1L1酶活从而抑制小肠内胆固醇的吸收,调节胆固醇平衡[17],给予根皮苷后小肠中基因表达检测结果显示,根皮苷可以降低HMG-CoA还原酶和NPC1L1的转录水平。另外,小肠中促进胆固醇排泄基因ABCG5/8的表达水平升高,根皮苷剂量组ACAT2和MTP mRNA表达水平降低,从而胆固醇酯化及非高密度脂蛋白的组装可能降低。

因此,根皮苷对高脂高胆固醇膳食喂饲仓鼠胆固醇代谢平衡的调节机制,可能是通过增加小肠中胆固醇的排泄、抑制胆固醇的吸收及合成实现的。

[1] PRAMFALK C, ANGELIN B, ERIKSSON M, et al. Cholesterol regulates ACAT2 gene expression and enzyme activity in human hepatoma cells[J]. Atherosclerosis Supplements, 2008, 9(1): 33.

[2] SESSO H D, GAZIANO J M, LIU S, et al. Flavonoid intake and the risk of cardiovascular disease in women[J]. American Journal of Clinical Nutrition, 2003, 77(6): 1400-1408.

[3] SONG Yiqing , MANSON J A E, BURING J E, et al. Associations of dietary flavonoids with risk of type 2 diabetes, and markers of insulin resistance and systemic inflammation in women: a prospective study and cross-sectional analysis[J]. Journal of the American College of Nutrition, 2005, 24(5): 376-384.

[4] MEE K A, GEE D L. Apple fiber and gum arabic lowers total and low-density lipoprotein cholesterol levels in men with mild hypercholesterolemia[J]. Journal of the American Dietetic Association, 1997, 97(4): 422-424.

[5] KARVINEN E, MIETTINEN M. Effect of apple and pectin diets on serum and liver cholesterol in rats[J]. Acta Physiologica Scandinavica, 1968, 72(1/2): 62-64.

[6] APRIKIAN O, DUCLOS V, GUYOT S, et al. Apple pectin and a polyphenol-rich apple concentrate are more effective together than separately on cecal fermentations and plasma lipids in rats[J]. Journal of Nutrition, 2003, 133(6): 1860-1865.

[7] WANG Hao, ZHANG Zesheng, GUO Ying, et al. Hawthorn fruit increases the antioxidant capacity and reduces lipid peroxidation in senescence-accelerated mice[J]. Europe an Food Research Technology, 2011, 232(5): 743-751.

[8] GOLDSTEIN J L, BROWN M S. Regulation of the mevalonate pathway[J]. Nature, 1990, 343: 425-430.

[9] GE Liang, WANG Jing, QI Wei, e t al. The cholesterol absorption inhibitor ezetimibe acts by blocking the sterol-induced internalization of NPC1L1[J]. Cell Metabolism, 2008, 7(6): 508-519.

[10] PARINI P, DAVIS M, LADA A T, et al. ACAT2 is localized to hepatocytes and is the major cholesterol-esterifying enzyme in human liver[J]. Circulation, 2004, 110(14): 2017-2023.

[11] REPA J J, BUHMAN K K, FARESE R V, et al. ACAT2 deficiency limits cholesterol absorption in the cholesterol-fed mouse: impact on hepatic cholesterol homeostasis[J]. Hepatology, 2004, 40(5): 1088-1097.

[12] SORBERA L A, MARTIN L, SILVESTRE J, et al. Implitapide. Hypolipidemic, treatment of atherosclerosis, MTP inhibitor, ApoB secre tion inhibitor[J]. Drugs of the Future, 2000, 25(11): 1138-1144.

[13] JIAO Rui, GUAN Lei, YANG Nan, et al. Frequent cholesterol intake up-regulates intestinal NPC1L1, ACAT2, and MTP[J]. Journal of Agricultural and Food Chemistry, 2010, 58(9): 5851-5857.

[14] THILAKARATHNA S H, WANG Yanwen, RUPASINGHE H P, et al. Apple peel flavonoid-and triterpene-enriched extracts differentially affect cholesterol homeostasis in hamsters[J]. Journal of Functio nal Foods, 2012, 4(4): 963-971.

[15] LAM C K, ZHANG Zesheng, YU Hongjian, et al. Apple polyphenols inhibit pl asma CETP activity and reduce the ratio of non-HDL to HDL cholesterol[J]. Molecular Nutrition & Food Research, 2008, 52(8): 950-958.

[16] LAROSA J C, HE Jiang, VUPPUTURI S. Effect of statins on risk of coronary disease: a meta-analysis of randomized controlled trials[J]. Jama, 1999, 282(24): 2340-2346.

[17] BETTERS J L, YU Liqing. NPC1L1 and cholesterol transport[J]. FEBS Lett ers, 2010, 584(13): 2740-2747.

Phlorizin Decreases Serum Cholesterol by Downregulating Intestinal NPC1L1 and HMG-CoA Reductase

SHEN Ting-ting1, LIU Su-wen2, ZHAO Jiang3, WANG Ming-chun4, CHANG Zhi-yong3, WANG Hao3,*
(1. College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; 2. College of Food Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao 066604, China; 3. College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; 4. Department of Food Science and Engineering, Anhui Agricultural University, Hefei 230036, China)

Destroying the balance of plasma cholesterol into hypercholesterolemia is a major risk factor for atherosclerosis. The aim of this report was to investigate the effects of phlorizin on blood cholesterol level and gene expression of cholesterolregulating enzymes in Golden Syrian hamsters maintained on a 0.1% cholesterol high fat diet. Totally 36 hamsters were randomly divided into control group and three experimental groups with 3, 6, and 9 g/kg phlorizin, and serum total cholesterol (TC), triacylglycerols (TG) and high-density-lipoprotein-cholesterol (HDL-C) were detected. Then, the contents of cholesterol in liver and fecal neutral and acidic sterols were determined by GC. The gene expression of cholesterolregulating proteins in the small intestine was assayed with Real-Time PCR. Serum TC and TG we re significantly decreased in 9 g/kg phlorizin group compared with those in the control group, while HDL-C in 6 and 9 g/kg phlorizin groups were significantly increased (P < 0.01). The hepatic cholesterol level in the experimental groups supplemented with 6 and 9 g/kgphlorizin was significantly lower than that in the control group (P < 0.01). Higher excretion of fecal cholesterol was observed in the phlorizin groups. The amount of total fecal neutral sterols was increased compared with that in the control group (P < 0.05 or P < 0.01). The excretion of total fecal acidic sterols was increased as the amount of phlorizin increased (6 g/kg, P < 0.05; 9 g/kg, P < 0.01). It was also found that the cholesterol-lowering activity of phlorizin was associated with downregulation of intestinal 3-hydroxy-3-methyl glutaryl-CoA (HMG-CoA) reductase, niemann-pick C1-like 1 (NPC1L1), acyl-CoA-cholesterol acyltransferase 2 (ACAT2), microsomal triacylglycerol transport protein (MTP), and up-regulation of ATP-binding cassette transporter such as subfamily G member 5 and 8 (ABCG5/8) transporters. The mechanisms underlying the cholesterol-lowering activity of phlorizin were mediated most likely by increasing the sterol excretion and decreasing the cholesterol absorption and synthesis.

phlorizin; hamsters; small intestine; serum lipid; gene expression

R151.2

A

1002-6630(2014)17-0192-05

10.7506/spkx1002-6630-201417037

2013-11-06

国家自然科学基金青年科学基金项目(31201322);“十二五”国家科技支撑计划项目(2012BAD33B05);天津市高等学校科技发展基金计划项目(20100609)

申婷婷(1988—),女,硕士研究生,主要从事食品营养学研究。E-mail:shenting890101@163.com

*通信作者:王浩(1979—),男,副教授,博士,主要从事食品营养学研究。E-mail:wanghao@tust.edu.cn

猜你喜欢

皮苷固醇还原酶
根皮苷对秀丽隐杆线虫寿命的影响
H型高血压亚甲基四氢叶酸还原酶基因(MTHFR基因)与中医证型的相关性研究
四氢叶酸还原酶基因多态性与冠心病严重程度的相关性
基于色谱-质谱联用技术定量分析氧固醇的研究进展
植物固醇的合成运输及应用研究
植物固醇血症与早发冠心病关系的研究进展
桑枝中桑皮苷A的提取工艺优化及其含量测定
苹果树腐烂病菌发酵液中根皮苷主要降解成分分析
植物固醇的研究现状
反相高效液相色谱法测定舒筋定痛胶囊中柚皮苷含量